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1. Introduction 

Photoisomerization, an important aspect of photochemistry, is molecular behavior in which 

the structural change between isomers is caused by photoexcitation. Photoisomerization is 

already applied or has potential in many fields, such as the synthesis of compounds that can 

not be obtained by other methods, pigments in digital data storage and recording, solar 

energy harvesting, and nanoscale devices and materials with photo-modulable properties. 

Conformation transformation, especially the trans-cis photoisomerization of alkenes, see 

Scheme 1, is the most studied photoisomerization (Waldeck, 1991; Dou & Allen, 2003; 

Quenneville & Martínez, 2003; Minezawa & Gordon, 2011). Stilbene is a prototypical 

molecule that has been extensively investigated by both experimental and theoretical 

approaches. The primary mechanism of isomerization is through the excited singlet state 

starting from either the cis or the trans geometry. After photoexcitation, the molecule can 

overcome a small activation barrier and twist about its central C=C bond to form a twisted 

intermediate. This intermediate then decays with equal probability to either ground state 

cis-stilbene or ground state trans-stilbene. Similarly, the torsion around N=N bond also 

induces photoisomerization (Ciminelli et al., 2004; Mita et al., 1989), with azobenzene as the 

prototype. Moreover, compounds with photoisomerizable core have been designed for 

some special purposes. For example, highly branched dendrimers containing azobenzene 

core can be excited and converted to isomers by infrared irradiation, which represents a 

strategy for harvesting low-energy photons via chemical transformation (Jiang & Aida, 

1997).  

Geometric isomerization is another important type of photoisomerization that involves 
bond cleavage and creation in alkenes, see Scheme 2. One typical transformation is 
intramolecular cycloaddition such as [2+2] and [2+3] cycloadditions (Xu et al., 2009; Filley et 
al., 2001; Lu et al., 2011; Somekawa et al., 2009), which is very attractive in synthetic 
applications. In addition, the cycloaddition may produce strained and energy-rich products, 
which has received attention as a way to store solar energy. 
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Scheme 1. Examples of conformation photoisomerization of alkenes along with the 
prototype surface diagram of stilbene isomerization. 

 

Scheme 2. Examples of geometric photoisomerization of alkenes 
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Generally, photoisomerization is sensitized by homogenous organics and/or metal 

complexes. However, solid semiconductors and even zeolites have been found to effective 

for these photo-induced processes. For example, CdS has been extensively studied for the 

trans-cis transformation of alkenes (Gao et al., 1998; Yanagida et al., 1986; Al-Ekabi & Mayo, 

1985). Unfortunately, the instability of CdS under irradiation is a big problem for 

application. 

2. Photosensitized isomerization of norbornadiene 

Photoisomerization of norbornadiene (NBD) to quadricyclane (QC) is typical intramolecular 

[2+2] cycloaddition. It continues to be an interesting field as potential way for storage and 

conversion for solar energy (Hammond et al., 1964; Bren’ et al., 1991; Dubonosov et al., 

2002). The photoisomerization of NBD results in metastable structure that contains highly 

strained cyclobutane and two cyclopropane fragments. When one mole of NBD is 

transformed to QC, 89 kJ of solar energy could be stored in form of strain energy. Under 

some catalytic conditions, the inverse QC→NBD transformation occurs easily, accompanied 

with considerable thermal effect (ΔH=-89 kJ/mol). This represents an idea cycle for energy 

conversion and storage, see Scheme 3. 

 

Scheme 3. Solar energy harvesting cycle based on photoisomerization of norbornadiene. 
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Recently, QC has been identified as a very promising high-energy compound as 

replacement for, or additive to, current hydrocarbon-based rocket propellants, because the 

extraordinary high strain energy offers a very high specific impulse (Kokan et al., 2009; 

Striebich & Lawrence, 2003). It is reported that QC-based fuels provide more propulsion 

than most of the hydrocarbon fuels like rocket propellant RP-1. QC is also designed for 

satellite propulsion system to replace highly toxic fuels like hydrazine and dinitrogen 

tetroxide. Moreover, QC is thermally and chemically stable, which means that it can be 

easily stored and transported like other hydrocarbon fuels. 

