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1. Introduction  

Platelets are the smallest structures in circulating blood and have a convex disc construction 

with an equatorial diameter of 2-3 microns and have no nucleus. They are derived from 

megakaryocytes in the bone marrow. Following their normal life span of 8-10 days, they are 

removed from the circulation when passing through the spleen. Platelets have three types of 

secretory granules, i.e., alpha-granules, dense-granules, and lysosomal granules in the 

cytosol (Fig. 1). Each granule contains a specific mix of soluble factors, such as platelet-

derived growth factor (PDGF), hepatocyte growth factor (HGF), insulin-like growth factor-1 

(IGF-1), vascular endothelial growth factor (VEGF), serotonin, adenosine diphosphate 

(ADP), adenosine tri-phosphate (ATP), epidermal growth factor (EGF), and transforming 

growth factor beta (TGF-beta) (Blair et al., 2009; McNicol & Israels., 1999; Polasek et al., 

2005). After being activated by physiological substances such as thrombin, collagen, 

thromboxane A2 (TXA2), epinephrine, and platelet-activating factor (PAF), or by non-

physiological substances such as divalent cationophores and phorobol esters, platelets 

release these biologically active substances that exert various effects depending on the 

specific context (Holmsen, 1989; Suzuki H et al., 1992; Broos et al., 2011)  

The main physiological role for circulating platelets is hemostasis when a vessel is injured 

(Holmsen, 1989). This process involves rapid adhesion of the platelets to the exposed 

subendothelium followed by platelet aggregation which culminates in the formation of a 

platelet plug that temporarily seals off the injured vessel walls. As they undergo this 

process, platelet activation leads to exocytosis of granular substances, release of newly 

synthesized mediators, and discharge of membrane-bond trans-cellular signaling molecules 

(Holmsen, 1989; Broos et al., 2011). Numbers of the various kinds of mechanisms facilitate 

platelet participation in other physiological or pathological process including inflammation 

(McNicol et al., 2008), malignancy (Mehta, 1984; Nash et al., 2002), immune response (Elzey 

et al., 2005; Sowa et al., 2009; Klinger & Jelkmann 2002; Sprague et al., 2008), wound healing 

(Mazzucco et al., 2010; Ranzato et al., 2009; Rozman & Bolta., 2007; Yamaguchi et al., 2010), 

and tissue regeneration (Radice et al., 2010; Dugrillon et al., 2002; Hartmann et al., 2010; de 

Vos et al., 2010; Rodeo et al., 2010).  

Platelets have been reported to accumulate in the liver under some kinds of pathologic 

conditions, such as ischemia/reperfusion injury (Khandoga et al., 2003, 2006; Pak et al., 

2010), liver cirrhosis (Zaldivar et al., 2010), cholestatic liver (Laschke et al., 2008) and viral 
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hepatitis (Lang et al., 2008). Furthermore, platelets flow out slow, with rolling and adhesion 

in the liver sinusoids, under stressed situations such as ischemia/reperfusion injury 

(Nakano et al., 2008). Previous works on such conditions have focused on platelets as 

producers of inflammatory cytokines and therefore being pro-inflammatory (Pereboom et 

al., 2008). However, recent clinical and basic studies have revealed other ways in which they 

affect liver biology and pathology. 

 

Fig. 1. Platelet ultrastructure. Transmission electron microscopic representation of a human 
platelets; the microtubules (MT), open cannalicular system (OCS), dense tubular system 
(DTS), mitochondria (M), alpha-granules (ǂG), dense granules (DG), and glycogen particles 
(Gly) are indicated. This electromicrograph is produced by kind permission of Dr. Hidenori 
Suzuki, Division of Morphological and Biomolecular Research, Graduate School of 
Medicine, Nippon Medical School.   

In clinical studies, Marubashi et al. reported that there was a positive correlation between 
graft size and post-transplant thrombocytosis (Marubashi et al., 2006). Alkozai et al. 
described that a peri-operative low platelet count after partial hepatectomy was a predictor 
of delayed postoperative recovery of liver function and was associated with an increased 
risk of post-operative mortality (Alkozai et al., 2010). Kim et al. stated that total amount of 
platelet transfusion was positively associated with graft regeneration (Kim et al., 2010). In 
basic research, Lesurtel et al. showed that platelet-derived serotonin mediated liver 
regeneration in mice (Lesurtel et al., 2006). Nocito et al. demonstrated that platelets and 
platelet-derived serotonin promoted tissue repair after normothermic hepatic ischemia in 
mice (Nocito et al., 2007). In addition, we have obtained several types of evidence for 
platelets promoting liver regeneration using different experimental models of liver 
dysfunction in small and large animals. 

In this chapter, we describe our evidence for platelets in promoting liver regeneration. 
Furthermore, we explain three different mechanisms i.e., 1) a direct effect on hepatocytes, 2) 
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a cooperative effect with liver sinusoidal endothelial cells (LSEC), and 3) a collaborative 
effect with Kupffer cells. 

2. Growth factors, cytokines, and signal transduction related to platelets’ 
effect on liver regeneration 

Liver regeneration occurs by proliferation of all of the existing mature cellular populations 
including hepatocytes, biliary epithelial cells, LSEC, Kupffer cells, and hepatic stellate cells. Of 
these, hepatocytes are the first cells to proliferate (Malik et al., 2002); they usually replicate 
once or twice following partial hepatectomy and return to the quiescent state. The kinetics of 
cell proliferation differ between species, the peak of DNA synthesis in hepatocytes usually 
being at 24 hours in rats but at 36 hours in mice (Michalopoulos & DeFrances., 1997; 
Michalopoulos, 2010; Fausto et al, 1995, 2000). Intercellular interactions mediated by many 
growth factors and cytokines, including HGF, tumor necrosis factor-alpha (TNF-apha), 
interleukin-6 (IL-6), transforming growth factor-beta (TGF-beta), EGF etc. appear to play 
important role in this process. Each growth factor leads subsequent activation of downstream 
transcription cascades that drive transition of the quiescent hepatocytes into the cell cycle and 
ensure progression beyond the restriction point in the G1 phase of the cycle. Several 
transcription factors are involved, and nuclear factor-kappa B (NF-KB) (Tewari et al., 1992; 
Cressman et al., 1994; FitzGerld et al., 1995), activator protein 1 (Ap-1) (Stepniak et al., 2006), 
CCAAT/enhancer binding protein-beta (C/EBPbeta) (Wang et al., 2008), extracellular signal-
regulated kinase 1/2 (ERK 1/2) (Borowiak et al., 2004; Bard-Chapeau et al., 2006; Factor et al., 
2010), signal transducer and activator of transcription 3 (STAT3) (Cressman et al., 1995; Li et 
al., 2002; Moh et al., 2007), and phosphatidylinositol-3-kinase (PI3K)/Akt (Jackson et al., 2008; 
Haga et al., 2005; Nechemia-Arbely et al., 2011) are  representatives. Among these transcription 
factors and corresponding signaling transductions, the TNF-alpha/NF-KB, IL-6/STAT3, and 
PI3K/Akt pathways are considered the three major cascades through which platelets exert 
their effects on liver regeneration (Fig. 2).  

