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1. Introduction 

TiO2 inverse opals are porous TiO2 structures in which the pore arrangement is well ordered 
in three dimensions. Frequently the pores are arranged in a fcc or hcp structure and each 
pore is connected to the twelve nearest neighbours. TiO2 commonly occupies about 25% of 
the volume of the material, while the pores, which can be filled with gaseous or liquid 
solutions, account for the remaining 75% of the volume (Fig. 1).  

The ordered arrangement of pores of the same size can be seen as a periodic modulation of 
the refractive index in the space, and therefore TiO2 inverse opals are by definition photonic 
crystals (John 1987; Yablonovitch 1987). Photonic crystals are very useful in controlling the 
propagation of light, and they can represent for photonics the same improvement 
semiconductors represented in electronics. Hence properly designed TiO2 inverse opals find 
application in solar energy recovery (Nishimura et al. 2003; Mihi et al. 2008; Chutinan et al. 
2009) and photocatalysis (J. I. L. Chen et al. 2006; Y. Li et al. 2006; Ren et al. 2006; Srinivasan 
& White 2007; J. I. L. Chen et al. 2008; Sordello et al. 2011a). 

 

Fig. 1. SEM micrographs of TiO2 inverse opals at different magnification: (a) 20 000x 
magnification, (b) 100 000x magnification (Reprinted from Waterhouse & Waterland 2007, 
Copyright (2007), with permission from Elsevier) 

This chapter reviews the literature to give a complete picture of the state of the art of the 
photochemistry on TiO2 inverse opals and outlines the more promising perspectives of the 
field in the near future.  
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2. The context: Light driven processes on TiO2 

TiO2 is used in heterogeneous photocatalysis as photocatalyst in water photosplitting and 
hydrogen production, in solar cells for the production of electricity, and in other 
applications that do not require light, such as lithium ion batteries, bone implants and gate 
insulator for MOSFETs. When TiO2 is irradiated with light with energy higher than the band 
gap an electron-hole couple is generated. The charge carriers can separate and migrate 
towards the surface where they can be trapped or react with solution species, as it can be 
seen in Fig. 2 (Diebold 2003). Reactive oxygen species are formed, the degradation of organic 
molecules and pollutants occurs, and the complete mineralization to CO2, H2O and 
inorganic ions has been reported (Pelizzetti et al. 1989). From the environmental point of 
view this process can be very useful and effective, since the harmful pollutant is not 
displaced into another phase, but ultimately decomposed to non harmful inorganic 
compounds. In the presence of a metallic cocatalyst, platinum for example, and in the 
absence of oxygen, the photogenerated electrons can reduce H3O+ to hydrogen, and in the 
absence of an effective hole scavenger, the photogenerated holes can oxidize water to 
oxygen, leading to water photosplitting (Ekambaram 2008; Yun et al. 2011). Recently, 
research focused its attention on the photocatalytic productions of value added chemicals 
starting from glycerol (Maurino et al. 2008) or directly from CO2 in artificial photosynthesis 
(Benniston & Harriman 2008; Roy et al. 2010). 

The technological and commercial affirmation of these light driven processes is delayed 

because (Fujishima et al. 2008; Gaya & Abdullah 2008): 

1. TiO2 is an indirect band gap semiconductor, and therefore its light absorption is limited. 
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Fig. 2. Processes occurring on TiO2 under UV irradiation: (a) light absorption and charge 
carriers formation, (b) electron-hole recombination at bulk trapping sites with release of 
heat, (c) electron-hole recombination at surface trapping sites, (d) trapped electron reacts 
with acceptor (e) trapped hole reacts with donor. 

2. TiO2 is a wide band gap semiconductor and absorbs only the UV fraction of the solar 
spectrum. 

3. TiO2 has a quite high refractive index and light absorption is limited also by reflection. 
4. The efficiencies of the above mentioned processes are quite low, because the charge 

carriers recombination is fast. 
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TiO2 inverse opals can especially improve the light absorption, allowing also a fast mass 
transfer of solution species due to the large-pore structure. This approach can be combined 
with other strategies, new or already employed to improve the efficiency of the 
photocatalytic process on TiO2 surfaces, for example synthesizing doped or dye sensitized 
TiO2 inverse opals, or realizing structures with controlled exposed surfaces. In this case the 
achievable structures are limited only by the creativity of the researchers and the synthetic 
procedures, which can become very complicated and difficult to implement. 

In the next section the origin of the better absorption of light of TiO2 inverse opals will be 
discussed. 

3. Photonic band gap and slow photons 

As we mentioned in section 1 TiO2 inverse opals are photonic crystals, that is materials 

characterized by a periodic modulation in the space of the refractive index. The variation of 

the dielectric constant can be periodic in one dimension, two dimensions or three 

dimensions. Inverse opals are three dimensional photonic crystals, but for simplicity in the 

following we will consider the interaction of light with a monodimensional photonic crystal.  

a

y

x

z

 

Fig. 3. The multilayer film is a monodimensional photonic crystal. Monodimensional means 
that the dielectric constant varies only along one direction (z). The system is composed by 
alternating layers of different materials with different refractive indexes and with spatial 
period a. Every layer is uniform and extends to infinity along the xy plane. Also the 
periodicity in the z direction extends to infinity. 

