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1. Introduction  

The phenomenon of vortex shedding behind bluff bodies has been a subject of extensive 

research. Many flows of engineering interest produce this phenomenon and the associated 

periodic lift and drag response (Cohen et al., 2005). External flow over bluff bodies is an 

important research area because of its wide range of engineering applications. Although, the 

geometry of a bluff body can be simple, the flow behind it is chaotic and time-dependent 

after a certain value of Reynolds number. Forces acting on the body such as drag and lift 

also vary in time, and cause periodic loading on it. These forces originate from momentum 

transfer from fluid to the body, where their magnitudes are strongly related to the shape of 

the body and properties of the flow. 

Flow over a circular cylinder is a benchmark problem in literature. It arises in diverse 

engineering applications such as hydrodynamic loading on marine pipelines, risers, offshore 

platform support legs, chemical mixing, lift enhancement etc. (Gillies, 1998; Ong et al., 2009). 

It is experimentally investigated by Norberg (1987) that when the Reynolds number of flow 

over a circular cylinder exceeds 48, vortices separate from the cylinder surface, and start to 

move downstream, where steady-state behavior of the flow turns into a time-dependent 

state. These periodically moving vortices at the downstream form self-excited oscillations 

called the von Kármán vortex street (Gillies, 1998) as shown in Fig. 1. 

 

Fig. 1. The von Kármán vortex street observed in the wake region of a two-dimensional 
circular cylinder 
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Separation from the surface of the cylinder can be either laminar or turbulent according to 
the regime of the flow in the boundary layer. It is shown by Wissink and Rodi (2008) that 
flow with a Reynolds number between 1000 and 20000 is called subcritical, and in this 
range, boundary layer on the cylinder is entirely laminar and transition from laminar to 
turbulent flow happens somewhere at the downstream. Although vortex street is fully 
turbulent after Re≈20000, laminar separation sustains up to a Reynolds number of 100000 
(Travin, 1999). Several experimental and computational studies in literature examine the 
flow over a circular cylinder at subcritical Reynolds numbers (Anderson, 1991; Aradag, 
2009; Aradag et al., 2009; Lim and Lee, 2002). 

The control of the vortex shedding observed in the wake region of a bluff body is extremely 
important in engineering applications in order to improve aerodynamic characteristics and 
performance of the bluff body. To do this, it is substantially important to predict the flow 
structures and their characteristics observed in the wake region (Aradag, 2009). 

In many of the engineering applications involving fluids, Computational Fluid Dynamics 
(CFD) plays a crucial role as a major tool to analyze flow structures and their characteristics 
(Gracia, 2010). However, it lacks the functionality of being practical and quick for real-time 
complex fluid mechanics applications, and such limitations cause difficulties especially in 
the development of flow control strategies (Fitzpatrick et al., 2005). In order to observe the 
flow structures and their characteristics in real-time systems in detail, a more practical 
procedure is needed.  

The Proper Orthogonal Decomposition (POD) is a reduced order modeling technique used to 
analyze experimental and computational data by identifying the most energetic modes and 
relative mode amplitudes in a sequence of snapshots from a time-dependent system (Cao et 
al., 2006). It has been used in numerous applications to introduce low-dimensional 
descriptions of system dynamics by extracting dominant features and trends (Lumley, 1967). 
The POD technique was originally developed in the context of pattern recognition, and it has 
been used successfully as a method for determining low-dimensional descriptions for human 
face, structural vibrations, damage detection and turbulent fluid flows (Chatterjee, 2000). In 
addition, the method has also been used for many industrial and natural applications, such as 
supersonic jet modeling, thermal processing of foods, investigation of the dynamic wind 
pressures acting on buildings, weather forecasting and operational oceanography (Cao et al., 
2006). There are several studies in literature that utilize the POD technique in fluid mechanics 
applications as a reduced order modeling tool (Connell & Kulasiri, 2005; Lieu et al., 2006; 
O’Donnell & Helenbrook, 2007; Sen et al., 2007; Unal & Rockwell, 2002). 

In POD technique, originally correlated data is linearly combined to form principal 
components that are uncorrelated and ordered according to the portion of the total variance in 
the considered data (Samarasinghe, 2006). This type of dimensionality reduction offers linear 
combinations of orthogonal functions to represent a process or a system. Thus, the order of the 
original high-dimensional data is reduced by compressing the essential information to the 
uncorrelated principal components associated with modes and relative mode amplitudes to 
provide a model of the data instead of using the original correlated inputs (Newman, 1996b).  

