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1. Introduction 

Maglev train is a new means of transport and an integration of the latest high-techs in the 

field of track-bound transportation system. Over the past half century, the research on 

vehicle structure has been always a very active area. The researchers realized there is 

great difference between the movements of the maglev train with that of the conventional 

rail vehicles. For designing maglev vehicle, creation of a new mechanism is necessary, and 

then the mechanism is converted to a specific machine to compose vehicles. In this 

process, machine and mechanism kinematics analysis are indispensable prerequisites. 

Study of kinematics analysis method and theoretical is the forefront of researching for the 

structure of maglev train. This chapter aims to introduce author’s the latest research 

outcome. 

2. Structure of maglev trains 

EMS maglev trains have two basic structures which are represented by German Transrapid 

and Japanese HSST. Chinese and Korean mid-low speed maglev trains are in these two basic 

structures now. 

2.1 Outline of structure development of ems maglev trains 

The structure of EMS maglev trains has changed through a rigid aircraft - flexible coupling - 

modularization structure process. Based on the vehicles levitation running in the air, 

naturally a structure type of rigid spacecraft has been designed by researchers, namely the 

whole vehicle in rigid structure. It takes Japanese HSST-01(Yoshio Hikasa & Yutaka 

Takeuchi, 1980) (Fig.1) and German Transrapid 02(J.L.He et al., 1992) (Fig. 2) as the 

representatives of this vehicle.  

The vehicle shakes violently when they are experimentally running at a high speed. Both 

kinds of vehicles are non-manned and the researchers design a new kind of maglev vehicle 

structure for solving the manned riding comfort. This structure separates the car body and 

running gear first and a secondary suspension system is sets up with buffer spring between 

them. It takes Japanese HSST-02(Yoshio Hikasa & Yutaka Takeuchi, 1980) (Fig.3) as the 

representative. 
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1.Electricity box, 2.Instument panel, 3.Automate control unit, 4.Thyrist chopper, 5.Battery, 6.Gas sensor, 
7.Levitation magnet, 8.Power collector, 9.Linear induction motor, 10.Hydraulic brake, 11.Saving skid, 
12.Reaction plate, 13.Brakage, 14.Anchor rail, 15.Power rail 

Fig. 1. HSST-01 Maglev Vehicle 

 

Fig. 2. Transrapid-02 

 

1. Secondary suspend, 2.Anchor rail, 3.Levitation magnet, 4.Power rail, 5.Power collector,  
6.Hyraulic brake, 7.Reaction plate, 8.Linear induction motor.  

Fig. 3. HSST-02 

However, Vibration problem is still unresolved by use of this structure when the train are 
running at a high speed, because the gap size between magnetic track and suspension 
electromagnet is acquired by gap sensors which are generally laid for four. The four points 
should be controlled independently and may not in the same plane (for example, track error, 
vehicle passing transition curve, asynchronous dynamic adjustment of all points, etc.), but for 
the rigid or elastic support system in which the bogies are still rigid, the four sensors are 
installed in a comparatively rigid plane, so this is a conflict. After a long period of experiments 
and researches, a new kind of modularized vehicle structure (TEJIMA Yuichi, et al., 2004; Seki & 
Tomohiro, 1995; Maglev Technical Committee, 2007) ȐFig.4, 5ȑis invented. The car body and 

running gear are separated and jointed by the secondary suspension system in which the four 
control points of bogies are decoupled, so the vibration problem of vehicles are solved perfectly. 
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1. Guidance magnet, 2.Overlap magnet, 3.Brake magnet, 4.Levitation magnet, 5.Car body, 6.Maglev 
bogie, 7.Secondary suspension system, 8.Levitation frame  

Fig. 4. Transrapid 08 

 

1. Maglev bogie, 2.Secondary Suspend system, 3.Car body.  

Fig. 5. HSST-100 

2.2 Characteristics of EMS maglev train structure 

The structure of maglev trains has several extraordinary characteristics: 1) as light as 

possible; 2) enough degrees of freedom; 3) special mechanically-braking mode; 4) unique 
lateral load way 5) vehicles fall on rail to slide under emergency. The vehicles are composed 

of three parts as shown in Fig.4: car body at the top, secondary suspension at the middle and 
running gear at the bottom. The wheel rail vehicles have only two bogies through wheel 

pair contact with rail, but bogies of the maglev trains distributed along the entire length of 
vehicles, so they are strikingly different in structure. 

The two wheel pair of wheel rail vehicles is installed on a rigid frame in the same plane. The 
four points in the frame of maglev bogies, the detection points of gap sensors, should move 

independently. The bogies have two typical structures: the bogie with torsion longeron is 
shown as Fig.6 (Maglev Technical Committee, 2007), Fig.8 (Z.S. ZHAO & L.M. YING, 2007). 

Two levitation frame units 8 are connected by torsion longeron 7 to form The maglev bogies. 
In vertical direction, the bogies realize the independent motion of four points by reversed 

longeron (the bogies hereinafter referred as T-type bogies); and the bogie is assembled by 
connection tow module 8 with anti-rolling beam 1, as shown in Fig.7.  
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1. Support arm, 2.Levitation magnet, 3. Crossbeam, 4.Air spring & Pendulum arm, 5.Guidance magnet, 
6.Support skid, 7.Torsional longeron, 8.Levitation frame unit, 9. Gap sensor  

Fig. 6. A bogie of high-speed maglev vehicle 

The bogies realize the independent motion of four points by relative torsion of two anti-
rolling beams 1 (the bogies hereinafter referred as A-type bogies).     

 

1. Anti-rolling beam, 2.Air spring, 3.Linear induction motor, 4.Linear rolling table, 5.Drive staff, 
6.Forced steering mechanism, 7.transverse rod, 8.Module, 9.Lvitation magnet, 10.Gap sensor, 11.thrust 
rod, 12.Rocker. 