The quantum yield of pure NBD photoisomerization is extremely low because the 

absorption edge of NBD is less than 300nm. Many efforts have been done to drive this 

photoisomerization using longer light and improve the quantum yield, which can be 

categorized into three directions: use of sensitizer, modification of NBD molecule and use of 

NBD-containing compounds. Dubonosov et al already presented two comprehensive 

reviews on the photoisomerization of NBD and its derivatives in 1991 and 2001 (Bren’ et al., 

1991; Dubonosov et al., 2002). This chapter focuses on the synthesis of QC from NBD, so 

only a brief summary is given to the direct photoisomerization of NBD, i.e. the first 

direction. The photosensitized isomerization of NBD occurs via triplet, so many carbonyl 

compounds like acetophenone, benzophenone and Michlers’ ketone were used as triplet 

sensitizers. Actually, a recent patent claimed a solution phase photoisomerization process of 

NBD based on substituted Michlers’ ketone (Cahill & Steppel, 2004). However, since the 

energy of the triplet state of NBD (3NBD) is very high (~257 kJ/mol), only small amount of 

sensitizers are qualified. Then, metal complexes and derivatives of carbonyl compounds 

were studied. In this case, the isomerization proceeds through the formation of sensitizer-

NBD complexes in electron-excited states, with or without the formation of 3NBD. 

However, the photosensitized reaction suffers from many drawbacks. First, homogenous 

reaction brings some difficulties in product purification and sensitizer recycling. Second, 

sensitizer tends to decompose under UV irradiation and induces some side-reactions like 

polymerization of NBD. In fact, in the past decade, work on the direct photoisomerization of 

NBD is very scare, and only some NBD derivatives were synthesized to prepare photo-

responsive materials (Chen et al., 2007; Vlaar et al., 2001). 

Heterogeneous semiconductors are extensively used in photocatalytic processes such as 

degradation of pollutants, hydrogen generation, and solar cell. They are also attractive for 

photoisomerization when considering the easy purification of product and reuse of catalyst. 

In fact, zeolites and semiconductors were already found to be active for the 

photoisomerization of NBD. In a brief communication, Lahiry and Haldar firstly reported 

that NBD can be isomerized over semiconductors like ZnO, ZnS and CdS (Lahiry & Haldar, 

1986). Then Gandi et al. reported that Y-zeolites exchanged with K+, Cs+ and Tl+ ions can 

sensitize the intramolecular addition of some dienes like NBD and afford the corresponding 

triplet products through heavy atom effect (Ghandi, 2006). In this case the reactant is pre-

adsorbed in the micropores. Similarly, Gu and Liu compared La-, Cs-, Zn- and K-exchanged 

Y zeolites for the photoisomerization of NBD in liquid phase, and found LaY shows 

relatively high activity (Gu & Liu, 2008). They postulated that the heavy atom effect and 

Brönsted acid account for the result. 
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3. Photoisomerization of NBD over Ti-containing photocatalysts 

Among the photocatalysts studied, TiO2 is the most widely used material owing to its low-
cost, non-toxicity, chemical and biological inertness, and photostability. Previous literatures 
already hint that TiO2 can facilitate the photoisomerization of NBD. Although the activity of 
TiO2 is relatively low due to the low optical absorbance and high charge–hole recombination 
rate, many methods such as doping with metal and nonmetal atoms and preparation of 
highly dispersed Ti-O species have been established to overcome this problem. 

Recently, we focused on the photocatalytic isomerization of NBD using Ti-containing 

materials including metal-doped TiO2 (Pan et al., 2010; Zou et al., 2008a), Ti-containing 

MCM-41 molecule sieves (Zou et al., 2008b) and metal-incorporated Ti-MCM-41 (Zou et al., 

2010). These photocatalysts do show improved activity compared with pure TiO2, 

suggesting that the photocatalysts used in environmental photocatalysis can be applied in 

the photoisomerization. In the following sections, a mini review of our work will be given, 

with the aim to show a new and promising way for photoisomerization. 