The TNF-alpha/NF-KB pathway is activated within 30 minutes of partial hepatectomy and 
the activation usually lasts no longer than 4-5 hours (Michalopoulos & DeFrances, 1997). 
NF-KB is found in almost every cell including hepatocytes and non-paranchymal cells. It is a 
heterodimer composed of two subunits, p65 and p50, which are assembled in the cytosol 
(Solt & May, 2008). It is inactivated by Inhibitor of NF-KB (IKB) which binds to the p65 
subunit. After being stimulated by TNF-alpha, NF-kB is activated by the removal of IkB 
from the p65 subunit; it migrates to the cell nucleus, where it binds to the promoter of 
cyclin-D1, which regulates G0/G1-to-S-phase transition (Hinz et al., 1999).  

STAT3 is activated more slowly; it becomes detectable 1 to 2 hours after partial hepatectomy 
and lasts about 4-6 hours (Michalopoulos & DeFrances, 1997). IL-6 binding causes 
dimerization of the corresponding receptor and the activation of intracellular tyrosine 
kinase which phosphorylates gp130 and creates a docking site fof STAT3 (Heinrich et al., 
1998). STAT3 is phosphorylated and translocates to the nucleus where it promotes the 
expression of cyclin-D1 and p21 to control the progression of the cell cycle (Turkson & Jove, 
2000; Terui et al., 2005). It has been reported that hepatocytic mitosis of STAT3-knockout 
mice was significantly suppressed after partial hepatectomy in liver regeneration (Haga et 
al., 2009). The absence of STAT3 in hepatocytes exacerbates liver fibrosis during cholestasis 
(Shigekawa et al., 2011). 
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The PI3K/Akt pathway is activated immediately after partial hepatectomy (Murata et al., 

2007). The pathway is initiated by the activation of the receptor tyrosine kinases or receptors 

coupled with G proteins by HGF, IL-6, TNF-alpha, TGF-beta and many other signaling 

molecules (Osawa et al., 2002; Okano et al., 2003; Tulasne & Foveau, 2008; Kato et al., 2009; 

Nechemia-Arbely et al., 2011). Met is a tyrosine kinase receptors on the surface of 

hepatocytes tha binds HGF (Bottaro et al., 1991; Tulasne & Foveau, 2008). HGF/c-met 

signaling activates PI3K which recruits Akt to the site of membranes, and subsequently 

phosphorylates Akt (Fresno et al., 2004). Glycogen synthase kinase 3-beta (GSK3-beta) acts 

downstream of Akt and plays a critical role in liver regeneration by regulating cell growth 

along with other downstream Akt factors, such as mTOR and 70S6K (Faridi et al., 2003; 

Latronico et al., 2004; Haga et al., 2005). Phosphorylation of Akt results in activation of 

GSK3-beta by phosphorylation at serine-9, resulting in accumulation of beta-catenin and 

cyclin-D1 in the nucleus, which induce DNA synthesis and cellular mitosis of hepatocytes 

(Gotoh et al., 2003; Chen et al., 2005).  

 

Fig. 2. Cytokines and growth factors for liver regeneration. 

3. Effect of platelets on liver regeneration 

Our first study was focused on liver regeneration under thrombocytotic conditions 

induced by thrombopoietin (TPO) (Murata et al., 2007). A 70% partial hepatectomy was 

carried out and mice were subsequently divided into three groups as follows; untreated 

mice as normal group, a thrombocytotic group, and a thrombocytopenic group. To induce 
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thrombocytosis, mice were injected TPO. Anti-mouse platelet monoclonal antibody (Pm-

1) was administrated to induce thrombocytopenia. Liver regeneration, cytokine and 

signaling pathways in the three groups were compared. Differences  of platelet 

accumulation in the liver by using immunohistochemical staining technique were also 

observed.  

The liver/body weight ratios in the thrombocytotic group and normal group were 

significantly higher than in the thrombocytopenic group, 48 hours after partial hepatectomy. 

In the thrombocytotic group, the liver/body weight ratio 48 hours after partial hepatectomy 

was significantly higher than that in normal group (Fig. 3A). The hepatocyte Ki-67 labeling 

index and hepatocyte mitotic index 48 hours after partial hepatectomy in the thrombocytotic 

group was obviously higher than that of normal and thrombocytopenic groups (Fig. 3B). 

Furthermore, the hepatocyte proliferating cell nuclear antigen (PCNA) labeling index 48 

hours after partial hepatectomy in the thrombocytopenic group was remarkably lower than 

that in normal and thrombocytotic groups.  

 

(A) 
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(B) 

Fig. 3. Effect of thrombocytosis on liver regeneration after 70% of partial hepatectomy. 
(A) Liver/body weight ratio before and 48 hours after partial hepatectomy (PH) in 
thrombocytotic , normal and thrombocytopenic groups. Data were expressed as mean ± SD. 
*p < 0.05, **p < 0.01 versus thrombocytopenic group. #p < 0.05 normal group versus 
thrombocytotic group. (B) Ki-67 labeling index 48 hours after partial hepatectomy in 
thrombocytotic, normal and thrombocytopenic groups. Representative 
immunohistochemical images are shown. Data were expressed as mean ± SD. *p < 0.05 
versus thrombocytopenic group. (Reproduced from Murata et al., 2007, World J Surg with 
permission.) 