The selected principal components, and hence modes and relative mode amplitudes, can be 
used as an alternative to the original data ensemble at the input section to a neural network. 
Since the number of inputs to the model is substantially reduced, the formed network 
structure will have less complexity and prevent overfitting while representing the original 
inputs appropriately (Samarasinghe, 2006).  

www.intechopen.com



Modeling the Wake Behind Bluff Bodies for Flow Control 
at Laminar and Turbulent Reynolds Numbers Using Artificial Neural Networks 

 

101 

Artificial Neural Networks (ANN’s) refer to computing systems the main idea of which is 
inspired from the analogy of information processing in biological nervous systems. A neural 
network structure transforms a set of input variables into a set of output variables via 
mathematical and statistical approaches (Bishop, 1994). By using ANN’s, it is possible to 
obtain a solution for complex problems that do not have an analytical solution via 
application of conventional approaches.  

Currently, neural networks are used for the solution of problems in system identification, 
such as pattern recognition, data analysis, and control. Apart from these, ANN’s have also 
been applied in diverse fields such as insurance, medicine, economic predictions, speech 
recognition, image processing, and heat transfer and fluid mechanics applications 
(Nørgaard et al., 2000). For example, in a study performed by Xie et al. (2009) ANN’s are 
used to evaluate friction factors in shell and tube heat exchangers by making use of 
experimental and computational Nusselt numbers obtained at laminar and turbulent 
regimes, where Reynolds number changes within the range of 100 and 10000. The authors 
related 12 different input sets including geometric parameters, such as number of tubes, 
arrangement of tubes and fin structures, with Nusselt numbers and friction factors to train 
the feed-forward backpropagation ANN structure and to predict friction factors for similar 
geometries. They stated the success of the practical use, easiness and importance of ANN’s 
by achieving only 4% difference between the original data and predicted values.  

In another study accomplished by Zhang et al. (1996), ANN’s are used to estimate flow 
characteristics by making use of previously obtained flow dynamics characteristics. The 
authors observed two-dimensional (2D) von Kármán vortex structures in an elongated 
rectangular cross-sectional area of a static prism where Reynolds number varies within 250 
and 800. They used von Kármán structural phases observed at certain Reynolds numbers as 
previous cases for prediction of vortex formation phases for new Reynolds numbers. The 
developed model shows that ANN’s provide significant advantages for dealing with flow 
problems that involve certain amount of complexity to observe flow characteristics without 
requiring further CFD analyses.  

Several notable features of ANN’s include relatively high processing speeds, ability of 
learning the solution of a problem from a set of examples, dealing with imprecise, noisy, 
and highly complex nonlinear data, and parallel processing (Khataee, 2010). These unique 
properties make ANN’s eligible for prediction of the flow structures and their characteristics 
in real-time systems for development of flow control strategies.  

2. Aims and concerns  

The aim of this research is to represent the flow behind a two-dimensional (2D) circular 
cylinder at laminar and turbulent Reynolds numbers (Re), where Re=100 for the laminar 
and Re=20000 for the turbulent regime analyses, with the help of Artificial Neural Networks 
(ANN’s) in order to be able to control the vortex shedding formed in the wake region. The 
flow analyses over the 2D circular cylinder are performed by Computational Fluid 
Dynamics (CFD), and the results are validated with the experimental results given in 
literature. In order to observe laminar and turbulent flow structures and their effects in the 
wake region for control purposes with ANN’s, orders of the original CFD data ensembles 
containing the x-direction velocities at each nodal point of the grids are reduced by 
application of the Proper Orthogonal Decomposition (POD) technique.  
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For laminar flow POD analyses, the classical “Snapshot Method” developed by Sirovich 
(1987) is used; however, for turbulent flows this method causes certain drawbacks, such as 
lacking the ability of separating flow structures according to their scales during 
configuration of the modes and relative mode amplitudes. Since it is inevitable to use the 
POD technique to obtain a low-dimensional description of the original data ensembles for 
further ANN applications, the classical “Snapshot Method” is combined with the Fast 
Fourier Transform (FFT) filtering procedure for turbulent flow POD analyses as suggested 
by Aradag et al (2010). The combined FFT-POD technique is performed to the turbulent 
CFD data ensembles to eliminate the undesired effects of small scale turbulent structures in 
the wake region, and to observe flow characteristics in more detail by separating spatial 
(modes) and temporal (mode amplitudes) structures. (Apacoglu, 2011b) 