3.1 Synthesis of materials and evaluation of activity
 

Three kinds of photocatalysts, including metal doped TiO2 (M-TiO2), Ti-substituted (Ti-

MCM-41) and Ti-grafted MCM-41(TiO2-MCM-41), and metal incorporated Ti-MCM-41 (M-

Ti-MCM-41) were studied. M-TiO2 materials were synthesized using sol-gel method with 

tetrabutyl titanate, VO(SO4), Fe(SO4)3, Cu(NO3)2, Cr(NO3)3, Ce(NO3)3 and ZnSO4 as the 

metal resources (Pan et al., 2010; Zou et al., 2008a). Ti-MCM-41 and M-Ti-MCM-41 materials 

were synthesized via hydrothermal method using cetyltrimethyl ammonium bromide and 

tetrathyorthosilicate as the structure director and Si resource, respectively (Zou et al., 2008b, 

2010), and TiO2-MCM-41 materials were prepared through chemical grafting (Zou et al., 

2008b). All the prepared materials were calcined at 500°C for 3 or 5 hours. The abbreviation 

of materials was suffixed with a symbol x in parentheses to describe the original molar 

Ti/M or Si/M ratio in starting synthetic mixtures. 

The photoisomerization reaction was conducted under UV irradiation in closed quartz 

reactor with magnetic stirring (Pan et al., 2010; Zou et al., 2008a, 2008b, 2010). For M-

TiO2(M=V, Fe, Cu, Ce and Cr), a quartz chamber was irradiated vertically by a 300 W 

high-pressure xenon lamp located on the upper position. The wavelength was limited in 

the range of 220-420 nm by an optical filter and dimethyl sulfoxide was used as the 

solvent. For M-TiO2(M=Zn) and Ti-contaning MCM-41 materials, a cylindrical quartz 

vessel was irradiated by a 400 W high pressure mercury lamp positioned inside the vessel. 

In this case the wavelength was not controlled and p-xylene was used as the solvent. The 

composition of the resulted mixture was determined by a gas chromatograph equipped 

with BP-1 capillary column and flame ionization detector. The rate constant k for each 

photocatalyst was calculated via kinetics fitting, assuming that the reaction obeys the 

first-order law. Since the reaction conditions for different type of photocatalysts are a little 

different, TiO2 was used as the baseline to compare the photocatalytic activity of all 

materials. Therefore, the reaction constant k of one material was divided by that of TiO2 

(k0) under identical reaction conditions, and the obtained relative reaction rate constant, 

i.e. k/k0, was used in this chapter. 

www.intechopen.com



 
Molecular Photochemistry – Various Aspects 

 

46

3.2 Photoisomerization of NBD over metal-doped TiO2: Effect of metal dopants 

TiO2 is widely used in photocatalytic reactions due to its low cost and chemical stability, but 
suffers from the fast recombination of photoinduced electron-hole pairs. Doping with metal 
ions is regarded as an effective method to improve the efficiency of TiO2 (Yang et al., 2007; 
Adán et al., 2007). So metal (Cu, Cr, Ce, V, Fe, Zn)-doped TiO2 was studied firstly for the 
photoisomerization of NBD. 

The structural parameters of prepared materials characterized using XRD, EDX, XPS and 
N2-adsorption are shown in Table 1. According to the bulk composition from EDX data and 
surface composition from XPS data, V, Fe and Ce are dispersed in the inner part of prepared 
materials whereas Cu, Cr and Zn ions are enriched on the particle surface. Specifically, only 
a small amount of Cu is introduced into the material. Generally, there are three possible 
dispersion modes for dopants, namely substitutional, interstitial and surface positions. The 
local structure of dopants ions can be deduced based on their ionic radii, that is, Fe and V 
ions with radii close to Ti ions in substitutional sites, large Ce ions in interstitial positions, 
whereas Cu ions with largest radii on the surface. The surface enrichment of relatively small 
Cr and Zn ions that have comparable radii with Ti ions is a little surprising because they 
could enter the lattice, but consistent with results reported by other researchers (Zhu et al., 
2010; Jing et al., 2006). The reason may be that these ions are originally inside the lattice but 
diffuse to the surface through oxygen vacancies during the calcination process, or the 
hydrolysis rate of these ions is much slower than that of Ti ions. 