Fig. 7. A bogie of middle-low speed maglev vehicle 

Generally speaking, the running gear of maglev trains is composed of several bogies. The 
maglev trains and wheel rail trains also differ in the connection among bogies and between 
bogies and carriages. As shown in Fig.6, bogies are connected by overlap electromagnet 2 
and spring hinges to form the maglev running gear (Fig.4), and joints with car body by the 
tilting suspension system 7. As shown in Fig.7, 9, 10, bogies are grouped in pairs by forced 
steering mechanisms 6 to make up the running gear, which is connected with the carriages 
by hinges AǵC1~C4 and rolling table 4. The linear rolling table is equipped at the end of 

bogie modules 8 which can rotate around the shaft C in a small angle. The forced steering 
mechanism 6 is composed of wire ropes and T-type rod. As it turns, the modules deflect to 
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drive the air spring transverse rod 7, then the force is transmitted to thrust rod 8 whose 
motion drives the T-type rod to rotate, the rotation is passed to another T-type rod by 
linkage wire ropes, then thrust rod and transverse rod of next bogie drive its modules to 
deflect and so far the steering action is completed. 

The secondary suspension system transmits three forces in different directions between car 
body and bogies and the transmission course is as follows: the vertical load transmits in 
maglev track←→ electromagnet ←→ modules ←→diaphragm air spring ←→ rolling 
table←→ car body. 

The transverse load transmits in car body ←→ T-type rod ←→ wire rope, transverse link 
←→ lower rolling table ←→ air spring tie rod ←→ modules ←→electromagnet ←→ track. 

It can be seen that plenty of bogies distributed along the length of car body contribute to the 
relative complex joint of car body and bogies. If the tilting suspension system is adopted, the 
maglev bogie 4 has sixteen pendulum binding mechanisms; if the rolling table is adopted, 
there are ten point of junction for the steering mechanism. 

3. Kinematic characteristics of EMS maglev trains  

Although EMS maglev trains fly at a zero height, it still needs exercise along maglev 
guideway necessary. The position vectors can be divided along guideway (longitudinal), 
perpendicular guideway surface (vertical), perpendicular guideway side(lateral) three 
components.  

The vertical motion is controlled by the system composed of gap sensor, levitation controller 
and levitation electromagnet with limitation. The transversal motion is restricted by 
transversal electromagnetic force and the longitudinal motion is related to the transversal 
motion and the constraint between all parts of vehicles. According to last paragraph, the 
vehicle is composed of running gear, secondary suspension system and car body  and  it’s 
kinematic analysis includes the analysis on the spatial positions of all parts and the relative 
positions of all parts.  

  

Fig. 8. Bogie Decoupling by torsion beam 
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1. Module, 2.anti-rolling beam, 3.pedulum rod, 4. Sphere joint. 

Fig. 9. Bogie decoupling by anti-rolling beam 

The maglev bogies are the basic components of running gears and their displacements are 
crucial for the determination of vehicle motion. Their kinematic characteristic is that A, B, C 
and D pointsȐFig.8, 9ȑshould move independently (uncoupling). Four straight lines can 

be drawn by the four points. When the maglev bogies are running along curved path, the 
four rectilinear motion space surfaces is the Coons surface. When the maglev bogies are 
passing the transition curve, the four points are not in the same plane. Both A-type bogies 
and T-type bogies can realize this motion. T-type bogies realize the motion by torsion beams 
and A-type bogies by the torsion of two anti-rolling beams. However, A-type bogies and T-
type bogies have big differences in their transversal motions. The bogie as shown in Fig.6 
can only make lateral movement as a whole. In addition, because its secondary suspension 
system is pendulous and there will produce a big transverse component of gravity force 
acting on the bogie by pendulum suspension system when the vehicle is passing the curve, 
the bogie has a bad ability to follow the guideway transversally and can not pass the curve 
with a small curvature radius and need an active guidance force provided by guidance 
electromagnet 5 as shown in Fig.6.                         

Two modules 8 of the bogies as shown in Fig.7 should move independently. Each module 
has three translational (X, Y, Z) and two rotational (Y, Z) degrees of freedom. It can pass the 
curves with a small curvature radius and there is hardly any limit in its lateral motion in a 
small range, so by adopting levitation electromagnet 9 as shown in Fig.6 it can provide a 
passive guidance force which is a component of levitation force and only exists when the 
electromagnet is deviating from the guideway and thus it is called as passive guidance 
force. By now it seems that the motion problem of vehicles has been solved. The track curve 
can determine the instantaneous position of the bogie, then the relative positions between 
bogies, bogie and second suspension system and car bodies by connection relationship and 
the absolute spatial positions of all parts, all of which only involve the deduction of 
geometric relationships.                  
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1. Railway, 2.Carbody, 3. Forced steering mechanism, 4.Module, 5.Linear bearing.  

Fig. 10. Connection between Secondary suspend system, car body & running gear, and two 
bogies is connected by forced steering mechanism 

But the problem is far from simple. For example, the relative position of car body and 

running gear of vehicle as shown in Fig.4 must be calculated based on the sixteen pendulum 

suspension mechanisms for the joint of car body and bogie. If the relative position of car 

body and bogie in the curve changes, the rocker deflects and the weight W of car body 

transmitted by the sixteen suspenders to the bogie is decomposed into two component 

forces Wi, Wj, so the transversal relative position of car body and bogie involves the balance 

of sixteen transversal forces Wi but not a simple calculation of geometric relationships.  

For the vehicle as shown in Fig.5, the constraint of electromagnetic restoring force in the 

relative position of bogies and track is described in the preceding paragraph. It is easy to 

calculate the relative position of single bogie and guideway, namely the instantaneous position 

or locus, then the relative positions or topological relations among all components can be 

deduced by electromagnetic balance. However, owing to the complexity of connection 

relationships between several bogies and car body (Fig.10), this calculation method can not be 

extended to the vehicle. A typical case is when a bogie enters into the transition curve and the 

following bogie is still in the straight-line guideway, the front bogie rotates around the points 

C1, C2 and the following bogie is droved to rotate around the points C3, C4 owing to the effect 

of forced steering mechanism 3, so the following bogie doesn’t move along a straight line. The 

reason lies in that there is a balance relationship of restraining force between the lateral 

electromagnetic restoring force and components and it should not considered simply that the 

bogies are pulled to the track by electromagnetic restoring forces. Therefore, different from the 

wheel rail vehicles, the passive guidance EMS maglev trains may not run in the track curve. 