For real-time flow control applications, it is important to predict the flow based on surface 
sensors placed at a few discrete points and to relate sensor data as an input to the input 
section of the neural network structure (Apacoglu et al., 2011a). For this purpose, a sensor 
placement study is also performed to obtain optimum sensor locations on the 2D circular 
cylinder surface by using a one-dimensional (1D) classical POD analysis based on surface 
pressure data of the CFD results. (Apacoglu et al, 2011a) 

ANN’s are used to predict the temporal structures (mode amplitudes) obtained from the POD 
and the FFT-POD analyses respectively for laminar and turbulent flow cases by using only the 
sensor data from several locations on the 2D circular cylinder surface. The training and 
validation data used for the neural network structure are from several computational cases. 
Consequently, the defined ANN approach helps to predict what is happening in the flow 
without requiring further CFD simulations, which are very expensive and impossible in real-
time flow control applications. This chapter summarizes the ANN based modeling of the flow 
structures behind a 2D circular cylinder based on the CFD and POD results given by Apacoglu 
et al (2011a) for laminar flow and Apacoglu et al (2011b) for turbulent flow. The results 
obtained in these two articles are used as inputs for training the neural nets in this work. 

3. Research methods  

3.1 Computational Fluid Dynamics (CFD) methodology 

The details on the boundary conditions, grid refinement study and computations are 

provided in Apacoglu et al. (2011a, 2011b). Operating conditions for the simulations are 

given in Table 1. The drag coefficient (CD), Strouhal number (St), pressure coefficient 

distribution around the cylinder and the velocity profiles at the wake are validated using the 

experimental results of Lim and Lee (2002), and Aradag (2009). 

 

 Laminar Flow Turbulent Flow  
Parameter Value Value Unit 

Reynolds number 100 20000 - 
Density 5.25x10-5 0.01056 kg/m3 

Free-Stream Velocity 34 34 m/s 
Viscosity 1.78x10-5 1.795x10-5 kg/ms 
Pressure 4.337 872.36 Pa 

Table 1. Operating conditions for the flow simulations (Apacoglu et al, 2011a,  
Apacoglu et al, 2011b) 
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The 2D circular cylinder is designed to comprise four slots on its surface to force the flow by 
air blowing as shown in Fig. 2. (Apacoglu et al, 2011a) 

 

Fig. 2. Position of the slots located on the circumference of the cylinder (Apacoglu et al, 2011a) 

Slots are either closed or opened in different combinations at different blowing velocities as 
outlined below: 

 Blowing from all slots, u=0.1U 
 Blowing from all slots, u=0.5U 
 Blowing from slot numbered 1, u=0.1U 
 Blowing from slots numbered 1 and 2, u=0.1U 
 Blowing from slots numbered 1 and 4, u=0.1U 
 Blowing from slots numbered 2 and 3, u=0.1U 
 Blowing from slots numbered 1 and 4, u=0.5U (only at turbulent flow regime) 

where u represents blowing velocity and the free stream velocity U=34 m.s-1. In order to 
obtain data ensemble required for the POD and FFT-POD applications, and ANN 
estimations, velocity values obtained for the x-direction at the wake region are recorded in 
each time step for 10 periods of the flow time. (Apacoglu et al, 2011a, Apacoglu et al, 2011b) 

3.2 Proper Orthogonal Decomposition (POD) and filtering methodology 

The POD technique is applied to CFD data ensembles containing x-direction velocity 
magnitudes observed in the wake region of the 2D circular cylinder in either laminar or 
turbulent regimes as a post processing to tool to reduce the order of the data and prepare 
them for further ANN applications. (Apacoglu et al, 2011a, Apacoglu et al, 2011b). 

The originally correlated CFD data ensembles are processed to form principal components 
in space (modes) and time (mode amplitudes). Detailed mathematical and theoretical 
information is given in Newman (1996a and 1996b), Holmes et al. (1996), Ly and Tran (2001), 
Sanghi and Hasan (2011) and Smith et al. (2005).  