HGF and PDGF expression in the liver tissue in thrombocytotic group were significantly 

higher than in the normal and thrombocytopenic groups. Akt was strongly phosphorylated 

in the thrombocytotic group compared with the thrombocytopenic group. Activation of Akt 

in the thrombocytotic group started 5 minutes after partial hepatectomy and persisted for 2 

hours. On the other hand, although activation of Akt was seen from 5 minutes after partial 

hepatectomy in the normal group, activation reduced in 2 hours after partial hepatectomy. 

In the thrombocytopenic group, Akt was not activated during the first 6 hours after partial 

hepatectomy. There was no difference in activation in ERK 1/2 and STAT3 among the three 

groups after partial hepatectomy (Fig. 4). 
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Fig. 4. Effect of platelet increment or reduction on Akt, STAT3, and ERK 1/2 after partial 
hepatectomy. (Reproduced from Murata et al., 2007, World J Surg. with permission). 

Platelet accumulation in the liver was investigated in all groups before and 5 minutes after 

partial hepatectomy. Platelets accumulated in the residual liver within 5 minutes after 

partial hepatectomy and a two-fold increase in platelet levels was observed in the normal 

and thrombocytotic groups (Fig. 5A). On the other hand, in thrombocytotic group, platelets 

in the residual liver increased remarkably compared with normal and thrombocytopenic 

groups 5 minutes after partial hepatectomy. However, no increment was observed in 

thrombocytopenic group. In addition, under transmission electron microscopy, platelets 

translocated from the liver sinusoidal space into the space of Disse, and they had direct 

contact with hepatocytes in the thrombocytotic group (Fig. 5B).  

These results suggest that platelets accumulate in the liver within a few minutes of partial 

hepatectomy and cause rapid hepatocyte proliferation through direct contact with 

hepatocytes, by translocating into the space of Disse. 

Taken together, the results described above demonstrate that platelets affect liver 
regeneration in the acute phase after partial hepatectomy and suggested that the 
PI3K/Akt pathway is the main signaling pathway involved in platelet mediated liver 
regeneration.  

The following study was done to investigate the role of platelets in liver regeneration using 
a thrombocytosis model in mice after 90% partial hepatectomy (Myronovych et al. 2008). All 
mice in the normal group died within 30 hours, predominantly between 20 and 30 hours. In 
contrast, the survival rate at 30 hours and at one week after partial hepatectomy was 54.5% 
and 27.3%, respectively in thrombocytotic group (Fig. 6A). Phosphorylation of Akt and 
STAT3 started earlier and stronger in thrombocytotic group than normal group. Serum 
albumin levels decreased in both groups after partial hepatectomy, but more rapidly in 
normal group, and there was a significant difference with higher levels being detected at 24 
hours post-hepatectomy in the livers of the thrombocytotic group (Fig 6B). Serum 
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(A) 

 

(B) 

Fig. 5. Immunohistochemistry and Transmission electron microscopic photograph of the 
residual liver. (A) Immunohistochemistry of liver frozen section. Red; platelets. Platelets 
are stained by Pm-1 antibody. Representative images 5 minutes after partial hepatectomy 
(PH) are shown. Platelets were counted before and 5 minutes after partial hepatectomy in 
thrombocytopenic, normal, and thrombocytotic groups. Data were expressed as mean  
± SD. *p < 0.05 versus before partial hepatectomy. Original magnification X 400. (B) 
Transmission electron microscopic image of partial hepatectomy in the residual liver  
5 minutes after partial hepatectomy in thrombocytotic group. Arrow indicates platelet 
translocations into the space of Disse through the porosity of a flattened process in a 
sinusoidal endothelial cell (SEC). Original magnification X 7500. (Reproduced from 
Murata et al., 2007, World J Surg with permission.) 
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cholesterol levels were higher in thrombocytotic group at all time points with a significant 

difference at 24 hours after partial hepatectomy (Fig. 6C). In our measurement of insulin-like 

growth factor binding protein (IGFBP-1) by real-time PCR, the peak value of IGFBP-1 

expression was reached sooner in the thrombocytotic group than in the normal group after 

partial hepatectomy and decreased moderately afterwards. 

The findings described above indicated that liver regeneration occurs even in 90% 

hepatectomized mice under conditions of thrombocytosis. Platelets contribute to cell cycle 

progression and metabolic pathways, and maintain liver function after the extended 

hepatectomy. 

We also evaluated the effect of TPO on liver regeneration after partial hepatectomy and 

on fibrosis under conditions of liver cirrhosis in rats (Murata et al., 2008). Rats were 

divided into three groups as follows; a normal group without any treatment, a liver 

cirrhosis (LC) group, and an LC group with a single administration of TPO (LC+TPO). 

70% of partial hepatectomy was performed and liver regeneration and anti-fibrotic effects  

were compared. 

In the LC group,  the platelet count in the blood was significantly lower than that in the 

normal group. In the LC+TPO group, platelet count increased 2-fold higher than that in the 

normal group (Fig. 7A). The hepatocyte PCNA labeling index 24 hours after partial 

hepatectomy in the LC group was significantly lower than that in the normal group; the 

PCNA labeling index in the LC+TPO group was significantly higher than that in the LC 

group and the same level as that in normal group (Fig. 7B). HGF concentration in liver tissue 

in the LC+TPO group at the time of partial hepatectomy was clearly higher than that in the 

normal group. IGF-1 concentration in the liver tissue in LC+TPO group was significantly 

higher than that in normal group. Fibrotic change around the portal regions in the LC group 

was more prominent than that in the normal group. In contrast, fibrotic change decreased 

remarkably in the LC+TPO group (Fig. 7C) 

These results described above indicated that a single administration of TPO in cirrhotic liver 

induces the remarkable increment of the platelets and then improves liver regeneration and 

fibrosis of cirrhotic liver after 70% of partial hepatectomy. 