The vehicle electromagnetic restoring force, constraint among all components and track 

geometry curve must be considered comprehensively to deduce the instantaneous position or 

trace of a bogie in absolute coordinate by the force balance relation and geometrical relation of 

vehicle in any position, then the relative positions between the rigid bodies or topological 

relations of all components are deduced by connection relations. However, it brings big 

difficulties in solving this problem. 

4. Kinematic modeling and analysis of maglev trains (Z.S. Zhao and C. Ren, 
2009) 

The kinematic characteristics of EMS maglev trains illustrated in the preceding paragraph 
show that the motion of maglev trains can not be deduced simply by geometrical relations. 
Based on the passive EMS maglev trains, the following kinematic analysis includes 
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kinematic modelling and analysis. The vertical position of vehicle is controlled by the 
levitation gap between electromagnet and guideway. Because the gap is constant, the 
vertical position of vehicle can be determined by the track curve and the determination of 
lateral instantaneous position is the key of kinematic research on vehicles.             

The research on instantaneous position adopts two methods based on track fitting: strict 
fitting track (two endpoints of the bogie on the track) (ZHAO Z.S. & YING L.M., 2000; MEI 
Z. & LI J., 2007; JIANG H.B., et al., 2007) and balanced lateral electromagnetic restoring force 
of single bogie (ZENG Y.W. & WANG S.H. 2003; ZHANG K. & LI J., 2005; ZHAO C.F & ZAI 
W.M., 2005). The former is obviously an unproved hypothesis and the later doesn’t consider 
the influence of constraint among all components in the motion. 

 

1.Anti-rolling beam, 2.Linear rolling table, 3.forced steering mechanism, 4.T type rod, 5.Wire rope, 
6.Levitation magnet, 7.module. 

Fig. 11. Running gear sketch of the passiveness guidance EMS maglev train 

4.1 Kinematic modelling of EMS mid-low speed maglev trains   

To simplify the problem without loss of generality, in this article derivations is made based 

on the following conditions: 1) because the Z-directional motion of vehicle has a little 

influence on its lateral motion, its mathematical deduction is based on X-Y plane; 2) the 

model is established for the vehicle with four bogies; 3) the axis C1-C4 are combined into two 

axis P4, P11 (Fig.12); 4) the kinematic modelling is only based on the central line of track; 5) 

the carriages and bogies are rigid bodies with the lengths of LCǵL respectively. 

4.1.1 Kinematic modeling of maglev trains based on geometrical relations 

In the instantaneous position sketch of maglev trains as shown in Fig. 12, PiȐxi, 

yiȑrepresent bogies’ end point and intersection point of bogies and track curve Y(x). If Pi is 

definite, the instantaneous position or motion locus of vehicle and the relative positions 
(topological relations) among the components of vehicle and between vehicle and track may 
be determined. The section aims to establish the equations with the unknown quantities xi, yi 
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accordingly based on geometrical relations. Pi is in the straight line representing bogies 
respectively and should satisfy the following relations:     

 

Fig. 12. Instantaneous Position of the maglev vehicle with four bogies   
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There i=1, 4,8,11. The geometrical relation between carriage and bogie is:   

 2 2
4 11 4 11( ) ( ) 0.5 cx x y y L      (4-2) 

The intersection relation of curve and straight line is:  
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 (4-3) 

In the above equation, i=1, 4,8,11. The straight line representing the centre line of carriage is:  

4 11 4 11
4 4

4 11 4 11

0
y y y y

x y x y
x x x x

    
      
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The offset distance from the bogie endpoints to the car body obtained by the distance from 

point to line: 4 11 4 4 11 4

c

( )( ) ( )( )
 

0.5L
i i

i

y y x x x x y y    
  , in which i=1,7,8,1. Follow equation 

(ZHAO Z.S. et al., 2000) is given by the structural symmetry and the constraint of forced 

steering mechanism,  

 1 14

7 8

 


 
  (4-4) 

there are twenty-two equations with twenty-eight unknown quantities Pi(xiǵyi) in the 

above (4-1)-(4-4), it is obvious that the kinematic problem of vehicle can not be solved only 

by geometrical relations and other equations should be founded by the balance relations of 

lateral forces.      

4.1.2 Kinematic modeling of maglev trains based on the constraint of lateral 
electromagnetic restoring force and mechanism constrain  

The passive guidance EMS maglev train keeps a lateral position from electromagnetic 

restoring force. To seek balance of lateral force, it should be considered that the calculation 

of electromagnetic resilience generated by the linear bogie units fitting the curved track; the 

influence of constraint such as the binding force produced among the bogies owing to 

interconnection of the forced steering mechanisms and carriages an bogies. In this section, 

other equations shall be sought for by the balance of lateral forces, the calculation formula of 

lateral forces (Sinha P. K., 1987) is:  

1tanu m w

u
F K L


    
 

 

in which 
2 2

0

4
m

N I
K




 ， w
m

A
L

W
 , Lw is length of magnetic pole，μ0, N, A, I represents 

vacuum permeability and turns，effective area of magnetic pole，coil current respectively, 

other parameters can refer to Fig.13. Taking the first bogie for example, the electromagnetic 
restoring force of any infinitesimal curve unit ds in the track is: 

1 1
1 tanu m w

u
dF K dL


    
 

 

Δu1 represents the distance from a point q(x，y) in the curve to the line: 
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Fig. 13. Magnet lateral reversion force of the bogie module 

In the same way, the calculation formula of the electro magnetic restoring force differential 
unit of other bogies can be deduced:   
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1. Balance equation of lateral restoring force and moment of the vehicle: 
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Balance equation of moment of lateral restoring force (taking P4 as the pivoting point) 
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2. Balance of constraint force of forced steering mechanism  

 

Fig. 14. Balance of two bogies linked by compelling guided mechanism 

3. According to Fig.14, the balance equation of constraint force of forced steering 
mechanism linking the No.1,2 bogies is f11l11=f12l12，and the following equation can be 

obtained:  