3.3 Sensor placement methodology 

Since the ultimate aim of this study is to control the von Kármán vortex street observed in 
the wake region and to estimate the state of the flow with the help of ANN’s, a one-
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dimensional (1D) classical snapshot-based POD analysis is carried out on static pressure 
data obtained directly from the cylinder surface to identify optimal sensor locations. Static 
pressure data coming from the sensors are essential in training and simulation processes of 
the neural networks for enabling them to make real-time estimations (Apacoglu et al., 2011).  

In practical engineering applications, it is not feasible to place and fix sensors in the wake 
region and to obtain accurate enough data. On the contrary, body-surface mounted sensors 
are simple, relatively inexpensive and provide reliable data for further analyses (Seidel et 
al., 2007).  

Sensors identified at optimal locations provide static pressure data, which has the highest 
activity in terms of pressure on the cylinder surface. This case is demonstrated by an 
example in a study performed by De Noyer (1999). Since one prominent feature of the POD 
technique is to extract dominant characteristics of the data, utilization of it to static pressure 
data coming from the cylinder surface enable optimal locations, which are dominant in 
terms of pressure for sensor placement.  

For laminar and turbulent flow sensor placement POD analyses, CFD data providing static 

pressure signals on the cylinder surface at 360 locations with one-degree increments are 

used. In the context of sensor placement studies, uncontrolled flow test case (all slots closed) 

and the most effective controlled flow test case (all slots open with 0.5U air blowing) are 

considered for both laminar and turbulent regimes. The details of sensor placement for the 

laminar case is given by Apacoglu et al (2011a). 

For 1D POD analyses, laminar flow test cases (uncontrolled and 0.5U air blowing controlled) 
include 1800 snapshots, whereas uncontrolled and 0.5U blowing controlled turbulent flow test 
cases include 1337 and 1320 snapshots respectively. Table 2 shows energy contents of the most 
energetic four and six pressure-based POD modes turbulent flow. Energy content of each 
mode represents the level of dominant pressure characteristic trends monitored by that mode.  

 

Mode 
Number 

Energy Contents (%) 
Mode 

Number 

Energy Contents (%) 
Uncontrolled 

Flow 
Controlled 

Flow 
Uncontrolled 

Flow 
Controlled 

Flow 
1 92.14 91.50 4 0.46 0.09 
2 4.50 5.43 5 0.29 0.02 
3 2.53 0.23 6 0.05 0.01 

Total 
(3 Modes) 

99.17 97.16 
Total 

(6 Modes) 
99.97 97.28 

Table 2. Energy contents of the most energetic four pressure-based POD modes for 
uncontrolled and controlled turbulent flow test cases 

Sensor locations correlated to the energetic surface pressure maxima and minima of 

pressure-based POD modes are given in Table 3 for turbulent flow test case. The locations of 

the sensors in Table 3 are referenced in terms of the circumferential angle measured from 

front stagnation point along the clockwise direction. 

For practical applications, it is desirable to reduce the amount of sensors required for the 
real-time estimation of the systems (Seidel et al., 2007). Since the contributions of the most 
energetic two and three pressure-based POD modes to the total energy content is greater 
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than others respectively for laminar and turbulent flow test cases, it is concluded that taking 
into account only those modes for identification of optimal sensor locations is enough.  

 

Mode 

Number 

Sensor Locations (degrees of angle) 

Uncontrolled Flow Controlled Flow 

Θ1 Θ2 Θ1 Θ2 

1 274 87 274 87 

2 224 134 52 307 

3 213 184 184 134 

4 161 197 177 202 

5 161 184 196 161 

6 188 202 171 188 

Table 3. Sensor locations corresponding to the minimum (Θ1) and maximum (Θ2) values of 

the pressure-based POD modes for uncontrolled and controlled turbulent flow test cases 

In addition, when Table 3 is examined in detail, it can be observed that sensor locations 

corresponding to the most energetic pressure-based POD mode are not affected from air 

blowing with 0.5U from the slots. Optimal sensor locations for turbulent flow test cases are 

shown in Fig. 3. The sensors corresponding to the first modes (the most energetic ones) 

target the periodic modes associated with the von Kármán shedding frequency, whereas the 

sensors related with other modes target the non-periodic POD modes (Seidel et al., 2007). 