We examined whether the TPO itself or increased platelets have a hepatocyte-proliferative 

effect and anti-fibrotic effect on the fibrotic liver. We injected anti-platelet serum (APS) into 

LC+TPO group (LC+TPO+APS). The platelet count of LC+TPO+APS group decreased 

remarkably compared with LC and LC+TPO groups (Fig. 8A). PCNA labeling index 24 

hours after partial hepatectomy was markedly lower in LC+TPO+APS group than that in 

LC and LC+TPO groups (Fig. 8B). Furthermore, liver fibrotic area before partial 

hepatectomy increased significantly in LC+TPO+APS group compared with LC+TPO group 

(Fig. 8C). 

These results clearly indicate that acceleration of liver regeneration and anti-fibrotic effects 
of TPO administration are induced by increment of platelets, not by TPO itself. 

We investigated whether exogenous platelets have the similar encouraging effect on liver 
regeneration. Platelet-rich plasma (PRP) was infused via the portal vein after 70% partial  
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(A) 

 

(B) 

 

(C) 

Fig. 6. Effect of thrombocytosis on survival and metabolic pathways after 90% of partial 
hepatectomy (PH). (A) Survival rate with Kaplan-Meier method. *p < 0.05 versus normal 
group. (B) Change in serum albumin concentration. Data were expressed as mean ± SD.  
*p < 0.05 versus normal group. (C) Change in serum total cholesterol concentration. Data 
were expressed as mean ± SD. *p < 0.05 versus normal group.  
(Reproduced from Myronovych et al., 2008, J Hepatol with permission.) 
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(A) 

 

(B) 

 

(C) 

Fig. 7. Effect of TPO on platelet count, liver regeneration and fibrosis. (A) Platelet count 
before partial hepatectomy in normal, LC, and LC+TPO groups. Data were expressed as 
mean ± SD. *p < 0.05 versus normal group. (B) The hepatocyte PCNA labeling index before 
and 24 hours after partial hepatectomy (PH) in normal, LC, and LC+TPO groups. Data were 
expressed as mean ± SD. #p < 0.05, ##p < 0.01 versus normal group before partial 
hepatectomy. *p < 0.05 versus normal group 24 hours after partial hepatectomy. $p < 0.05 
versus LC group 24 hours after partial hepatectomy.  
(C) Fibrotic change in the liver in normal, LC, and LC+TPO groups. Representative image in 
each group. Sirius red staining of liver sections. Original magnification × 200. (Reproduced 
from Murata et al., 2008, Ann Surg with permission.) 
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hepatectomy and residual liver regeneration was evaluated in rats (Matsuo et al., 2011). To 

clarify the mechanisms by which platelet promote liver regeneration, we also analyzed the 

dynamics of platelets infused in the liver before and after partial hepatectomy using an 

intravital microscope (IVM).  

The liver/body weight ratio 24 hours after partial hepatectomy was significantly higher in 

PRP transfused group (PRP+) than in the normal saline administered group (PRP-). The 

hepatocyte Ki-67 labeling index was significantly higher in the PRP+ group than that in the 

PRP- group. Akt and ERK 1/2 became phosphorylated earlier in the PRP+ group than in the 

PRP- group, whereas phosphorylation of STAT3 did not apparently differ between the two 

groups. Under IVM, although platelets flowed fast and few of them rolled and adhered in 

the liver sinusoids before partial hepatectomy, a significant proportion of platelets 

accumulated in the liver sinusoids and flowed slowly with adhesion and rolling after partial 

hepatectomy. The findings in this experiment indicate that exogenous platelets also promote 

liver regeneration.  

Since the anatomy of porcine liver is similar to that of the human, and porcine liver is 

useful for mimicking human liver surgery, we evaluated the effect of platelets in anti-liver 

damage and liver regeneration using pigs (Hisakura et al., 2010). To induce 

thrombocytosis, pigs received TPO administration (TPO+) or were performed 

splenectomy (Sp+). Pigs  underwent 80% partial hepatectomy and were assigned to either 

TPO-, TPO+, Sp-, or Sp+ groups; liver damage, histological findings including necrotic 

changes, ballooning, cholestasis, and liver regeneration were compared among these 

groups. Serum aspartate aminotransferase levels in the TPO+ group were significantly 

lower than that in the TPO- group on day 2 after partial hepatectomy. Serum alanine 

aminotransferase levels in the Sp+ group were significantly lower than that in the Sp- 

group on day 2 after partial hepatectomy. Serum alkaline phosphatase levels in the TPO+ 

and the Sp+ groups were significantly lower than those in the TPO- and the Sp- group at 6 

hours and on day 2 after partial hepatectomy. Histological analysis for cholestasis, 

ballooning, and hepatocyte necrosis was carried out by using a scoring system (Table. 1). 

Although cholestasis, ballooning, and hepatocyte necrosis were observed in zone 2 in 

TPO- and Sp- groups, structure was mostly preserved in TPO+ and Sp+ group (Fig. 9). On 

the other hand, the liver/body weight ratio and the hepatocyte PCNA labeling index 

showed no significant difference among the groups on day 2 and 7 after partial 

hepatectomy. 

Under transmission microscopy, the sinusoidal endothelial linings were destroyed and 

detached into sinusoidal space with the enlargement of the spaces of Disse and the 

cytoplasm of sinusoidal endothelial cells was swollen with secondary lysosomes 2 hours 

after partial hepatectomy in TPO- or Sp- group (Fig. 10). In contrast, the structure of the 

endothelial lining was well preserved in TPO+ and Sp+ group.  

Although there was no direct evidence of platelets in promoting liver regeneration in this 

experiment, the results indicated that increase in the number of platelets protect 

sinusoidal linings from disturbance and prevent acute liver damage after extended 

hepatectomy.  
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(A) 

 

 

 

(B) 

 

(C) 

Fig. 8. Effect of platelets on liver regeneration and fibrosis of the liver. (A) Platelet count 
before partial hepatectomy (PH). (B) PCNA labeling index before and 24 hours after partial 
hepatectomy. (C) Fibrotic area of the liver in LC, LC+TPO, and LC+TPO+APS groups. Data 
were expressed as mean ± SD. #p < 0.05, ##p < 0.01 versus LC group. *p < 0.05 versus 
LC+TPO group. (Reproduced from Murata et al., 2008, Ann Surg with permission.) 
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Fig. 9. Semiquantitative scoring for cholestasis, ballooning, and hepatocyte necrosis in TPO-, 
TPO+, Sp-, and Sp+ groups. Data are expressed as means ± SD. *p < 0.05 versus TPO- group 
or Sp- group. (Reproduced from Hisakura et al, 2010, J Hepatobiliary Pancreat Sci with 
permission.) 
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Table 1. Scoring system of cholestasis, ballooning, and hepatocyte necrosis. (Reproduced 
from Hisakura et al., 2010, J Hepatobiliary Pancreat Sci with permission.)  