 

Materials 
Grain size 

(nm) 

SBET 
(m2·g-1) 

Ti/M ratio 

EDX XPS 

TiO2 21.5 21.5 - - 
Cu-TiO2(15) 19.9 13.1 90.4 3.8 
Cr-TiO2(15) 14.7 40.9 20.0 3.0 
Ce-TiO2(15) 11.4 64.3 16. 9 19.8 
V-TiO2(15) 9.9 102.7 19.0 15.6 
Fe-TiO2(15) 7.0 120.6 18.5 19.8 
Zn-TiO2(100) 8.1 84.9 - 7.1 

Table 1. Structural characteristics of metal-doped TiO2  
(Pan et al., 2010; Zou et al., 2008a). 

When metal dopants are dispersed in the substitutional site, some Ti-O-M structures are 

expected to form, which will cause a shift in the binding energy of Ti species because the 

difference in Pauling electronegativity can induce electron transfer from Ti to M ions. As 

shown in Fig. 1, the XPS signal (binding energy) of Ti is shifted to higher values after doping 

with V and Fe, while for other doping the shift is not so obvious because the metals are not 

located in the substitutional sites with no, or only a few, M-O-Ti structures formed. 

Doping can restrain the growth of particle to some degree no mater what the doping mode 
is, but the mechanism may be different. Fe and Zn-doping produces considerably small 
particles, see Table 1 and Fig. 2. For the substitutional doping like Fe- and V-doping, 
dopants in the lattice can destroy the crystal structure and restrain its growth. For the 
surface deposition or interstitial mode, like Ce- and Zn-doping, dopants may prevent the 
direct contact of TiO2 crystallites and retard them agglomerating into big particle. 
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Fig. 1. Ti2p XPS spectra of metal-doped TiO2. Reprinted with permission from Pan, L.; Zou, 
J.-J; Zhang, X. & Wang, L. (2010), Industrial & Engineering Chemistry Research, Vol.49, No.18, 
pp. 8526-8531. Copyright @ 2010 American Chemical Society. 

 

Fig. 2. TEM images of (a) pure TiO2, (b) Fe-TiO2(15), (c) V-TiO2(15) and (d) Zn-TiO2(100).  
(a) & (d) reprinted with permission from Zou, J.-J.; Zhu, B.; Wang, L.; Zhang, X. & Mi, Z. 
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(2008), Journal of Molecular Catalysis A:Chemical, Vol.286, No.1-2, pp. 63-69. Copyright @ 2008 
Elsevier. (b) & (c) Reprinted with permission from Pan, L.; Zou, J.-J; Zhang, X. & Wang, L. 
(2010), Industrial & Engineering Chemistry Research, Vol.49, No.18, pp. 8526-8531. Copyright @ 
2010 American Chemical Society.  

The relative photocatalytic activity of doped TiO2 (k/k0) is also shown in Fig. 3. Except Cu, 

doping metal ions show positive effect on the photoisomerization of NBD, among which 

Zn-TiO2 and Fe-TiO2 are specifically active. The photoisomerization reaction is a complex 

process, and the physicochemical properties of photocatalyst such as grain size, type of 

dopant ions as well as their local structure are very important. Small particle is of course 

desired because it provides large active surface. It has been reported that the surface doping 

of Zn ions produces many surface OH groups that greatly enhance the intensity of surface 

photovoltage spectrum and photoluminescence and improve the photoactivity (Jing et al., 

2006). As shown in Fig. 4, the activity of NBD photoisomerization is also closely relative to 

the concentration of surface OH. 

 

Fig. 3. Activity of metal-doped TiO2 for the photoisomerization of norbornadiene (Pan et al., 
2010; Zou et al., 2008a). 