 

Fig. 3. Optimal sensor locations on the circumference of the cylinder for turbulent flow test cases 
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3.4 Artificial Neural Network (ANN) methodology 

An Artificial Neural Network (ANN) is an interconnected assembly of simple processing 
elements, the functionality of which is loosely based on the biological neuron. The processing 
ability of the ANN is stored in the interunit connection strengths, or weights, obtained by a 
process of adaptation to, or learning from, a set of training patterns (Gurney, 1997).  

In ANN, a neuron is a processing element that takes number of inputs, weights them, sums 
them up, and uses the result as the argument for a singular valued function, which is called 
the activation function (Nørgaard et al., 2000). Among a variety of network structures the 
most common one is the multilayer perceptron (MLP) network or also referred as the 
feedforward network that consists of two or more layers as shown in Fig. 4.  

 

Fig. 4. Schematic representation of the basic structure of an MLP network containing one 
hidden layer  

In Fig. 4, the first layer is known as the hidden layer since it is in some sense hidden 
between the external inputs (x1 to x4) and the output layer, which produces the output of the 
network (y1k and y2k). W1 and W2 are the matrices represent the weight values respectively 
connecting inputs to hidden layer neurons and correspondingly to output layer neurons. In 
order to determine the weight values included in W1 and W2, there has to be a set of 
examples of the outputs that are related to the inputs. The determination process of weights 
from the prior examples is known to be training or learning (Nørgaard et al., 2000; 
Samarasinghe, 2006). 

The MLP neural network structure presents great harmony for discrete-time modeling of 
nonlinear dynamic systems. Especially turbulent flow systems can be counted as a major 
example for nonlinear dynamic systems, where the inputs to the network are related to the 
outputs in a highly nonlinear fashion.  

Under some conditions, success of the MLP network structure may be affected negatively 
from one or more temporal behaviors that the system introduces during identification of the 
nonlinear relationships and prediction of the time series results by itself. In order to prevent 
such undesirable drawbacks and to provide accurate enough predictions, the MLP network 

www.intechopen.com



Modeling the Wake Behind Bluff Bodies for Flow Control 
at Laminar and Turbulent Reynolds Numbers Using Artificial Neural Networks 

 

107 

structure is supplied with a short-term memory dynamics approach. This kind of neural 
network structures are called as Spatio-Temporal Time-Lagged Multi Layer Perceptron 
networks, and they can be thought of as a nonlinear extension of an auto regressive model 
with exogenous input variables (Samarasinghe, 2006).  

In this study, the ANN estimation method of choice including application of the MLP 
network structure based on a nonlinear system identification in collaboration with Auto-
Regressive eXternal input (ARX) model structure approach described by Norgaard et al. 
(2000) is used. This model includes nonlinear optimization techniques based on the 
Levenberg-Marquardt back propagation method. The Levenberg-Marquardt method 
minimizes the difference between the extracted POD mode amplitudes and the ANN 
estimations, while adjusting the weights of the model. 

The Levenberg-Marquardt method is a hybrid algorithm that combines the advantages of 
the steepest descent and Gauss-Newton methods to produce a more efficient method than 
either of these two methods does individually. Due to its inherent property related with the 
conditioning parameter, the Levenberg-Marquardt method adjusts this parameter 
automatically in every iteration to reduce the error gradually (Samarasinghe, 2006). 

The importance of the ARX engaged ANN dynamic network model structure is its strong 
stability capability even if the dynamic system under investigation is unstable. The stability 
task is at the highest level of importance when dealing with nonlinear systems of partial 
differential equations, such as the Navier-Stokes equations (Nørgaard et al., 2000; Siegel et 
al., 2008). 

In this study, pressure data obtained from surface sensors and previously obtained POD or 
FFT-POD mode amplitudes are used as inputs to the neural network structure. At the end of 
ANN studies, it is needed to estimate mode amplitudes that are the same as the mode  

 

Fig. 5. Schematic representation of the neural network structure formed for analyses 
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amplitudes obtained from the POD analysis of the CFD results, but without using further 
CFD simulations. The system consists of multi inputs (sensor pressure data and sampling 
mode amplitudes coming from short-term memory), and requires multi outputs (each 
estimated mode amplitude will be an output) as shown in Fig. 5. 