 11
12 11 11

12

l
f f f
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    (4-7) 

The moment arm length from the point P4 to No.1 bogie’s any point dFu1 on which 

electromagnetic resilience is exerted is 24
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substituted inȐ7ȑ： 
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By the above method the constraint forces’ balance equation of forced steering mechanisms 
connecting No.3, 4 bogies can be obtained:  
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The upper or lower limit of integration are the coordinate x of the intersection points qi1ǵqi2 

of two straight lines perpendicular to the endpoints PiǵPi+3 of the No.1 bogie and the curve 

Y(x). Its expression is written as (corresponding to four bogies, j=1, 4, 8, and 11): 
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1 1

2 3 2 3

( ) ( ( ) ) 0

( ) ( ( ) ) 0

i i j i j

i i j i j

k x x Y x y

k x x Y x y 

    
    

 

Substituting x11ǵy11=Y(x11) in the above first equation, the following equation can be 

obtained:   

 1 11 1 11 1( ) ( ( ) ) 0k x x Y x y      (4-10) 

In the above six equations inȐ4-5ȑȐ4-6ȑȐ4-8ȑȐ4-9ȑobtained by the balance between 

lateral electromagnetic resilience and structural constraint force, the equations (8), (9) 

introduce a unknown quantity ǈ. Hereby the equation (4-10) is introduced and a reference 

point q11Ȑx11ǵy11ȑto instantaneous position of vehicle is given. The equations (4-1)-(4-6) 

and (4-8)-(4-10) are the non-linear equation set with twenty-nine unknown quantities, 

namely twenty-nine unknown quantities PiȐxiǵyiȑand η can be resolved. This is the 

general formula for kinematic analysis on passive EMS maglev trains with four bogies 

which can be used to resolve the absolute position (motion trace) of any bogie and the 

relative position or topological relation of any component of the vehicle at any time. In the 

same way, kinematics equations of maglev train with other number bogies can be deduced. 

4.1.3 General kinematic characters of passive guidance EMS maglev trains  

Following kinematic characters of vehicles can be deduced by the above general kinematic 

formulas: 

Character 1: kinematic the static determinacy or indeterminacy of vehicles is determined by 

the forced steering mechanism, namely the topological relation between a bogie and 

carriage (formula (4-4), (4-7)) must be given and if not, there will be multiple solutions of 

motion trace.         

Character 2: n, namely the number of intersection points of the modules (straight line) and 

track (convex curve), 1≤n≤2, two geometric equations will be reduced for each reduced 

crossing point and in the straight-line segment of track, the bogies are coincident with the 

track.      

Character 3: the motion trace of vehicle is determined together by the topological relations 

between bogie and carriage and bogie and track but not only by the track.  

Character 4: The steering characteristic and yawing characteristic of vehicle with transverse 

interference depend on the balance relation between the lateral electromagnetic restoring 

force and the constraint force of forced steering mechanism.       

4.2 Solution and analysis of kinematic equations of EMS mid-low speed maglev trains  

Given that N=320，Wm=28 mm，A=3360×28 mm2，L=3.4 m，Lc=14.5 m , circular curve 

radius R=100 m，superelevation is 60 mm，transition curve length l0=12 m, the 

easement trace curve is the clothoid generally, the curvature of easement curve 

0k s Rl   and the high-order small quantities are ignored, the projection of x-y plane of 

trace curve is:   
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   

 

in which q0Ȑx0，y0ȑǵqeȐxe，yeȑǵqcȐxc，ycȑrepresent the bonding points of the 

straight segment and curved segment of trace curve Q(x) and transition curve and the center 

of bend circular curve respectively. 
21

e
c e

e

k R
x x

k
 


，

21

e
c e

e

k R
x y

k
 


, '( )|

ee x xk Y x  , 

qeȐ11.9956，0.2397ȑ，qcȐ11.6364，100.06ȑ. In the interval defined by track curve, a 

series of q11(x11, y11) are valued according to the step length of 0.1m to resolve the kinematic 
equations obtained in the preceding paragraph, the motion trace of vehicle and the relative 
positions of all vehicle components can be derived. Some primary results obtained through 
numerical calculation by MATHEMATICA are given below.      

1. Motion trace 

To express the kinematic characters, the motion trace of vehicle is shown by the offset of 
bogies to the track but not  the coordinate figure  Pi.  The fig.15 gives the fitting figure of 
computed results and the table 1 shows the computed results when q11 is valued as four 
typical coordinate points.        

 

Fig. 15. Curves of bogies endpoint offset relative to the track 

 

Bogie 
q11(x,y) 

1 2 3 4 

Front⊿u11 Rear⊿u12 Front⊿u21 Rear⊿u22 Front⊿u31 Rear⊿u32 Front⊿u41 Rear⊿u42 

3.4,  
0.0055 

1.94 1.89 1.89 1.91 0 0 0 0 

6.8,  
0.0437 

3.52 3.49 3.49 3.5 0 0 0 0 

10.2,  
0.1474 

6.52 6.46 6.46 6.48 1.91 1.89 1.89 1.92 

13.6, 
0.3494 

8.05 7.94 7.94 8.01 3.52 3.51 3.51 3.53 

Table 1. Δuij , Amount of bogie endpoint offset relative to the track 
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2. Relative positions of all components of vehicle  

The relationships of relative positions exist among the bogies and between bogies and 
carriages. For the sake of intuition, the computed results of relative positions among bogies 
are transformed into the included angles. The figure 16 gives the fitting figure of computed 
results of relative positions among bogies and the Tab. 2 gives the computed results of two 
position relations when q11 is valued as four typical coordinate points respectively 

 

Fig. 16. Alteration curve of angle between No.1,2 bogies 

Bogie P11(x,y)
q11(x,y) 

1 2 3 4 1-2 2-3 3-4 

Front⊿1 Rear⊿7 Front⊿8 Rear⊿14 ǉ12 ǉ23 ǉ34 

3.4,  0.0055 3.24 1.05 0.84 0.84 0.034º 0.02º 0º 

6.8,  0.0437 13.78 4.52 1.02 1.02 0.424º 0.215º 0º 

10.2,  0.1474 95.75 31.81 27.24 83.92 1.072º 0.556º 0.039º 

13.6, 0.3494 157.8 52.54 48.05 146.03 1.771º 1.091º 0.411º 

Table 2. Angle ǉij between bogies & Bogie endpoint offset Δi relative to the car body 

4.3 Conclusions 

Based on the derivation and computational analysis of above kinematic kinematics 
mathematical formulas and test results, the following conclusions on relevant kinematic 
researches on passive guidance EMS maglev trains can be obtained.       