A monodimensional photonic crystal is a multilayer film formed by alternating layers of 

constant thickness, with different refractive index and constant spacing among them (Fig. 3). 

Referring to Fig. 3 it can be noticed that light propagating in the z direction encounters on its 

path several interfaces between the two dielectrics. At each interface light is reflected and 

refracted following the Snell law. If the wavelength of light propagating along the z 

direction matches perfectly the periodicity of the one-dimensional photonic crystal, the 

reflected waves will be in phase, and as a consequence i) light will be reflected by the 

photonic crystal and ii) its propagation inside the material will be forbidden (Yablonovitch 

2001). We say that the wavelength (or the frequency) of the incident light falls inside the 

photonic band gap (Fig. 4). 
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Fig. 4. Schematic representation of an electromagnetic wave impinging a photonic band gap 
material (a), partial reflection occurs at every interface and, since the frequency of the 
incident wave falls inside the photonic band gap the reflected waves are all in phase (b); as a 
result the light cannot travel through the material (c) (adapted from Yablonovitch 2001) 
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Fig. 5. Schematic representation of an electromagnetic wave with frequency outside the 
photonic band gap propagating into a photonic crystal (a), in this case the reflected waves 
are out of phase (b), and the light propagates inside the material only slightly attenuated (c) 
(adapted from Yablonovitch 2001) 

On the contrary, if the wavelength of the incident light does not match the periodicity of the 
photonic crystal lattice, the waves reflected at each interface will be out of phase, and they 
will cancel out each other (Fig. 5). As a result the light will be able to propagate inside the 
material. In this case the wavelength (or the frequency) of the incident light is said to fall 
outside the photonic band gap. 

This approach is useful from a qualitative point of view and gives a general idea of physical 
phenomena involved, but it cannot be extended to the bidimensional and tridimensional 
cases. Moreover, it lacks of quantitative understanding of the phenomenon, impeding, for 
example, the evaluation of the magnitude of the photonic band gap. 
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Fig. 6. The photonic band structure of the multilayer film depicted in Fig. 3 calculated with a 
freely available software (S. G. Johnson & Joannopoulos 2001). The dielectric constants of the 
layers are ε=5 and ε=2. The photonic band gap frequencies are highlighted in yellow. 

A more rigorous approach starts from the treatment of the electromagnetic problem in 

mixed dielectric media, where the dielectric constant (r) becomes a function of the 

spatial coordinate r. For this case the Maxwell equations have the form (Joannopoulos et 

al. 2008): 

 ·H(r,t) = 0  (1) 

 ·[(r) E(r,t)] = 0  (2) 

 ×H(r,t) – 0(r) ∂E(r,t)/∂t = 0  (3) 

 ×E(r,t) + 0 ∂H(r,t)/∂t = 0  (4) 

where E and H are the macroscopic electric and magnetic fields, ε0 ≈ 8.854×10−12 F/m is the 

vacuum permittivity, μ0 = 4π × 10−7 H/m is the vacuum permeability and ε(r) is the scalar 

dielectric function. It can be demonstrated that Maxwell equations can be rearranged to 

yield equation 5: 

 ×{[1/(r)] ×H(r)} = (/c)2H(r)  (5) 

where the electromagnetic problem takes the form of an eigenvalue problem. It can be 

demonstrated that the operator working on the magnetic field is linear and hermitian. In a 

mixed periodic medium the eigenfuctions that satisfy equation 5 are in the form of Bloch 

waves in which the expression of a plane wave is multiplied by a periodic function that 

accounts for the periodicity of (r) in the photonic crystal: 

 H(r) = eik·ru(r)  (6) 

where u(r) is a periodic function of the type u(r) = u(r+R) for every lattice vector R 

(Joannopoulos et al. 2008). In the case of the multilayer film in Fig. 3 the periodic function u 

depends only on the z coordinate. 
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Introducing the Bloch waves of equation 6 in equation 5 the eigenproblem can be solved and 

the photonic band structure of the photonic crystal of interest can be studied. If in the 

photonic band diagram there are frequencies for which there are no photonic modes 

allowed for every wavevector k, a photonic band gap is present (Fig. 6). At those frequencies 

light cannot propagate inside the material. In such cases the photonic crystals can find 

application in lasing cavity, optical filter and dielectric mirrors.  

 

Fig. 7. Photonic band diagram of a TiO2 inverse opal with the pores filled with water.  
The frequencies associated with light with low group velocity are highlighted.  
The band structure has been calculated with a freely available software  
(S. G. Johnson & Joannopoulos 2001) assuming for the dielectric constants of TiO2  
and water the values 4.4 and 1.7, respectively. 

If equation 5 is solved for the TiO2 inverse opal (Fig. 7) no photonic band gaps are present. 