Further information about the basics of ANN’s, different network structures and 
applications are given in Haykin (1994), Mehrotra et al. (2000), Samarasinghe (2006),  
Nørgaard et al. (2000) and Gurney (1997). 

4. Results  

4.1 Proper Orthogonal Decomposition (POD) and filtering results 

The details of the proper orthogonal decomposition analysis are provided in Apacoglu et al 
(2011a) and Apacoglu et al (2011b) 

Figure 6 presents relative FFT-POD mode amplitudes with respect to snapshot number for 
the uncontrolled (all slots closed) and the most effective controlled flow test case (all slots 
open with 0.5U air blowing).  

   
(a)        (b) 

Fig. 6. Mode amplitudes vs. snapshot number change of the most energetic four FFT-POD 
modes for a) the uncontrolled (all slots closed) and b) the most effective controlled flow test 
case (all slots open with 0.5U air blowing) 

In Fig. 6, since the most energetic parts of the flow characteristics are related with the modes 
1 and 2 in both cases, their amplitudes are greater than modes 3 and 4. All the relative mode 
amplitudes show periodic behavior, which is directly associated with the existence of the 
von Kármán vortex street in the wake region of the 2D circular cylinder.  

Another important result is that formations of the sinus curves in Fig. 6 are different from 
each other. For a fixed snapshot number, maximum and minimum values of the mode 
amplitudes show distinction. This leads to a conclusion that the vortex formation is lagged 
due to air blowing. By changing air blowing velocity from the slots located on the surface of 
the cylinder, it is possible that one can bear order of the vortex lagging to desired levels 
efficiently. More information on mode amplitudes and the results for laminar flow test cases 
may be found in Apacoglu et al. (2011a) and Paksoy et al. (2010). 
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4.2 Artificial Neural Network (ANN) results 

There are two different Spatio-Temporal Time-Lagged Multi Layer Perceptron networks are 
formed to be used for laminar and turbulent flow test cases separately. Both network 
structures are designed to estimate the most energetic two mode amplitudes for different 
test cases by making use of the specified data sets employed in the training processes.  

The generated ANN structures have identical properties. For example, they consist two 
layers (one hidden and one output) apart from the inputs sections as shown in Fig. 4. The 
activation neuron function is based on the nonlinear tanh function for both networks, and a 
single bias input has been added to the output from the hidden layer. The output layer has a 
linear activation function, and it consists of two outputs, namely the most energetic two 
mode amplitudes.  

Both of the designed networks use a supervised learning (training) process with an 
adequate set of data that constitutes to approximately first half of the 10 shedding cycles. 
The training process uses cylinder surface pressure data obtained from the six sensors being 
as one set of the inputs and the sampling mode amplitudes being as the other set of the 
inputs, which are directly related with the order of the time delay parameter and short-term 
memory feature of the networks. Thus, the input sections to the networks comprise two 
different sets of data. After the training process, a validation step is employed by estimating 
the remaining data (corresponding to last five shedding cycles) to check accuracy and 
prediction capability of each network. 

The complexity and size of the both networks can be adjusted by varying time delay and 
hidden layer neuron number parameters. The time delay value is directly associated with 
the order of the short-term memory feature. It qualifies the number of mode amplitudes that  

 

Fig. 7. Performance analysis based on the uncontrolled laminar flow test case 
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need to be estimated and provided to the inputs section as data observed at the previous 

sampling instant in addition to the sensor pressure data, which is provided externally to the 

networks. The hidden layer neuron number is another important parameter that influences 

prediction accuracy of the estimated mode amplitudes (Paksoy & Aradag, 2011). In order to 

acquire feasible values for the time delay and the hidden layer neuron number parameters, 

performances of the networks are monitorized by considering the root mean square errors 

(RMSE) and mean absolute errors (MAE) between the network prediction results and the 

target values for a couple of trials. Figures 7 and 8 present network performance analyses 

based on the uncontrolled flow test cases respectively for laminar and turbulent regimes. 

 

Fig. 8. Performance analysis based on the uncontrolled turbulent flow test case 

As shown in Fig. 7 and Fig. 8, an increase in time delay value positively affects accuracy of 
the results, and relatively decreases the order of the error signals. For larger time delay 
values, there is more data available for the network to train itself by interconnecting the 
input sets via setting up larger weighing matrices, and hence weights, by making use of 
more known data coming from the past. However, this increases complexity of the network 
structure, and the time required for analyses rises.  