 

 

Fig. 10. Transmission electron microscopic findings 2 hours after partial hepatectomy. 
Magnification × 6000. In TPO- (A), and Sp- groups (B), the sinusoidal endothelial lining was 
destroyed and detached into the sinusoidal space with enlargement of the space of Disse 
(arrows), and the cytoplasm of sinusoidal endothelial cells were swollen with secondary 
lysosomes (arrow head). In contrast, in TPO+ (C), and Sp+ groups (D), the sinusoidal 
endothelial cells were well preserved. (Reproduced from Hisakura et al., 2010, J Hepatobiliary 
Pancreat Sci with permission.)  
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4. Mechanisms of direct effect of platelets on liver regeneration 

Up to the beginning of the 21st century, there was no report regarding the effect of platelets 
on liver regeneration. Two studies were reported in which platelets promoted liver 
regeneration (Murata et al., 2004; Lesurtel et al., 2006). We reported that platelets accumulate 
in the liver and translocate actively to the space of Disse through fenestrae of LSECs after 
partial hepatectomy, which enables platelets to contact directly with hepatocytes (Murata et 
al., 2007). To clarify the role of the direct contact of platelets with hepatocytes, we 
investigated by using co-culturing chamber systems where platelets and hepatocytes were 
separated by a permeable membrane (Matsuo et al., 2008). To elucidate characteristics of the 
direct contact, four groups of separated co-culture were prepared as follows: a without 
platelet group (platelet-), a mixed co-culture group (co-mix), a separated co-culture group 
(co-sep), a group with mixed cells (the upper mix group: upper-mix), and the thrombin-
stimulated group (thrombin stimulated) were prepared (Fig. 11). TLR2 cells, the murine 
immortalized primary hepatocytes, in the lower chamber were counted 72 hours after 
incubation. In the upper-mix group, platelets induced significant proliferation of 
hepatocytes in the lower chamber, whereas the proliferation in co-sep group was almost the  

 

Fig. 11. Co-culture system to elucidate the characteristics of direct contact.  
Without platelet group (platelet-): neither hepatocytes nor platelets were seeded in the 
upper chamber. Separated co-cultured group (co-sep): platelets were seeded in the upper 
chamber. Upper mix group (upper-mix): hepatocytes were seeded in the upper chamber 
and overlayered with platelets. Co-mixed group (co-mix): platelets and hepatocytes were 
seeded in the lower chamber. Thrombin stimulated group (thrombin-stimulated): platelets 
in the upper chamber were stimulated with thrombin to release soluble factors such as 
cytokines and growth factors. Hepatocytes in the lower chamber are counted after 72 hours 
of incubation. Data are expressed as means SD. *p < 0.05 versus platelet-.  
(Reproduced from Matsuo et al., J Surg Res with permission.) 
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same level as that of platelet- group. Moreover, this effect in the upper-mix group was of the 

same level as in the co-mix group. These results indicate that, upon direct contact with 

hepatocytes, platelets released soluble factors that induce hepatocyte proliferation. A 

proliferative effect was also observed in the thrombin-stimulated group, despite there being 

no direct contact between platelets and hepatocytes (Fig. 11). 

To clarify which component of platelets had an effect on hepatocyte proliferation, the 

mitogenic activity of the whole disrupted platelets, the soluble fraction, and the 

membrane fraction were evaluated. The whole disrupted platelets and the soluble fraction 

had significant proliferative effects, whereas the membrane fraction did not have the 

effect. To determine which element of the platelet soluble factor exerted the proliferative 

effect, platelet extracts were gel-excluded into 18 fractions, and mitogenic activity of each 

fraction was evaluated on BrdU assay. Mitogenic activity was strongly induced in the 

fraction of HGF, VEGF, and IGF-1 (Fig. 12A). In addition, when hepatocyte signals were 

analyzed in response to growth factors, HGF, IGF-1, and VEGF strongly activated the Akt 

and the ERK1/2 pathways, whereas PDGF and serotonin did not induced activation  

(Fig. 12B). For further confirmation of the platelets soluble factors, IGF-1 and HGF 

inhabitation using anti-IGF-1 and anti-HGF antibodies significantly inhibited hepatocyte 

proliferation.  

The results of this examination indicated that the direct contact between platelets and 

hepatocytes triggered the release of soluble factors from the platelets such as IGF-1 and 

HGF, which caused a proliferative effect on the hepatocytes.  

We assessed the direct effect of platelets using Kupffer cell depletion model (Murata et al., 

2008). Liposome-encapsulated dichloromethylene diphosphonate (Cl2-MDP) was used for 

the depletion of Kupffer cells. Mice were divided into four groups as follows: mice 

without any treatment (normal), mice with Kupffer cell depletion (KD), mice with 

thrombocytosis caused by injection of thrombopoietin (thrombocytosis), and mice 

undergoing Kupffer cell depletion and thrombocytosis by injection of thrombopoietin 

(TKD). Each group of mice underwent 70% partial hepatectomy, and liver regeneration, 

cytokine and growth factors expression, and phosphorylation of Akt were assayed in the 

groups. 