To have a photonic band gap in the inverse opal structure the dielectric contrast (the 

difference between the dielectric constants of the two media) has to be at least 9, whereas 

TiO2 anatase has a dielectric constant higher than ten only for photon energies above 3.8 – 

4.0 eV (310 – 325 nm) (Jellison et al. 2003). Therefore in the visible and UVA TiO2 will not 

have a complete photonic band gap. Nevertheless, at certain frequencies light will not be 

able to propagate in some direction (Fig. 7). For example in the -L direction there is a 

pseudo photonic gap that forbids the propagation of light at a value of the reduced 

frequency around 0.55. This feature is not so unsuitable for photosynthetic or photocatalytic 

application, since in those cases light has to propagate inside the catalyst to be absorbed and 

create charge carriers. 

The photonic band diagram of TiO2 inverse opal shows that for some photonic bands the 
behaviour of the frequency as a function of the wavevector presents an almost flat trend. As 
the group velocity of light vg is defined as: 

 vg(k) = k (7) 
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from equation 7 we can argue that a flat trend of a photonic mode in the frequency  vs. 
wavevector k plot is indicative of low group velocity. Looking at Fig. 7, we can observe that 
almost flat photonic bands are present for different frequency ranges. At those frequencies 
light will be able to travel inside the TiO2 inverse opal, but its group velocity will be strongly 
reduced. Hence the light interaction with the material will be incremented. 

When light with low group velocity (or slow light or slow photons) can be exploited, the 
optical absorption of the material can be improved as if the optical path inside the material 
would be lengthened. An elegant experimental demonstration of this phenomenon is the 
change of the absorbance spectrum of an adsorbed dye on different TiO2 inverse opals  
(Fig. 8). 

 

Fig. 8. Absorption spectra of crystal violet adsorbed on different TiO2 films: (a) reference 
TiO2 flat film, (b) and (c) TiO2 inverse opals slowing photons outside the 450-650 nm range, 
(d) and (e) TiO2 inverse opals slowing photons in the 600-650 nm range Reprinted with 
permission from Y. Li et al. 2006 Copyright (2006) American Chemical Society. 

When the crystal violet dye is adsorbed on a TiO2 inverse opal, which can slow down the 

photons possibly absorbed by the dye, its absorbance is increased with respect to flat TiO2 or 

TiO2 inverse opals with not properly tuned periodicity (Y. Li et al. 2006). Absorption spectra 

reported in Fig. 8 show that also in the case of TiO2 inverse opals with not properly tuned 

photonic band gap (slow photons outside the 450-650 nm range) there is a higher absorption 

that can be explained in terms of porosity and larger amount of adsorbed dye. In the case of 

TiO2 inverse opals slowing photons in the 600-650 nm range, higher absorption cannot be 

explained only in terms of porosity and higher amount of adsorbed dye, because not only the 

intensity of the spectra is different from the reference film, but also because the shape of the 

spectra changes, as the absorption at 600-625 nm becomes predominant over that at 500 nm. 

This important feature, together with porosity and indeed high surface area, makes TiO2 
inverse opals very good materials for application in semiconductor photocatalysis, solar 
energy recovery (dye sensitized solar cells) and artificial photosynthesis (Ren & Valsaraj 
2009). Owing to this, they have drawn and they are drawing a lot of research into this field. 
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4. Synthesis 

TiO2 inverse opals can be prepared in several ways and, probably, new synthetic routes will 

be discovered in the next years. Different approaches are possible because three dimensional 

ordered porous structures can be obtained exploiting many different physical principles. 

The invention of new methods is only limited by physics and chemistry and by the 

creativity of the researchers. An ideal method would be fast, requiring only standard 

procedures and instruments, it would be cheap and it should be able to produce 

homogeneous TiO2 inverse opals over large surfaces with the possibility to control the 

thickness of the synthesized material. A good method would be also able to produce TiO2 

inverse opals with few defects both at microscopic (vacancies, dislocations, grain 

boundaries, stacking faults, ...) and macroscopic level (cracks, thickness inhomogeneity).  

SubstrateMonodisperse colloid

Self-assembly

Template removal

TiO2 infiltration

Opal

Infiltrated opalInverse opal  

Fig. 9. Schematics of the fabrication procedure of a TiO2 inverse opal.  
(adapted from L. Liu et al. 2011) 