1. The absolute position or trace of vehicle is not equal to track curve and their relation 
(offset Δuij) is also not constant. The change rule is: straight segment (zero) → easement 
curve segment (Monotone increasing) →bend segment (a maximum constant)  

2. The kinematic static determinacy or indeterminacy of vehicles depends on the forced 
steering mechanism. If no forced steering mechanism, the kinematic relation of vehicles 
is indefinite. 

3. The bogie and carriage, bogie between any two are restricted geometrically and the 
bogie and track is constrained by lateral electromagnetic restoring force, so the absolute 
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position Δuij of bogies should be determined by the electromagnetic balance of vehicle 
and geometrical constraint relations of all its components. Δuij of different bogies is 
different at the same time and position.        

4. The parameter η=3 expressing the characteristic of relative position between bogies and 

carriages is applicable to all line segments.      

5. The change law of relative positionȐǉijȑamong bogies is: straight segment (zero) → 

easement curve segment (Monotone increasing) →bend segment (a maximum constant).  

6. The absolute position of vehicle and the relative position among all its components 

including the bonding points of all line segments change smoothly in the motion.      

7. The results obtained by kinematics formulas are consistent with the past research 

results in circular curve and straight-line segment  

8. The article gives that the mathematical models can be used in the kinematic analysis of 

vehicle by the transverse interference.  

5. Kinematic analysis on the secondary suspension system of maglev trains 

The composition and kinematic characteristics of secondary suspension system for the joint 

of car body and bogies has been illustrated in the paragraph 1, 2. The distinctive mid- 

structure of active and passive guidance maglev trains lie in pendular suspension 

mechanism and forced steering mechanism respectively. In this paragraph, their kinematic 

characteristics analysis and the calculation method is given and other kinematic analyses 

can see the references (ZHAO Z.S. et al., 2000).  

5.1 Kinematic analysis on the forced steering mechanism of passive guidance ems 
maglev trains  

The functions of forced steering mechanism are to connect two bogies to form the running 

gear (Fig.10, 11, 14), keep a proper geometric position between the running gear and car 

body (Fig.10) and transmit the transversal force between the running gear and car body. 

When realizing these functions, the uncoupling of bogies can not be affected by the 

mechanism. According to Fig.14, the transverse thrust rod of the forced steering mechanism 

may affect the uncoupling of bogies, which can be obtained by analyzing some motions of 

bogie as it goes through the curve. 

The relative height and distance between the ends of two bogie modules in motion may 

change. The transverse thrust rod are equipped at the end of bogies, so it is possible to add 

spherical hinges at the end of links to adapt to the change of relative height between the 

ends of two modules and it is hard to change the length of rigid rods. Take the vehicle with 

five bogies Shown as Fig.17 for example. Setting：δ1=ǂ2-ǂ1，δ2=φ2-φ1, h, ǃ , L represent 

width of track and angle of aǵR2 , length of module respectively. 

1sin
2

i
i

L

R
   
  

 
， 5i i   ， 

outside track radius is R1 =R+h/2, inside track radius is R2 =R-h/2, distance between two 

module endpoints of bogie in the curve： 2 2
1 2 1 22 cosi ia R R R R    , there i=1,2.  
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Fig. 17. Distance between two module endpoints of bogie in a curve 

Obviously the distance between two module endpoints of bogie in a curve is enlarged 
relatively to in straight. Its size can be examined by an instance.     

Given that R=50m，h=2.02m, L=2.24m 

φ1=1.25811 
φ2=1.31 

The distance between two module endpoints of front bogie is: 

2 2
1 48.99 51.01 2 48.99 51.01 cos(0.2594)a       =2.03264m 

The distance between two endpoints of back bogie：a2=2.0205m, a1, a2 represents the 

distance between endpoints of front and back bogies in a curve respectively, and the change 
of distance between two module endpoints of bogie is: 

Da1=a1-h=12.64mm 
Da2=a2-h=0.5mm 

Therefore, the change of distance between two module endpoints of front bogie is bigger 
and transverse thrust rod must be able to extend 13mm at most when the vehicle is in 
motion. To solve this problem, the transverse thrust rod may be arranged in a V type 
(Fig.18) and the calculation of physical dimension of the forced steering mechanisms and 
their mathematical models based on kinematics principle is given below.   

As shown in Fig.17, Lǵtǵlǵdǵf represent length of module and transverse thrust rod and 

T-type arm, the horizontal distances from rotation center of module to rotation centre of T-
type rod, the offset distance between the hinge point of transverse thrust rod and the center 
of air spring respectively. ǉ1, ǉ2 represent the oscillation angle of two modules respectively.  
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Fig. 18. Kinematic sketch of forced steering mechanism  

When the running gear is in motion, two transverse thrust rod and T-type rod  rotate 
around the point P1(x1,y1), P2(x2,y2) and O1 respectively and the traces of their endpoints 
are three circles in the same plane with the radius of t, 1. Three circles intersect in the 
point P(x, y). Thereout the following equation set is given.  

 

   
   
 

22 2
1 1

22 2
2 2

2 2 2

x x y y t

x x y y t

x d y l

   

    


   

 (5-1) 

among which,  

 

2

2

2
1 1

4
cos 4 ( 1) sin 4 1

2
( 1) ( cos 4 ) sin 4 ( 1) ( )

i
i i i

i

i i
i i i

i

L
x L f L

R

L
y h f L h f

R

 

  


    




        


  (5-2) 

In the above equation set, i=1, 2，and by the third equation in (1), 2 2( )y l x d   is 

obtained.  