The liver/body weight ratio in KD group was significantly lower than that in normal 

group 48 hours after partial hepatectomy. The liver/body weight ratio in TKD group was 

almost the same as that in normal group. In thrombocytotic group, the liver/body weight 

ratio was significantly higher than that in normal group (Fig. 13 A). The hepatocyte 

mitotic index of the KD group 48 hours after partial hepatectomy was significantly lower 

than that in normal group. And, the hepatocyte mitotic index in the TKD group was 

almost the same as that in normal group. Furthermore, the hepatocyte mitotic index in 

thrombocytotic group was significantly higher than those in other groups. Moreover, the 

hepatocyte PCNA labeling index 48 hours after partial hepatectomy in the KD group was 

significantly lower compared with normal group. And, in the TKD group, it was 

significantly higher than that in KD group and the same as that in thrombocytotic and 

normal groups (Fig. 13 B). 
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(B) 

Fig. 12. Gel exclusion chromatography of platelet extracts and mitotic activities.  
(A) The platelet extracts were gel filtrated on Superdex G200 gel. The solid line shows the 
resulting absorbance profile at 280 nm. The broken line shows the mitogenic activity of each 
fraction. Fraction 1 and 2 were nonspecifically macroaggregated proteins. Significant 
mitogenic activity was observed in fraction 1 ,2, 5-7, and 14-17. On western blotting, 
fractions 4-6 were rich in HGF, fraction 5-7 were rich in VEGF, fractions 7-9 were rich in 
PDGF, and fraction 14-17 were rich in IGF-1. Data were expressed as means ± SD of each 
experiments. (B) Cellular signals of hepatocytes stimulated by platelets and PDGF, HGF, 
PDGF, IGF-1, VEGF, and Serotonin (5-HT). (Reproduced from Matsuo et al., 2008, J Surg Res 
with permission.) 
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Fig. 13. Liver regeneration indexes under Kupffer cell depletion and thrombocytosis.  
(A) Liver/body weight ratio 2 and 48 hours after partial hepatectomy. Data are expressed as 
means ± SD. *p < 0.05 versus normal group, $p < 0.05 versus thrombocytosis; #p < 0.05 
versus TKD group. (B) The hepatocyte PCNA labeling index 48 hours after partial 
hepatectomy. Data are expressed as means ± SD. *p < 0.05 versus normal group. 
(Reproduced from Murata et al., 2008, World J Surg with permission.) 

The liver content of TNF-alpha, HGF, and IGF-1 was assessed in normal, KD, and TKD 
groups. TNF-alpha expression increased and reached the peak 2 hours after partial 

www.intechopen.com



 
Tissue Regeneration – From Basic Biology to Clinical Application 

 

128 

hepatectomy in normal group, whereas it remained low in KD and TKD groups. HGF 
concentration in the liver tissue in TKD group at the time of partial hepatectomy was 
significantly higher than that in normal group, and it persisted 6 hours after partial 
hepatectomy. At the same time, IGF-1 concentration in the liver tissue in KD and  
TKD groups at the time of partial hepatectomy was significantly lower than that in 
normal group, and IGF-1 concentration in the TKD groups was higher than that in the KD 
group. Furthermore, Akt was strongly phosphorylated in normal group compared with 
the KD group. In the TKD group, phosphorylation of Akt was started at the time of  
PH and lasted until 120 minutes after PH, and it was almost the same level as it was in 
normal group. 

Platelet accumulation 2 hours after partial hepatectomy was investigated in each group. 
Platelet accumulation in the KD group demonstrated a significant decrease compared with 
the normal group. Moreover, platelet accumulation in the TKD group showed a 
significantly higher level than that in the KD group, and it was almost the same level as that 
in the normal group. In the thrombocytotic group, platelet accumulation increased 
significantly compared with the normal group. Transmission electron microscopy 
demonstrated that in the thrombocytotic group, platelets translocated from the liver 
sinusoidal space to the space of Disse and were in direct contact with hepatocytes at 5 
minutes after hepatectomy.  

These results clearly demonstrate that platelets promote liver regeneration under conditions 
of Kupffer cell depletion. Increase of platelets recruited platelets in the liver tissue and 
elevated and HGF concentrations in the liver, which activated downstream signaling 
transduction and hepatocyte mitosis.  

In conclusion, our previous studies clarified the direct effect of platelets in promoting liver 

regeneration. The mechanism is explained as follows; after partial hepatectomy, platelets 

accumulate in the liver, they translocate to the space of Disse and release growth factors 

such as IGF-1 and HGF through direct contact with hepatocytes. The growth factors 

stimulate initiation of hepatocyte mitosis, which eventually promote liver regeneration. 

Especially in human, since it was reported that human platelets do not contain a significant 

amount of HGF (Nakamura et al., 1989), IGF-1 is the most important mediator for liver 

regeneration, which is contained in human platelets (Fig. 14). 

5. The effect with liver sinusoidal endothelial cells 

LSECs comprise 70% of the sinusoidal cells (Knook & Sleyster, 1976; Smedsrod et al., 1990). 
By construction of a thin and continuous layer, the sinusoidal endothelium forms the 
structural barrier, separating the hepatic parenchyma from blood constituents passing 
through the liver. Unlike other vascular endothelial cells, LSECs have large cytoplasmic 
gaps without basal membranes. These enable maximal contact between circulating blood 
and hepatocytes to help exchange various soluble macromolecules and nano-particles such 
as lipoproteins and endocytosis (Braet & Wisse, 2002). LSECs are involved in liver 
regeneration as well as Kupffer cells and hepatic stellate cells, and they are known to 
produce immunoregulatory and pro-inflammatory cytokines including HGF, interleukin-1 
(IL-1), IL-6, and interferon. In addition, they synthesize eicosanoids, particularly TXA2, 
prostaglandin E2, as well as synthesizing important regulators of vascular tone, such  
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Fig. 14. Scheme for liver regeneration promoted directly by platelets.  
Platelets translocate to the space of Disse and release growth factors such as IGF-1 and HGF 
through direct contact with hepatocytes. The growth factors subsequently induce initiation 
of mitosis.  

as nitric oxide and endothelin (Wisse et al., 1996; Vollmar & Menger, 2009; Ping et al., 2006). 
IL-6 produced by LSECs and Kupffer cells is one of the important components of early 

signaling pathways in liver regeneration, and it activates the  acute phase of protein 

synthesis by hepatocytes as part of the overall inflammatory response (Gauldie et al., 1992; 

Michalopoulos & DeFrances, 1997). After hepatectomy, plasma IL-6 concentration is 

reported to increase from 6 hours to a peak by 24 hours (Rai et al., 1996; Badia et al., 1998). 

IL-6 binds to its receptor on hepatocytes, which subsequently leads to phosphorylation of 

STAT3 monomers (Fausto et al., 2006). STAT3 homodimerizes and translocates to the 

nucleus, where it stimulates transcription of a number target genes such as cyclin-D1 and 

p21. 