In general TiO2 inverse opals are synthesized in a two steps procedure (Fig. 9). Firstly, a well 
monodisperse colloidal suspension of SiO2 or polymer spheres has to be prepared. The 
monodisperse colloid is then conveniently deposited onto a clean substrate to form a 
colloidal crystal, that is a solid characterized by an ordered disposition of silica or polymer 
spheres in three dimensions. A colloidal crystal can be described also as a superlattice of 
closely packed colloidal particles. If the colloidal particles are spherical the resulting 
colloidal crystal is called opal or synthetic opal, in analogy with natural opals characterized 
by an ordered arrangement of silica spheres in three dimensions. Most of the time colloidal 
crystals obtained in this way are synthetic opals and can find application as sensors (Endo et 
al. 2007; Shi et al. 2008) and as model systems in the study of crystals, phase transitions 
(Bosma et al. 2002) and the interaction of photonic crystals with light (Miguez et al. 2004; 
Pavarini et al. 2005; M. Ishii et al. 2007). Beyond these applications, colloidal crystals serve as 
sacrificial templates for the synthesis of TiO2 inverse opals. In this case the quality of the 
colloidal-crystal template is very important, because every defect in the structure will be 
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replicated in the TiO2 inverse opal. For the TiO2 inverse opal preparation a TiO2 precursor 
solution (titanium(IV) isopropoxide, titanium(IV) butoxide, other titanium(IV) species) or a 
dispersion of TiO2 nanoparticles is used to fill the voids of the synthetic opal, a process 
normally called infiltration. Once the infiltration process is completed and TiO2 backbone is 
formed, the template is removed by etching with NaOH or HF in the case of silica templates, 
with toluene in the case of polystyrene templates, or by calcination if a cross linked 
polymeric template has been used. 

4.1 Preparation of monodisperse colloids  

In the literature many methods to synthesize monodisperse colloids are described. For the 
successive colloidal crystal preparation the most suitable method to obtain monodisperse 
polymeric colloids is the emulsion polymerization without emulsifier in water. To 
synthesize monodisperse polystyrene colloids the emulsion water-styrene is heated and 
vigorously stirred, the addition of the initiator makes the reaction start, and the relative 
amounts of monomer/initiator/ionic strength affect the size of the final polymer spheres 
(Goodwin et al. 1974). It is also possible to synthesize positively charged polystyrene 
colloids (Reese et al. 2000) or functionalized colloids (X. Chen et al. 2002) to ease the 
colloidal crystal formation and the infiltration of TiO2. The preparation of monodisperse 
polymethylmethacrylate colloids is very similar (Waterhouse & Waterland 2007), and 
examples of synthesis in non polar solvents are also reported (Klein et al. 2003).  

Monodisperse silica spheres can be synthesized in ethanol with determined amount of 
water in the presence of ammonia as shape controller (Jiang et al. 1999). 

4.2 Colloidal crystal synthesis 

Many different strategies to obtain colloidal crystals are available depending on the final 
goal, because they can be obtained as powders, thick films, and also thin films containing 
one, two or at least three layers.  

a. Direct centrifugation of the monodisperse colloid leads to the formation of a colloidal 
crystal. Although the method is simple, it is not suitable if a film of controlled thickness 
has to be obtained (Wijnhoven & Vos 1998; Waterhouse & Waterland 2007). Another 
drawback is the slowness, if small colloidal particles (size < 150 nm) are involved, 
because more than one hour of centrifugation is needed (Sordello et al. 2011a).  

b. A related method is the sedimentation. A drop of the monodisperse colloid is deposited 
on a clean substrate, where the drop can broaden due to the hydrophilicity of the 
substrate with contact angle close to zero. The evaporation of the solvent leads to the 
formation of the colloidal crystal (Denkov et al. 1993). To avoid thickness non 
uniformity the crystallization can be carried out under silicone liquid (Fudouzi 2004). 
Since in most cases the evaporation of water is necessary for the synthesis of the 
colloidal crystal, relative humidity plays an important role (Liau & Huang 2008), and 
the deposition is quite slow. To accelerate the process ethanol can be used instead of 
water (Shin et al. 2011).  

c. The most popular method used to synthesize colloidal crystals is based on the vertical, 
rather than horizontal, position of the substrate on which the monodisperse colloid is 
deposited. When the substrate is dipped into the colloidal dispersion of monodisperse 
spheres the particles self-assembly in an opaline structure in the meniscus region (Fig. 
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10). With the evaporation of the solution the meniscus moves downwards and the opal 
film grows in the same direction (Jiang et al. 1999; Z. Z. Gu et al. 2002; Norris et al. 2004; 
Shimmin et al. 2006). The method allows the formation of well ordered opals, but the 
process is slow and the thickness of the film is not uniform, because the colloid 
concentrates during the process. Moreover, it has been reported that in the vertical 
deposition method the thickness of the film has a sinusoidal trend in the length scale of 

the order of 100 m. The oscillations are more pronounced with increasing particle 
concentration and with decreasing temperature (Lozano & Miguez 2007). 

d. In the dip-drawing technique (Z. Liu et al. 2006) the colloidal crystal is formed by the 
downwards movement of the meniscus. The substrate is immersed vertical in the 
colloidal suspension and the meniscus is moved downwards withdrawing the 
suspension by means of a peristaltic pump. The rapidity of the method can be tuned, 
but if suspension withdrawal is too fast the quality of the resulting colloidal crystal is 
poor. 

e. Polymer or silica spheres can self assembly in ordered structures in the liquid phase 
(Reese et al. 2000) forming single crystals over large areas (cm2) by simply applying a 
shear flow if the colloidal particles are charged and the ionic strength of the medium is 
sufficiently low (Amos et al. 2000; Sawada et al. 2001). This method is fast, allows the 
formation of large single crystals without grain boundaries and, if colloidal particles 
with opposed charge are employed, colloidal crystals with particle packing different 
from the usual fcc or hcp geometry are obtained (Leunissen et al. 2005; Shevchenko et 
al. 2006). 