However, the role of surface OH seems invalid for the materials with substitutional doping. 

As shown in Fig. 5, the activity of Fe- and V-doped TiO2 and their lattice oxygen 

concentration, not the surface OH, change in identical manner, strongly suggesting there is 

an inherent correlation between the photoisomerization and lattice oxygen. It is still not 

clear why two doping modes induce contrary result, probably because the reactant molecule 

is adsorbed on different site that will be discussed in section 4. As to the role of 

substitutional dopants, it has been reported that metal ions in substitutional sites can 

improve the photoinduced charge transfer and separation (Wang et al., 2009). It is believed 

that this process is very likely to occur through the M-O-Ti structure in which the metal 

dopants mainly serve as charge trapping and transferring center. Taking Fe-TiO2 as 

example, the role of Fe is shown as follows: (1) Fe ions temporarily trap photoinduced 

charges in the neighboring Ti-O moiety: 
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4 2 3 3 4 2 2 4Ti O Fe O Ti Ti O Fe O Ti                   

4 2 3 3 4 2 4 2 3Ti O Fe O Ti Ti O Fe O Ti                   

(2) The trapped charges are transferred to sideward Ti-O species, resulting in separated 
charges: 

4 2 2 4 3 2 3 4Ti O Fe O Ti Ti O Fe O Ti                   

4 2 4 2 3 4 3 2 3Ti O Fe O Ti Ti O Fe O Ti                   

In this way, the charge induced in one Ti-O moiety is quickly transferred to another Ti-O 
moiety through the Fe-O-Ti structure, thus effectively separating the charge and retarding 
the recombination. 

 

Fig. 4. Relationship of activity for the photoisomerization of norbornadiene and the relative 
surface OH concentration of Zn-TiO2 (Zou et al., 2008a). OH, the content of surface OH; 
OH0, the OH content of pure TiO2. 
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Fig. 5. Relationship of activity for the photoisomerization of norbornadiene and the relative 
lattice oxygen concentration of (a) Fe-TiO2 and (b) V-TiO2 (Pan et al., 2010).  

3.3 Photoisomerization of NBD over Ti-containing MCM-41: Effect of Ti coordination 

MCM-41 has uniform hexagonal mesopores with large internal surface area, exhibiting great 
potential as the supporting materials of TiO2. It has been reported that incorporating Ti ions 
into framework or loading them on the wall of MCM-41 gives unique photocatalytic activity 
(Hu et al., 2003, 2006). So both Ti-incorporated and Ti-grafted MCM-41 materials were 
prepared for the photoisomerization of NBD. 
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Fig. 6. XRD patterns of Ti-MCM-41 and TiO2-MCM-41. Reprinted with permission from 
Zou, J.-J.; Zhang, M.-Y.; Zhu, B.; Wang, L.; Zhang, X. & Mi, Z. (2008), Catalysis Letters, 
Vol.124, No.12, pp. 139-145, Copyright @ 2008 Springer Netherlands. 
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Fig. 7. TEM images of (a) MCM-41, (b) TiO2-MCM-41 and (c) Ti-MCM-41(50). Reprinted 
with permission from Zou, J.-J.; Zhang, M.-Y.; Zhu, B.; Wang, L.; Zhang, X. & Mi, Z. (2008), 
Catalysis Letters, Vol.124, No.12, pp. 139-145, Copyright @ 2008 Springer Netherlands. 

Grafting TiO2 in the pore of MCM-41 does not influence the ordered hexagonal structure of 

support as its XRD patterns in the low-angle region are identical to MCM-41, see Fig. 6. An 

additional peak corresponding to the (101) reflex of anatase TiO2 is observed at 25.5° but the 

intensity is extremely weak, so TiO2 crystallites are highly dispersed in the pore of MCM-41. 