The relationship between platelets and LSECs has been well-documented in 
ischemia/reperfusion injury models. Rolling and adhering of leukocytes on LSECs with 
subsequent interaction with platelets is the important pathogenesis of ischemia/reperfusion 
injury (Montalvo-Jave et al., 2008; Croner et al., 2006, Pak et al., 2010). It was also reported 
that transient interaction, i.e., rolling, and permanent adhesion of platelets to the post-
ischemic hepatic endothelium stimulate platelet activation and expression of endothelial 
adhesion molecules (Massberg et al., 1998; Khandoga et al., 2003). There have not, however, 
been any prior studies focused on the relationship between human platelets and LSECs with 
regards to liver regeneration.  

To clarify the role of platelets in liver regeneration in relation to LSECs, we used co-
culturing chamber systems where platelets and LSECs could be separated by a permeable 

www.intechopen.com



 
Tissue Regeneration – From Basic Biology to Clinical Application 

 

130 

membrane (Kawasaki et al., 2010). We used TMNK-1 cells (immortalized human LSECs), 
instead of primary LSECs, since their utility and efficiency was confirmed in the previous 
basic research (Matsumura et al., 2004).  

Proliferation of LSECs and concentrations of IL-6 and VEGF in the supernatant were 
significantly higher in the group in which LSECs were co-cultured with human platelets 
(platelet+ or platelet+ mixed) than they were in the group in which LSECs were cultured 
without human platelets (platelet-) (Fig. 15A,B). However, when the platelets and LSECs were 
cultured separately (platelet+separated), no significant increase of IL-6 was observed (Fig. 
15B). These results indicated that human platelets increase proliferation of LSECs and induced 
IL-6 release from LSECs and that the direct contact between platelets and LSECs is required for 
the production of IL-6. BrdU uptake of the primary hepatocytes in the group administered 
with the supernatant co-cultured with platelets and LSECs was significantly higher than that 
in the group administered with the supernatant cultured without platelets. When a specific 
antagonist for sphingosine 1-phosphate (S1P) 2 receptors were added to LSECs and co-
cultured with platelets, the concentration of IL-6 showed significant decrease (Fig. 16A). On 
the contrary, the concentration of IL-6 was clearly increased in the group administered with 
S1P compared with those without S1P (Fig. 16B). These results revealed that S1P in platelets 
played important roles in liver regeneration by release of IL-6 from LSECs. 

S1P is generally expressed in human plasma. It belongs to the class of lipid mediators and 
has been shown to regulate diverse biological processes, including proliferation, survival 
migration, or cytoskeletal reorganization (Yatomi et al., 2000; Xia & Wadham., 2011). S1P is 
produced from platelets and interacts with endothelial cells under the conditions of critical 
platelet-endothelial interactions, i.e., thrombosis, angiogenesis, and atherosclerosis (Yatomi 
et al., 2000). It was reported that the biological effect of S1P is partially mediated by 
endothelial nitric oxide synthetic activation and subsequent nitric oxide formation; 
extracellular S1P could contribute to sinusoidal protection and remodeling in alcoholic liver 
injury (Zheng et al., 2006). However, it was also described that S1P in human hepatic 
myofibroblast has an anti-mitogenic effect by increasing expression of TGF-ǃ (Ikeda et al., 
2003). As described above, S1P has various kinds of biophysical effects. 

From the results of our experiment, the promotive effect of platelets on liver regeneration 

could be explained by follows; the direct contact between platelets and LSECs induce S1P 

release from platelets, which subsequently induce excretion of IL-6 from LSECs. LSEC-

derived IL-6 promotes DNA synthesis of hepatocytes through STAT3 pathway (Fig. 17). 

6. The role of Kupffer cells on liver regeneration 

Kupffer cells are the principal constituents of the non-paranchymal cells of the liver (Malik 
et al., 2002). They locate within the lumen of the liver sinusoids, and are adherent to the 
LSECs. Kupffer cells play a role as macrophages against bacteria, bacterial endotoxins and 
microbial debris derived from gastrointestinal tract (Bilzer at al., 2006). Kupffer cells have 
been postulated to play a key role in liver regeneration after partial hepatectomy, and they 
could produce important biologically-active mediators that have both stimulatory and 
inhibitory influence on hepatocyte proliferation after hepatectomy (Boulton et al., 1998). 
Except for a report stating augmentation of the early phase of liver regeneration with 
Kupffer cell depletion (Meijer et al., 2000), depletion of Kupffer cells is basically well-known  
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Fig. 15. Assay of IL-6 and VEGF in the supernatant of cultured LSECs after the addition of 
platelets, and the necessity of contact with platelets for excretion of IL-6 from LSECs. 
(A) The amounts of IL-6 and VEGF in the supernatant of LSECs were measured 0, 6, and 24 
hours after the addition of platelets. Data are expressed as means ± SD. *p < 0.05 versus 
platelet– group. (B) To investigate the necessity of direct contact between platelets and 
LSECs, LSECs were cultured for 6 hours with platelets mixed (platelet+mixed) or platelets 
separated (platelet + separated), and the excretion of IL-6 from LSECs was measured. Data 
are expressed as means ± SD. *p < 0.05 versus platelet+separated group. (Reproduced from 
Kawasaki et al., 2010, J Hepatol with permission.) 
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                                            (A)                                                                              (B) 

Fig. 16. Effects of inhibitor of S1P and S1P on excretion of IL-6 from LSECs  
(A) Excretion of IL-6 from LSECs was evaluated using a specific antagonist for S1P2 
receptors. LSECs were cultured with platelets for 6 hours, and the amount of IL-6 in the 
supernatant of LSECs was measured. Data are expressed as means ± SD. *p < 0.05 versus 
inhibitor- group. (B) To determine whether S1P had an effect on excretion of IL-6 from 
LSECs, LSECs were cultured with S1P for 6 hours, and the amount of IL-6 in the supernatant 
of TMNK-1 cells was measured. Data are expressed as means ± SD. *p < 0.05 versus S1P- 
group. (Reproduced from Kawasaki et al., 2010, J Hepatol with permission.) 