Meniscus

Monodisperse colloid

Substrate

Growing colloidal crystal

Solvent evaporation

Colloidal crystal

 

Fig. 10. Schematic representation of a colloidal crystal formed in the meniscus region by 
slow evaporation of the suspension (adapted from Norris et al. 2004).  

The shear flow method can also produce colloidal crystals without cracks over large 

domains. Normally, once the colloidal crystal is deposited the drying process causes the 

shrinking of the colloidal particles that produce macroscopic fractures in the structure (Sun 

et al. 2011). To avoid the formation of these imperfections core-shell spheres can be used. 

The colloidal crystal is assembled under high external pressure, and during the drying the 

soft shells will expand, compensating the volume shrinkage of the whole structure (Ruhl et 

al. 2004; Pursiainen et al. 2008). A further possibility is the use of a photosensitive monomer 

dissolved in the slurry. The irradiation after colloidal crystal formation will freeze the 
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structure in a polymeric gel that will prevent any shrinking during the drying process 

(Kanai & Sawada 2009). These procedures allow the synthesis of almost perfect colloidal 

crystals over large areas. Nevertheless the subsequent TiO2 infiltration will be considerably 

hindered. 

f. Colloidal crystals are also produced by confinement between two flat surfaces (Fig. 11). 
The colloidal dispersion of monodisperse spheres can enter the cell because of 
capillarity forces (M. Ishii et al. 2005; X. Chen et al. 2008) or by means of a hole in the 
cell (Park et al. 1998; Lu et al. 2001). Evaporation or removal of the solvent with a gas 
stream leaves behind large area colloidal crystals slightly fractured.  

Monodisperse colloid

Confinement cell

Growing colloidal crystal

Solvent evaporation

 

Fig. 11. Schematic representation of the formation of a colloidal crystal in a confinement cell 
(adapted from X. Chen et al. 2008)  

g. Spin coating can be a valuable and rapid method to produce thin film colloidal crystals. 
Even if many grain boundaries are produced, the distinctive feature of the method is 
the ability to produce very thin films. The synthesis of monolayered colloidal crystals 
has been demonstrated (Mihi et al. 2006). 

h. Finally, polymeric photonic crystal can also be prepared by mixing immiscible 
polymers (C. W. Wang & Moffitt 2005) and by laser holographic lithography (Moon et 
al. 2006; Y. Xu et al. 2008; Lin et al. 2009; Miyake et al. 2009). 

4.3 Infiltration and TiO2 inverse opal synthesis 

The infiltration in the sacrificial template is the crucial step in the TiO2 inverse opal 

synthesis, because this phase is responsible for the major production of defects and 

macroscopic imperfections. If the infiltrated solution or colloid cannot form a stable network 

before the template is removed, the structure will collapse with the destruction of the three 

dimensional lattice. Nowadays several infiltration methods exist and in the following we 

will give the reader a general picture of the available techniques. 

The sol-gel infiltration is probably the most popular and widespread method, because it is 

simple and low cost. Nevertheless, it has to be implemented with great care especially if TiO2 
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precursors with large tendency to hydrolyze rapidly are used, because the amount of 

deposited TiO2 is difficult to control (Wei et al. 2011). In some cases the deposition of an extra 

layer of bulk TiO2 over the inverse opal can be turned into an advantage with the lift-off/turn-

over method (Fig. 12). Depending on the application both a self standing TiO2 inverse opal or a 

Bragg mirror behind a TiO2 active layer can be created (Galusha et al. 2008). To avoid dealing 

with violent hydrolysis it is possible to introduce TiO2 in the template in the form of 

nanoparticle already hydrolyzed (Yip et al. 2008; Shin et al. 2011). In this case the difficulty is 

the preparation of sufficiently small particles capable to penetrate into the pores of the opal 

template, because the resulting infiltration will be poor if the nanoparticles are too big, and the 

inverse opal structure will collapse after template removal. 

Infiltration

Turn over

a)

Calcination

b)

c) Copper tape

Lift off

d)

e)

f)

 

Fig. 12. Schematic representation of the がlift-off/turn-overぎ technique. (a) polystyrene 

opal template. (b) Infiltrated opal with TiO2. (c) Infiltrated opal with adhesive copper tape 
placed on top. (d) Lift off of the infiltrated opal from the substrate. (e) The infiltrated opal is 
turned over so that the flat opal-terminated surface is on top. (f) Calcined TiO2 inverse opal 
with porous surface (adapted from Galusha et al. 2008). 