Incorporating Ti ions in the MCM-41 framework slightly impairs the structural integrity of 

MCM-41 but the ordered structure is well retained, shown by the weakened but obvious 

diffractive peaks. Also, the cell unit of Ti-MCM-41 is enlarged because the Ti-O bond 

distance is longer than the Si-O bond distance. TEM images in Fig. 7 further confirm the 

XRD result. No TiO2 nanoparticles are observed for TiO2-MCM-41 and its pore structure is 

identical to MCM-41, but some linear tubular pores of Ti-MCM-41 collapse into irregular 

pores. 

The nature and coordination of Ti4+ ions was deduced according to the UV-vis diffuse 

reflectance spectra shown in Fig. 8. The absorption peak at 220 nm is ascribed to tetra-

coordinated Ti whereas the peak at ~270 nm represents species in higher coordination 

environments (penta- or hexa-coordinated species). For Ti-MCM-41, most of the Ti species 

are dispersed in the framework (Ti-O-Si) when Ti content is low, but polymerized Ti 

species (Ti-O-Ti) present in case of higher Ti content. TiO2-MCM-41 contains highly 

dispersed quantum-size TiO2 nanodomains, see the blue-shifted absorption compared 

with bulk TiO2. 

The overall activity for the photoisomerization of NBD is Ti-MCM-41(30) > Ti-MCM-

41(50) > TiO2-MCM-41 > Ti-MCM-41(70) >TiO2, see Fig. 9a. Since the amount of Ti species 

is different in these materials, the activity based on TiO2 was also calculated to compare 

the inherent activity of different Ti species, with the order of Ti-MCM-41(50) ≈ Ti-MCM-

41(70) > Ti-MCM-41(30) > TiO2-MCM-41 > TiO2, see Fig.9b. Considering the local 

structure of Ti, it can be seen that framework Ti species are most active in the 

photoisomerization of NBD, polymerized species follows and bulk TiO2 has the lowest 

activity. 
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Fig. 8. UV-Vis diffuse reflectance spectra of Ti-MCM-41 and TiO2-MCM-41. Reprinted with 
permission from Zou, J.-J.; Zhang, M.-Y.; Zhu, B.; Wang, L.; Zhang, X. & Mi, Z. (2008), 
Catalysis Letters, Vol.124, No.12, pp. 139-145, Copyright @ 2008 Springer Netherlands. 

 

Fig. 9. Activity of Ti-MCM-41 and TiO2-MCM-41 for the photoisomerization of 
norbornadiene (Zou et al., 2008b). 
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3.4 Photoisomerization of NBD over M-Ti-MCM-41: Combination of metal doping and 
framework Ti species 

Transition-metal-incorporated MCM-41 generally shows high photocatalytic activity due to 
the high dispersion of photoactive sites and effective separation of electrons and holes (Hu 
et al., 2007; Yamashita et al., 2001; Matsuoka & Ampo, 2003; Davydov et al., 2001). Since Ti-
MCM-41 produces highly active photocatalysts for the photoisomerization of NBD, it is 
expected that introducing second transition metal ion into Ti-MCM-41 may further enhance 
the activity. So series of transition-metal-incorporated (V, Fe and Cr) Ti-MCM-41 were 
synthesized for the photoisomerization of NBD, with Si/Ti ratio of 30. 