 

Fig. 17. Scheme for liver regeneration promoted by LSECs and platelets. 
The direct contact between platelets and LSECs triggers excretion of S1P from platelets, 
which subsequently causes excretion of IL-6 from LSECs. IL-6 from LSECs promotes DNA 
synthesis of hepatocytes.  
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to exert an inhibitory influence on liver regeneration by alteration of hepatic cytokine 
expression (Takeishi et al, 1999). A critical early event following partial hepatectomy is the 
increase in plasma levels of TNF-alpha. In support of this view, an experiment using 
antibody against TNF-alpha has demonstrated significant reduction of hepatocyte 
proliferation (Akerman et al., 1992). Mice lacking TNF receptor-1 were shown to 
demonstrate severe impairment in liver regeneration (Yamada et al., 1998). Activation of the 
TNF receptor increases hepatic level of the NF-KB in both hepatocytes and non-
paranchymal cells, and it is followed by production and release of IL-6 from Kupffer cells. 
Kupffer cells are assumed to be one of the most important sources of both TNF-alpha and 
IL-6 (Kahn et al., 1994; Decker., 1998). This is supported by the report that Kupffer cell-
depleted mice failed to increase TNF-alpha, and IL-6 levels were equivalent to the level of 
Kupffer cell-competent mice after partial hepatectomy (Abshagen et al., 2007).  

The relationship between platelet and Kupffer cells has been also well-documented in 

ischemia/reperfusion injury models. Platelets act in concert with the activated Kupffer cells 

and leukocytes, and a triangular interaction between these cells has been demonstrated as 

the main mechanism of the injury (Vollmar & Menger, 2009; Sindram et al., 2001). It was 

reported that when rats with depletion of Kupffer cells were subjected to ischemia and 

reperfusion, platelet adhesion in sinusoids was suppressed and, as consequence, attenuation 

of sinusoidal perfusion failure and endothelial damage were seen (Nakano et al., 2008). It is 

also reported that Kupffer cells produce PAF, which is a potent phospholipid mediator of 

platelet aggregation (Karidis et al., 2006). PAF is also believed to play important roles in the 

acute liver injury with ischemia/reperfusion (Karidis et al., 2006; Toledo-Pereyra & Suzuki, 

1994), liver graft dysfunction (Hashikura et al., 1994), and post-operative liver failure after 

extended hepatectomy (Mizuno et al., 2001). As shown above, the role of platelets in relation 

to Kupffer cells have been described mainly with inflammatory injuries of the liver. 

Nakamura et al. described a different character of Kupffer cell function associated with 

platelets. They reported that in response to LPS, IL-1, and TNF-alpha, platelets accumulated 

in the liver and a large number of platelets were found in the space of Disse (Endo et al., 

1992, 1993; Nakamura et al., 1998). They also observed that platelets in the liver sinusoids 

were mostly surrounded by well-developed cell processes of Kupffer cells without being 

phagocytosed (Nakamura et al., 1998). However, depletion of Kupffer cells resulted in 

abolition of hepatic accumulation and migration of platelets (Nakamura et al., 1998). 

Although the precise mechanism was not clear, these reports indicated that cellular 

interaction between platelets and Kupffer cells plays an important role in platelet behavior 

in the liver.  

Previously, we reported that even under condition of Kupffer cell depletion, platelets 
accumulated in the liver in the thrombocytotic state and promoted liver regeneration by  direct 
contact with hepatocytes through their migration from the liver sinusoidal space to the space 
of Disse (Murata et al., 2008). In our recent study using SCID mice with human platelet 
transfusion, we demonstrated that concentrations of mouse-derived TNF-alpha and IL-6 in the 
liver tissue after 70% of partial hepatectomy were significantly higher in the mice with platelet 
transfusion than in the mice without transfusion. These results may indicate that platelet 
transfusion enhances secretory activity of Kupffer cells after hepatectomy. Furthermore, in the 
mice with platelet transfusion, significant accumulation and activation of platelets transfused 
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were observed in the liver after hepatectomy. Although a few platelets transfused were 
adhering to the Kupffer cells in the mice without hepatectomy, the majority of platelets 
adhered to the surface of Kupffer cells in the mice with hepatectomy. It is insufficient to 
conclude only from these findings, however, it was assumed that platelets promote liver 
regeneration by interactions with Kupffer cells after hepatectomy. In other words, after 
hepatectomy, Kupffer cells induce accumulation and activation of platelets in the liver by 
direct adhering, and function of Kupffer cells are enhanced by the accumulated platelets. As 
described above, liver regeneration is promoted by the direct effect of growth factors released 
from platelets and by the paracrine effect of Kupffer cells enhanced by platelets (Fig. 18).  

 

Fig. 18. Scheme for liver regeneration promoted by Kupffer cells  

After partial hepatectomy, the activated Kupffer cells induce accumulation and activation of 

platelets through direct adhering. By the direct effect of growth factors released from 

platelets, and by the paracrine effect of Kupffer cells enhanced by platelets, liver 

regeneration is promoted.  

7. Conclusion 

In this chapter we have described our previous reports of platelets in promoting liver 
regeneration and the three different mechanisms by which platelete promote liver 
regeneration, i.e., 1) the direct effect on hepatocytes, 2) the cooperative effect with LSECs, 
and 3) the collaborative effect with Kupffer cells. Platelets are blood components that 
contain various kinds of biologically-active growth factors and cytokines. Nowadays 
artificial platelets (Bode & Fischer, 2007; Okamura et al., 2009), TPO formulae (Rhodes & 
Stasi, 2010), and freeze-dried platelets (Hoshi et al., 2007) are being developed and are 
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beginning to be utilized in clinical settings; the importance and effects of platelets will 
become more apparent in the near future. With several lines of evidence showing platelets 
to be effective in anti-fibrosis (Watanabe et al., 2008; Kodama et al., 2010), anti-apoptosis 
(Hisakura et al., 2011), and liver regeneration, platelet therapy would open a new avenue to 
develop novel strategies for the treatments of liver diseases. Through these researches, we 
believe that platelet therapy could offer a therapeutic strategy for liver regeneration after 
extended hepatectomy, liver injuries or small grafts in liver transplantation.  
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