In consideration of 1 2x x , by the first and second equations in (1), 2

1 2

1 1
( )y L
R R

    is 

obtained and is substituted into second equations inȐ5-1ȑ： 

2 2 2
2

2 1

1 1
[ ( )]x t h f L x

R R
      , thus the x, y is obtained and substituted respectively 

into third equation in (5-1): 
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 2 2 2 2 4 2 2

2 1 1 2

1 1 1 1
( [ ( )] ) ( )t h f L L d L l

R R R R
           (5-3) 

Without considering of high-order small quantities, the equation (3) can be simplified as: 

2 2 2 2( ( ) )t h f L d l      or  2 2 2( ) ( )t l d L h f      

There are two unknown quantities t and 1 in the above equation. One of them is set, the 
other can be obtained. A calculation sample is given below.   

Given that L=2.24m, h=2m, R=50m, f=90mm, d=1.9m and l=550mm, t≈1.39m can be obtained.  

5.2 Kinematic analysis on tilting suspension system of maglev train  

5.2.1. Mathematical description of turing characteristic of tilting suspension system 
maglev train (Zhao Z.S., 2009) 

The figure 18 show the motion state of high-speed maglev train with tilting suspension system 
goes around the curve, in which Δij, ǉij represent the lateral displacement and oscillation angle 
of rocker respectively and wǵTijǵfij represent the car body gravity, tension and lateral force 

of carriage acting on the rockers of tilting suspension system respectively. The train is 
composed of carriage, bogies, suspension system. four bogies and three overlapping modules 
are connected alternately to form the running gear (see the Fig. 18 left) and four set of pendular 
suspension systems are configured in the interval between four bogies and carriage 
respectively (see the Fig. 18 right). As the vehicle enters the curve, the bogies move along the 
track curve under the effect of active electromagnetic guiding force and produce relative 
displacement Δij to the carriage which is driven by the oscillation of rockers of tilting 
suspension system. The sixteen pendular rod of tilting suspension system will produce the 
lateral force acting on the carriage and bogies. Δij is determined by the balance of the forces fij 
acting on the carriage, the active electromagnetic guiding force can be obtained by the force fij 
acting on single bogie. Therefore the solution of the steering characteristic of maglev train with 
tilting suspension system lies in resolving the displacement of rockers and the force acting on 
them. From the viewpoint of design, it might as well make a hypothesis that the sixteen 
rockers receive the weight of carriage equally. 

  

Fig. 19. Force and Displacement of Tilting Suspension System & Relative Displacement 
between Carriage and Bogie in the Curve  
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The lateral balance equation of carriage in the curve is: 

4 2

1 1

0ij
i j

f
 




，because of the symmetry,  
2 2

1 1

2 0ij
i j

f
 




， 

in the above equations, the bilateral balances are considered similarly and iǵj represent the 

number of bogie and its ends respectively. The above equation can be written as:   

 11 12 21 22(tan tan tan tan ) 0w          (5-4) 

 

namely: 

 11 12 21 22

2 2 2 2 2 2 2 2
11 12 21 22l l l l

   
  

       
   (5-5) 

 

among which l represent the length of rocker. The following geometrical relationships can 
be shown in Fig. 18:  

11 12 sin6L      

22 21 sin 2L      

Substituted into (2):  

 12 12 21 21

2 2 2 2 2 2 2 2
12 12 21 21

sin 6 sin 2

( sin 6 ) ( sin 2 )

L L

l L l l l L

 

 

     
  

         
 (5-6) 

 

Likewise from the geometrical relationships, the following equation can be obtained:  

 12 21 sin 4L      (5-7) 

 

From trigonometric functional relations and in considering of R>>L： 

2

sin 2 2sin cos 1
2 2 2

L L L

R R R
        

 
 

3
2 2

3 2 2
sin 4 4sin cos 1
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L L L

R R R
  
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2 2 2
3 3 3

sin 6 2(3sin 4sin )(4 cos 3cos ) 3 1 1
2

L L L L L

R R R R R
    

                              
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From the above three equations, given that m=L2/R and substituted in (3), (4)： 

 
12 12 21 21

2 2 2 2 2 2 2 2
12 12 21 21

12 21

3 0.5

( 3 ) ( 0.5 )

2

m m

l m l l l m

m

         
          

    

 (5-8) 

among which L represent the length of bogie. From the equations (5), 

21 21 21 21

2 2 2 2 2 2 2 2
21 21 21 21

5 2 0.5

(5 ) (2 ) ( 0.5 )

m m m

l m l m l l m

      
  

          
 

Given that Δ21=μm and substituted in the above equations:  

 
2 2 2 2 2 2 2 2

5 2 0.5

(5 ) (2 ) ( 0.5)n n n n

   

   
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  (5-9) 

among which n=l/mǶ 
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   (5-10) 

The equations Ȑ5-4ȑȐ5-5ȑȐ5-9ȑȐ5-10ȑare the calculation formulas of steering 

characteristics of maglev train with tilting suspension system. 

5.2.2 Calculation of steering characteristic parameters of maglev train with tilting 
suspension system 

Structural parameters of vehicle is given, L=4.096m; l=0.24m; R=350mǵ400m; gauge is 

2.2m; weight of carriage W=30T; w=W÷16=1.875T. Valuing the convergence accuracy as 
0.005, μ can be obtained by solution of the equation (5-9) with numerical method, then the 
lateral force fij and lateral displacement Δij of rocker ends derived from equations (5-4) and 
(5-10), it is not hard to obtain the tension Tij of suspension rocket and the vertical 
displacement of its ends. The calculation results are as follows: 

When the vehicle is passing the curve of 350m, R=350m；R1=351.1m；R2=348.9m.  

 

Item 
 
 
Position 

Displacement of suspensor rod tip Lateral force put on car body 
(KN) Transverse (m) Vertical (m) 

Δ11 Δ12 Δ21 Δ22 Z11 Z12 Z21 Z22 f11 f12 f21 f22 

Outside 
track 

0.154 0.0106 0.0846 0.1085 0.056 0.0002 0.015 0.026 15.69 0.83 -7.09 -9.54 

Inside track 0.156 0.0108 0.0857 0.1098 0.057 0.0002 0.0156 0.027 15.86 0.84 -7.14 -9.37 

Table 3. Displacement of suspensor rod tip & Lateral force put on car body 
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From equation (5-9) it can obtain μ=1.777 and the above parameter table 3. The 
electromagnetic guiding forces acting on the bogie 1 and 2 are 33.22K and -33.15KN 
respectively, which is the reason why this kind of vehicles must adopt the active guidance 
structure.   