According to results observed in Fig. 7 and Fig. 8, values of the time delay and the hidden 

layer neuron number are respectively specified as 6 and 25 for the laminar flow network 

structure, 8 and 25 for the turbulent flow network structure.  

Taking into consideration of POD (applied for laminar flow test cases) and FFT-POD 
(applied for turbulent flow test cases) results, it is revealed that more than 90% of the total 
energy content can be represented by using only the two most energetic modes (1 and 2), 
where most of the flow structures and their characteristics are retained. For control 
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purposes, estimations of the mode amplitudes related with those two most energetic modes 
plays a crucial role in effective observation of the effects flow structures and their 
characteristics in the flow field without requiring further CFD simulations. 

ANN estimations of the mode amplitudes and their comparison with the original data for 

modes 1 and 2 are shown in Fig. 9 and Fig. 10 so as to observe the convenience of the 

validation processes for the designed network structures. Uncontrolled flow test cases of 

both laminar and turbulent flow analyses are selected to be used in the validation process. It 

can be observed from Fig. 9 and Fig. 10 that the resulting ANN estimations for the 

validation step show adequate coherency including only minor errors. 

   
  (a)      (b) 

Fig. 9. Validation process ANN estimations and their comparison with the POD results of 
the uncontrolled laminar flow test case a) for relative mode amplitude 1 and b) for relative 
mode amplitude 2 with time delay 6 and hidden layer neuron number 25    

 
(a)        (b) 

Fig. 10. Validation process ANN estimations and their comparison with the POD results of 
the uncontrolled turbulent flow test case a) for relative mode amplitude 1 and b) for relative 
mode amplitude 2 with time delay 8 and hidden layer neuron number 25 
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In order to see the modeled network structures in action with the specified design 
parameters, the networks are adjusted to estimate mode amplitudes for the controlled flow 
test cases in both laminar and turbulent flow analyses. 

For the new estimation cases, different from the validation processes, network structures are 
trained with the sensor pressure data and sampling mode amplitudes belonging to the all 
slots open with 0.5U air blowing controlled flow test case for further laminar and turbulent 
ANN analyses. After training the networks with the specified controlled flow test cases, 
predictions are done for other controlled flow test cases by just feeding the sensor pressure 
data regarding to each test case as external input sets.  

Figures 11, 12 and 13 show ANN predictions and original mode amplitudes (obtained in the 
course of POD analyses for laminar flow test cases and FFT-POD analyses for turbulent flow 
test cases) for a couple of selected sample test cases. Among others, the selected ones exhibit 
the next most effective control approach with air blowing after the all slots open with 0.5U 
air blowing controlled flow test case. 
 

  
     (a)      (b) 

Fig. 11. ANN results, controlled laminar flow all slots open with 0.1U blowing 

  
    (a)     (b) 

Fig. 12. ANN results, controlled laminar flow slots 1+4 open with 0.1U air blowing 
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     (a)       (b) 

  
      (c)       (d) 

Fig. 13. ANN results, controlled turbulent flow sample test cases 

Figures 11, 12 and 13 show that the results obtained from ANN estimations are in good 

agreement with the results obtained from the POD and the FFT-POD applications. Low-

levels of acceptable ANN estimation errors are especially clustered at certain snapshot 

values corresponding to the lower and upper end tips of the periodic curves. 

5. Conclusions  

Within the scope of this study, the flow behind a 2D circular cylinder at laminar  (Re=100) 

and turbulent (Re=20000) Reynolds numbers (Re) with the help of Artificial Neural 

Networks (ANN’s) in order to be able to control the vortex shedding formed in the wake 

region.  

For real-time flow control applications, in order to estimate the state of the flow, it is 
essential to predict the mode amplitudes regarding to the most energetic two modes. ANN’s 
are used to predict mode amplitudes by using only the sensor data from several locations on 
the 2D circular cylinder surface. By implementation of the Spatio-Temporal Time-Lagged 
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Multi Layer Perceptron network structures, robust and real-time estimators of mode 
amplitudes necessary for observation of the effects of flow structures and their 
characteristics in the flow field are evaluated effectively without requiring further CFD 
simulations. 
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