Electrodeposition is a more complicated method requiring that the sacrificial template is 

deposited onto a conductive substrate, but it allows a better control of Ti4+ hydrolysis and a 

superior filling of the pores of the template. The potential of the conductive glass that 

supports the template is brought to negative potential to reduce nitrate present in solution 

according to the reaction: 

 NO3- + 6 H2O + 8 e-→ NH3 + 9 OH- (8) 

The OH- produced causes a local increase of pH and the precipitation of TiO2+ from the 

precursor solution. In this way the TiO2 deposition is compact and finely tunable varying 

the concentration of NO3-, the applied current and the deposition time (Y. Xu et al. 2008). A 

similar technique is electrophoresis. The method can infiltrate a TiO2 colloid constituted by 

charged particles, and according to Gu et al. (Z.-Z. Gu et al. 2001), the deposition can be fast 

and uniform. 
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Spectacular structures (Fig. 13) can be obtained with infiltration by atomic layer deposition. 
The technique allows a fine control of the amount of deposited TiO2, the filling of the pores 
of the template is optimal and, as a consequence, the synthesized TiO2 inverse opals are very 
resistant. The drawbacks are the slowness and the cost of the needed equipment, which 
cannot be considered a standard facility of every laboratory (King et al. 2005; L. Liu et al. 
2011). 

Infiltration can also be carried out by spin-coating, the method is fast and the produced TiO2 
inverse opals are regular and characterized by smooth surfaces (Matsushita et al. 2007). 

 

Fig. 13. SEM micrograph of the fractured surface of a TiO2 inverse opal produced by atomic 
layer deposition (Copyright (2005) Wiley. Used with permission from King at al. 2005) 

TiO2 inverse opals can be obtained also in only one synthetic step, in which the silica or 

polymeric colloid, that will build the colloidal crystal template, is mixed together with a 

TiO2 colloid that will occupy the interstices of the colloidal crystal structure (Meng et al. 

2002). For this reason TiO2 particles have to be one or two orders of magnitude smaller than 

the silica or polymer particles. The presence of smaller TiO2 particles forces the larger 

particles to self assembly in close packing. In this way the volume available for the diffusion 

of the small particles increases, with an overall gain in entropy for the entire system (Yodh 

et al. 2001). 

Beyond the classic filling of TiO2 inverse opal, in which TiO2 occupies the residual volume 

of the former opal template, a structure also called shell structure or residual volume 

structure, there are synthetic procedures that can build TiO2 inverse opals with a skeleton 

structure (Dong et al. 2003) or with a fractal distribution of the pores (Ramiro-Manzano et al. 

2007). 

5. Improved photochemistry on TiO2 inverse opals 

Although the unique properties of TiO2 inverse opals and their possible applications for 

improved photochemistry are many, surprisingly the first demonstration of better use of 

light on TiO2 inverse opals dates back only in 2006 (Ren et al. 2006). Before they received 

attention as back reflector in dye sensitized solar cells (Nishimura et al. 2003; Halaoui et al. 

2005; Somani et al. 2005), or in fundamental studies (N. P. Johnson et al. 2001; Schroden et al. 

2002; Dong et al. 2003). In that seminal work Ren et al. demonstrated that TiO2 inverse opal 
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with photonic pseudo gap in the UV is more efficient than P25 TiO2 in the photodegradation 

of 1,2-dichlorobenzene in the gas phase (Fig. 14). They also found that the rate constant for 

the degradation of the pollutant is proportional to the radiant flux intensity even at 

intensities higher than 25 mW cm-2, whereas usually for TiO2 the rate constant is 

proportional to the square root of the radiant flux intensity (Minero 1999).  

 

Fig. 14. Normalized concentrations of 1,2-dichlorobenzene as a function of the irradiation 
time in the presence of P25 TiO2 powder (closed circles) and TiO2 inverse opal (PBG TiO2, 
open circles) Reprinted with permission from Ren et al. 2006 Copyright (2006) American 
Chemical Society. 

  

Fig. 15. Left: Reflectance spectra of TiO2 inverse opals with photonic pseudo gaps located at 
500, 430, 370, 345, 325, 300, and 280 nm (solid lines), and extinction spectra of 
nanocrystalline TiO2 (black dashed line) and methylene blue (gray dashed line). For clarity 
the spectra have been displaced in the vertical axis. The highlighted region indicates the 
wavelengths used during irradiation. Right: Logarithmic plot of the photodegradation of 
methylene blue showing the first-order decay rate for nanocrystalline TiO2 (nc-TiO2) and 
TiO2 inverse opals with photonic pseudo gaps at 345, 370, and 500 nm. Mesoporous SiO2 
(meso-SiO2) was used as the blank (Copyright (2006) Wiley. Used with permission from 
J.I.L. Chen et al. 2006) 
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To elucidate the reason of this behaviour Chen et al. (J. I. L. Chen et al. 2006) synthesized 
TiO2 inverse opals with different pore size, and hence with different position of the photonic 
pseudo gaps (Fig. 15). The authors observed that with narrow spectrum irradiation (370 ± 10 
nm) at the red edge of the photonic pseudo gap the degradation of methylene blue was 
significantly accelerated with respect to nanocrystalline TiO2, whereas when irradiation was 
carried out at wavelengths of the photonic pseudo gap the degradation was even slower 
than in the presence of the reference nanocrystalline TiO2 photocatalyst (Fig. 15). These 
evidences suggest that the better activity arises from the exploitation of slow photons, which 
is maximized when the wavelength used for the irradiation falls at the red edge of the 
photonic pseudo gap, whereas porosity and the improved mass transfer of the species 
cannot explain such important variations in activity as a consequence of the small difference 
in the pore sizes used. 