6. Research on mechanisms and kinematics of maglev bogies  

In this paragraph, the mechanism analysis and kinematic calculation methods of maglev 
bogies are introduced. As described in the paragraph 1 and 2, the bogies of EMS maglev 
trains have two structures. T-type bogies (Fig.6, 8) are decoupled by the torsion of longerons 
and A-type bogies (Fig.6, 8) are decoupled by anti-rolling beams. The vertical uncoupling of 
both kinds of bogies is based on the principle of relative torsion of modules. Their 
mechanism sketches are shown respectively in Fig.19 and Fig.20.      

 

1.Car body, 2.Secongdary system spring, 3.Rocker arm, 4.Z support for car body, 5.Linkage levitation 
magnet, 6.Longeron, 7.Guidance magnet, 8.Suppot arm, 9.Levitation frame unit, 10.Levitation magnet. 

Fig. 20. Mechanism sketch of T-type bogie 

The Levitation frame unit of T type bogies is distributed both front and back and may be 

connected with a torsional elastic longeron, and the Levitation and guidance electromagnet 
is installed on the bracket arms of front and back modules. It is obvious that other relative 

motions of the front and back Levitation frame unit of T-type bogies are limited. The two 
modules of A-type bogie have three translational degrees of freedom and two rotational 

degrees of freedom. It can be seen from the sketch that the analysis on their X, Y-directional 
translational degrees of freedom and Z-directional rotational degree of freedom is much 

simple, and X-directional rotational degree of freedom is limited by the anti-rolling beams, 
so in this section, the analysis and calculation focus on Z-directional translation and Y-

directional rotation of modules of A-type bogies.  

Take the kinematic analysis on the right module in Fig. 19 for example. When the endpoint 
P of right electromagnet 1 elevates D11, the corresponding points M, M’ to electromagnets in 
the same plane with anti-rolling beams 3, 4 elevate d11ǵd12, the angle between the magnet 1 

and the horizontal plane is ǂ1 and the module 2 rotates in the Y direction, namely twist 
relatively to the left module 9. As the motion of the module 2, the front and back anti-rolling 
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beams 3, 4 move d11ǵd12 upward in the Z direction. Owing to the immovability of the left 

module 9, as the motion of the module 2, the right and left pairs of anti-rolling beams 3-5,4-6 
should stagger d11ǵd12 in the Z direction, but the anti-rolling beams are connected by 

suspenders 1—2 which tend to stop this motion.      

 

1. R. levitation magnet, 2.R. module, 3.R. Front Anti-rolling beam, 4.R.rear Anti-rolling beam, 5.L. Front 
Anti-rolling beam, 6.L.Rear Anti-rolling, 7.Rear axis of rotation, 8.L. levitation magnet, 9.L. module, 
10.Front axis of rotation, 11. Pendular rod 

Fig. 21. Module uncoupling movement of a type bogie mechanism 

For the sake of further analysis, it may emphasize the analysis on the relative motion of 
front two anti-rolling beams 3-5. It is obvious that the anti-rolling beam 5 can not move in 
the Z direction but rotate around the shaft 10. When the module 2 is moving upward, the 
anti-rolling beam 3 exerts a press force on the Pendular rod 1-1’. Because there are the ball 
hinges at the ends of the rod, the bearing anti-rolling beam 3 is instability and will deflect to 
drive the anti-rolling 5 to move around the shaft 10. At this moment, the anti-rolling beam 3 
can move upward, namely one end of the module 2 move upward and the other anti-rolling 
beam moves similarly. It can be seen that the analysis on the motion of modules focuses on 
the calculation of kinematic parameters of connecting two module ant-rolling beams. The 
relevant computational formulas are given below.  

For the convenience of analysis, the mechanism sketch Fig.21 of ant-rolling beam is given 
separately. The sketch shows the position relations of motion of all points elevated by one 
end of the right module. Proposed that the length of ON is L1ǵthe length of OP is t12ǵthe 

length of OP’ is t11，the length of RM is H1ǵthe length of RM’ is h11, lij  represents the 

length of four rocker respectively and the first and second subscripts represent the number 
of modules and anti-rolling beams respectively. 
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In above equation (6-3) (6-4), Sij and sij represent transverse motion of end of pendular rod 1j 
and 2j respectively, from the above equations： 

 

Fig. 22. Z-directional decoupling movement of anti-rolling beam mechanism & oscillation 
compensation of suspender 
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The above equations are the computational formulas of relevant parameters to the Y-
directional rotation and Z-directional translation of the right module. When the right 
module is translating in the Z-direction, Δ11=Δ12 and the calculation of connecting two pairs 
of anti-rolling beams is identical. The calculation of X, Y-directional translation and X-
directional rotation is comparatively simple and the analysis and calculation of the left 
module are similar. About these it is unnecessary to go into details.     

An example of calculation is given below. Given all relevant geometric 
dimensions：ON=L=2700，OP’=t11=2320， 

lij=200，OP=t12=380，RM=H1=1200，RM’=hij=26 and supposed that one end of module 

elevates Δ11=8mm, calculation from the above formula, S11=52, s11=11.3, S12=21.2, s12=4.6, 
ǉ11=15.1°, ǉ12=6.1°, ǃ11=2.48°, ǃ12=1.01°, Φ11=3.24°, Φ12=1.32°. 

If the anti-rolling beams and rocker are assembled as sandwich (Fig.7), the oscillation of 
pendular rod may be limited, so the width between two anti-rolling beams should be 
enough. Take the anti-rolling beam 11 for example (Fig.20 right) and it is not difficult to 
conclude that:        

'
11

11 11
11

l
w S

l
  width between two anti-rolling beams：

'
11

11 11 11
11

2l
W S C

l
   , among which C11 

is the diameter of suspender. If '
11 75l  mm, C11 =20mm，and others are same as the above 

instance，it is given that W11=59mm. 

It should be pointed out that when four rockers are oscillating, connection of four endpoints 

of the rocker l1jǵl2j can form a pair of spatial quadrangles. It has the following two 

circumstances:    

If the module translates in the Z direction, this pair of spatial quadrangles will be in two 

planes separately and they are parallelogram.  

If one end of the module elevates or rotates in the Y direction, this pair of quadrangles will 

be spatial.  

It can be seen that the motion of pendular rod is spatial and the above formulas based on 

simplified to the plane is approximate one in the circumstance 2. However the error is small 

and the results are conservative, so there is no problem to apply in the engineering design.  

7. Prospects for structure and kinematic analysis on maglev trains  

The research and application of maglev trains has gone for more than half century, the study 
of vehicle structures, focusing on the running gears and secondary suspension system, has 
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undergone the replacement of many generations. Great strides have also been made in the 
kinematic analysis which is closely related to design. However, it is to be so regretted that 
contents of this section  is involved in the core of structure and competitiveness and this 
kind of references are rare, so an brief introduction is given below according to the author’s 
work. 

7.1 Prospects for research on vehicle structures 

The most feature parts of maglev vehicle structure are the bogies and secondary suspension 

system for the joint of bogies and car body on which the study touches upon the analysis 

methods of design and innovation of mechanisms.  

1. The research on the mechanism of bogies focuses on the innovation of mechanism 

which requires providing at most five degrees of freedom for single levitation 

module. Now the mechanism and its developmental direction are focusing on the 

spatial linkages mechanism. The number of kinematic pairs and component and 

joints type are two mainstream  research directions, for example, at the longeron’s 

middle of T-type bogie two hinged rods are changed into one rod and more linkage 

rods are set at the junction part of two modules of A-type bogies. The number of 

kinematic pairs and component is closely related to degrees of freedom of bogie 

levitation unit (reduced to connecting rods), and T-type bogies are equipped with 

more elastic connecting pieces to add the degrees of freedom, which will produce 

some additional forces and affect their structural life and motion range of component. 

A-type bogies with plenty of kinematic pairs and component are much complicated 

in structure and the operation and maintenance work are also increased. Therefore it 

is an important direction of research on vehicle structure how to constitute the bogie 

mechanisms with minimum kinematic pairs and components to realize the maximum 

degrees of freedom now.                  

2. The innovation of mechanism is still the direction of research on secondary suspension 

system, but the mechanism of secondary suspension system is closely related to the 

bogies and is contrary to the bogies in the complexity. This is not hard to understand 

because the degrees of freedom of bogies are more and the matched secondary 

suspension system must satisfy its requirements but not limit its degrees of freedom. 

Therefore an important direction of the research on structure lies in the analysis and 

innovation of the whole mechanism formed by secondary suspension system and 

bogies. Of course, the difficulties are obvious.  

3. As the advance in the research, the design analysis method is an important branch. It 

is a trend to apply the development achievements of mechanism in recent years into 

the structural design of maglev trains. In a nutshell, the topological structure of 

kinematic chain is represented by graph theory, namely the topological graph 

represented by points and edges is further represented by matrix. The formulation 

of experiences and imitation design methods may be very important to the synthesis 

of bogie mechanism and secondary suspension system. The optimization of 

mechanisms is another trend, including the objective functions such as scale of 

motion and degree of freedom and the parameters such as length of linkage rod and 

connection pair. 
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7.2 Progress in kinematic analysis on vehicles  

The kinematic analysis on vehicles includes kinematic analysis methods, modelling and 
solutions of kinematics mathematical model, etc.    

1. Progress in kinematic analysis methods   

At present, the simulation method is widely applied and much mature. The analytic method 

is still developing and its main direction is to apply the mechanism kinematics theory into 

the kinematic analysis of maglev trains, for example, in multi-rigid-body kinematical 

analysis on robots, the traces and relative positions of all rigid bodies can be obtained 

successively by the determination of the motion trace of input end and D-H transformation, 

which is method of open chain analysis. However the problem is that the maglev trains have 

no trace of input end which is conveyed in the fourth section of this chapter, so it is 

Inappropriate to apply the above method into maglev trains. Another analytic method is to 

found an analytic equation set of the whole kinematic chain by combining geometrical 

analysis (traces, topological relations among rigid bodies) and equilibrium of internal with 

external forces, then the equation set is solved to derive traces (instantaneous positions) and 

topological relations of all bodies (relative positions including the relative positions with 

traces), which may be called as method of “closed-loop” analysis. That is to say, the traces of 

the whole kinematic chain and its any component are unknown and all unknown quantities 

are included in a non-linear equation set. This analytic method is proper to maglev trains 

and also universal. In this chapter, the analytical process on two kinds of EMS maglev trains 

introduced.  

The further studies include that the dynamics vector equations of vehicles can be obtained 

by establishing the position vectors equations of spatial traces of all rigid bodies and 

derivation of the equations on time. In addition, considering the vehicle is composed of 

rigid-elastic bodies, its method of multi-body kinematic analysis is another important and 

difficult task.         

2. Establishment of kinematics mathematical model 

The analytic method is closely related to modelling, Transformation of areal model into 
space model becomes an important branch even though its sense may be restricted in 
theoretical category. If the kinematic analysis model of bogies stated in the sixth section is 
established based on the theory of spatial mechanism, the motion of binding mechanism of 
modules can be understood clearly and more accurate structural design may be guided if 
necessary. In addition, the model in the third section can establish the model with the width 
of vehicle and track by the method of offset curve.  

More accurate models are also the pursuit of researchers, for example, considering the 
influence of change of the module Z-directional displacement caused by the adjustment of 
electromagnet and elastic elements which may change the kinematic models of maglev 
trains.   

3. The solution should not differ greatly from that of mathematic and numerical 
solution without much further ado. For maglev trains, their unique features are the 
simplification of equations, setting of boundary conditions and precision of 
calculation.  
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