The same authors studied also the effect of the disorder on the activity of TiO2 inverse opals 

(J. I. L. Chen et al. 2007). They found that such systems can tolerate a certain disorder, but 

the addition in the polymer template of up to 40% of particles with a different diameter (up 

to 20% different, Fig. 16) leads to a significant loss in activity.  

 

Fig. 16. SEM micrographs of TiO2 inverse opals obtained from PS templates with particle 
dimensions (1-x)150-x180 nm, with x=0.13 (a and b), 0.37 (c), and 0.57 (d) Reprinted with 
permission from J.I.L. Chen et al. 2007 Copyright (2007) American Chemical Society. 

Nevertheless, partially disordered inverse opals keep an enhancement factor of 1.6, 

calculated as the activity ratio between TiO2 inverse opal and nanocrystalline TiO2, while 

the well monodispersed material can attain an enhancement factor of 2.3. This is an 
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important result because it shows that the light scattering is not crucial in increasing the 

efficiency of these materials, and that the unavoidable imperfections in the periodic 

structure do not prevent the practical applications in environmental remediation or water 

purification. 

An improved degradation of methylene blue on TiO2 inverse opals under UV irradiation 
was also observed (Srinivasan & White 2007), but in this case the better efficiency was 
explained in terms of better diffusion of the species due to the porosity of the material and 
to the large surface area. This interpretation was supported also by Chen & Ozin in a 2009 
paper (J. I. L. Chen & Ozin 2009), where they partially revised the conclusions of their 
previous works, limiting the effectiveness of slow light only in the case of TiO2 inverse opals 
with high fill factors.  

To clarify the relative importance of slow light, light scattering and improved mass transfer 
due to the porosity Sordello et al. performed the photocatalytic degradation of phenol at two 
different wavelengths on TiO2 inverse opal and TiO2 disordered macroporous powders 
(Sordello et al. 2011a). The wavelengths used were 365 nm, where, for the TiO2 inverse opal 
employed, the slow photon effect was maximized, and 254 nm, where, on the contrary, the 
slow light was negligible. At 365 nm the inverse opal is four times more active than the 
disordered macroporous structure. The key experiment showed that the pristine inverse 
opal powder is four times more active than the inverse opal crushed in a mortar, which has 
lost its periodicity in three dimensions. These differences vanish irradiating at 254 nm, as at 
that wavelength the three powders show almost the same activity. These evidences suggest 
that slow light plays an important role in increasing the absorption of light of TiO2 inverse 
opals and hence in improving their photoactivity. The photoelectrochemical study of TiO2 
inverse opals confirmed the better light absorption of these materials when slow photons 
are involved. Furthermore, it was evidenced a faster electron transfer to the oxygen present 
in solution with respect to disordered macroporous TiO2 (Sordello et al. 2011b). 

The better absorption of light, the porosity and the high surface area derive from the 
structuration of these materials and can be coupled with other physical and chemical 
modifications to boost efficiency of a great variety of photoreactions. A frequent 
modification is the addition of metallic platinum to improve the separation of the 
photogenerated charge carriers and reduce recombination (Kraeutler & Bard 1978). The 
addition of platinum to TiO2 inverse opals leads to a significant improvement of the 
photoactivity (J. I. L. Chen et al. 2008). The activity ratio between platinised inverse opal and 
nanocrystalline TiO2 is four, whereas a lower value (around 2.5) should be expected 
considering the activity ratios of TiO2 inverse opal (1.7) and platinised nanocrystalline TiO2 
(1.8) alone, evidencing that there is a cooperation between slow light and platinisation. In 
summary the total effect is not merely the sum of the two contributions (J. I. L. Chen et al. 
2008). A different approach consists in synthesizing the metallic platinum inverse opal first, 
and coating it with TiO2 in a second step (H. Chen et al. 2010). The recombination of 
photogenerated charge carriers is effectively reduced by the Schottky junction Pt/TiO2 as 
the platinised samples show higher photocurrents and faster photodegradation rate for 
aqueous phenol. Moreover, Pt/TiO2 inverse opal with properly tuned photonic pseudo gap 
has even higher photocurrents and photocatalytic activity with respect to inverse opals that 
cannot exploit slow light because the irradiation wavelength does not correspond to 
photonic modes with slow group velocity. It is also interesting to note that without the 
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chance to harvest slow light Pt/TiO2 inverse opals have the same characteristics of the 
macroporous disordered Pt/TiO2 material (H. Chen et al. 2010).  

An alternative strategy used to improve photochemistry on TiO2 is the doping with 
transition metals, in order to extend the absorption of light to the visible and to allow 
practical applications with solar light. Wang et al. (C. Wang et al. 2006) were successful in 
synthesizing TiO2, ZrO2, Ta2O5 and Zr or Ta doped TiO2 inverse opals which were tested in 
the photocatalytic degradation of 4-nitrophenol and Rhodamine B in aqueous solution. They 
demonstrated the red shift of the absorption edge of doped TiO2, and measured higher 
photoactivity for the doped TiO2 inverse opal samples. The better activity was attributed to 
the improved absorption of light due to the doping and to the porosity of the structures 
constituted by interconnected macropores and mesopores that allow faster migration of 
photogenerated electrons and holes. 
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Fig. 17. Left: Methylene blue concentration as a function of the irradiation time for N,F-
doped TiO2 inverse opals with different pore dimensions (e.g. TIO201-250 refers to TiO2 
inverse opal with macropore radius of 201 nm and calcined at 250°C), for a N,F doped TiO2 
macroporous disordered sample (TIOMIX-250), and for N,F doped TiO2 sol–gel thin film 
Reprinted with permission from J.A. Xu et al. 2010 Copyright (2010) American Chemical 
Society. Right: Percent residual methylene blue as a function of the irradiation time  
(>400 nm) for nitrogen-doped TiO2 inverse opal (macropore radius ≈ 280 nm), nitrogen-
doped TiO2 macroporous disordered structure (inverse mixture), and nitrogen-doped TiO2 
sol–gel thin film (Copyright (2008) Wiley. Used with permission from Q. Li & Shang 2008) 

To extend the absorption of TiO2 into the visible doping with nitrogen, carbon, sulphur or 
fluorine is usually adopted. In this case the absorption in the visible is due to colour centres 
and not to a narrowing of valence and conduction band (Serpone 2006). The doping with 
nitrogen (Q. Li & Shang 2008) and with nitrogen and fluorine (J. A. Xu et al. 2010) of TiO2 
inverse opal led to an improved photocatalytic degradation of methylene blue in water with 
visible light, even if in the case of nitrogen and fluorine codoping the activity of the TiO2 
inverse opals is only slightly higher than in the case of a macroporous disordered TiO2. This 
is probably due to a non optimal choice of the photonic band gap position, although in the 
case of nitrogen doping the improvement from disordered to ordered structure is significant 
(Fig. 17). The photodegradation of methylene blue with visible light alone is not sufficient to 
demonstrate that doped TiO2 can effectively absorb visible photons with the consequent 
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production of holes and electrons that can respectively react with the organic dye and 
molecular oxygen. According to Zhao et al. (Zhao et al. 2002) the disappearance of the dye is 
possible under visible light irradiation, without the need of photon absorption by TiO2. In 
this case a dye sensitization occurs due to the electron injection from the excited dye (S*) to 
the TiO2 conduction band (equations 9 and 10): 

 S + h → S* (9) 

 S* → e-CB + S+ (10) 

The oxidized dye S+ can directly react with oxygen: 

 S+ + O2 → SO2+ (11) 

whereas the conduction band electron can react with the dissolved oxygen to yield several 
reactive oxygen species (Minero & Vione 2006 and references therein): 

 O2 + e-CB → O2·- (12) 

 O2·- + H+ → HO2· (13) 

 2 HO2· → O2 + H2O2 (14) 

 O2·- + HO2· → O2 + HO2- (15) 

 H2O2 + e-CB → HO· + HO- (16) 

 H2O2 + HO· → HO2· + H2O (17) 

These species can react with the adsorbed dye and carry out its degradation up to CO2 and 
water. In the case of dye molecules adsorbed on the internal surfaces of a TiO2 inverse opal 
with properly tuned photonic band gap, dye absorption is enhanced and its degradation 
improved. This mechanism has been hypothesized to account for the degradation of crystal 
violet on undoped TiO2 inverse opal under visible irradiation (Y. Li et al. 2006). The role of 
the inverse opal is to slow down the photons absorbed by the dye to increase the interaction 
of light with organic compounds. 

TiO2 inverse opals were also coupled to metallic copper in the photoreduction of CO2 to 
methanol in the presence of water vapour and UV light (Ren & Valsaraj 2009). With respect 
to nanocrystalline TiO2, on inverse opals the reaction proceeded also at lower light 
intensities, with a rate dependence on light intensity I0.74 with respect to nanocrystalline 
TiO2 that showed a dependence I0.20. 

6. Conclusion 

TiO2 inverse opals and their role in improving the efficiency of photochemical reactions 
have been presented. The physical origin of the photonic band gap and of slow light has 
been discussed together with the synthetic routes to obtain such structures. Some 
applications and practical examples of improved photochemistry on TiO2 inverse opals have 
been reviewed, demonstrating how such materials can help photocatalysis to be competitive 
in solar energy recovery, environmental remediation, water purification and also in the 
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synthesis of chemicals. The possibility of better light absorption of inverse opals is very 
promising to improve the efficiency of light driven reactions for a great variety of 
implementations, provided that knowledge and competences are transferred among 
different fields. This is a necessary condition to produce complex systems that take 
advantage of cooperative effects. 
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