According to the UV-vis spectra in Fig. 10, V and Fe ions are well dispersed in the materials 
whereas the dispersion of Cr ions is very poor. For V-Ti-MCM-41(150), V ions are highly 
dispersed in MCM-41 framework at atomic level with tetrahedral coordination, with some 
species in 6-fold (absorption around 370 nm) and higher coordination or even polymerized 
environments (absorption in >400 nm region) formed with the increase of V content. This 
tendency is also observed for Fe-Ti-MCM-41. However, for Cr-Ti-MCM-41, the absorption at  
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Fig. 10. UV-Vis diffuse reflectance spectra of M(V, Fe and Cr)-Ti-MCM-41 (a: Si/M=10, b: 
Si/M=33, c: Si/M=75, d: Si/M=100, e: Si/M=150, f: Ti-MCM-41). Reprinted with permission 
from Zou, J.-J.; Liu, Y.; Pan, L.; Wang, L. & Zhang, X. (2010), Applied Catalysis B: 
Environmental, Vol.95, No.3-4, pp. 439-445. Copyright @ 2010 Elsevier. 
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470 nm and 610 nm ascribed to poly- and bulk Cr2O3 is very intensive. The local structure of 
Cr ions are also testified by the IR spectra in Fig. 11. All Cr-Ti-MCM-41 samples show a 
shoulder band at 880-900 cm-1 assigned to Cr6+ species, according to the literature (Awate et 
al., 2005; Zhu et al., 1999). Specifically, Cr-Ti-MCM-41(10) has two bands at 630 and 570 cm-1 
belonging to extra-framework Cr2O3 oxides. 
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Fig. 11. IR spectra of Cr-Ti-MCM-41 (a: Si/M=10, b: Si/M=33, c: Si/M=75, d: Si/M=100, e: 
Si/M=150, f: Ti-MCM-41). Reprinted with permission from Zou, J.-J.; Liu, Y.; Pan, L.;  
Wang, L. & Zhang, X. (2010), Applied Catalysis B: Environmental, Vol.95, No.3-4, pp. 439-445. 
Copyright @ 2010 Elsevier. 

The well dispersed V and Fe species show no obvious influence on the ordered structure of 

prepared materials, but the polymerized Cr species obviously impose negative effect on the 

structure, see Fig. 12. An extreme is observed for Cr-Ti-MCM-41(10), in which the 

characteristic diffractive peaks of ordered structure completely disappear, and a peak of 

bulk Cr2O3 appears. In TEM image, this material no longer possess hexagonal mesoporous 

structure, but agglomerate of many crystallites. 
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Fig. 12. XRD patterns of (a) V-Ti-MCM-41 and (b) Cr-Ti-MCM-41, and (c) TEM image of Cr-
Ti-MCM-41(10). Reprinted with permission from Zou, J.-J.; Liu, Y.; Pan, L.; Wang, L. & 
Zhang, X. (2010), Applied Catalysis B: Environmental, Vol.95, No.3-4, pp. 439-445. Copyright @ 
2010 Elsevier. 

All the materials exhibit higher activity than Ti-MCM-41, see Fig. 13, indicating that 
introducing second metal is beneficial to the photoisomerization. Among the three metals, 
V-incorporation is most effective, Fe-incorporation follows, and Cr- incorporation is the 
least. The photocatalytic activity has nothing to do with the concentration of second 
transition metal ions, and the improvement in activity should be related to their state of 
dispersion and local structure. It has been reported that tetrahedrally coordinated M-oxide 
moieties dispersed in mesoporous materials can be easily excited under UV and/or visible-
light irradiation to form corresponding charge-transfer excited states (Yamashita et al., 2001; 
Matsuoka & Anpo, 2003): 

( 1)2 *[ ] [ ]
hv nnM O M O       (M=V, Cr, Fe) 

Then M species can donate an electron to surrounding Ti-O moieties and O- can scavenge an 
electron from surrounding Ti-O moieties, inducing charge separation in Ti-O species 
(Davydov et al., 2001). Therefore, two different excitation mechanisms exist in M-Ti-MCM-
41. One is direct excitation of Ti-O moieties by UV irradiation, and the other is indirect 

excitation via charge transition from ( 1) *[ ]nM O    species. The second process should be 

responsible for the high photocatalytic activity of M-Ti-MCM-41 because of its high 
efficiency in charge formation and separation. 

V-Ti-MCM-41(150) shows specifically high activity because majority of V ions are highly 
dispersed in 4-fold coordination, which brings up highly efficient excitation of Ti-O species. 
In addition, the well retained ordered structure and high surface area can enhance the 
adsorption of NBD molecules and provide more active sites. With the increase of V content, 
the activity is decreased because some 4-fold ions are transformed into undesirable highly-
coordinated species and the damaged structure and small surface area may suppress the 
adsorption of reactants. The low activity of Cr-Ti-MCM-41 is due to poorly dispersed 
chromium ions and dramatically destroyed textural structure. 

c
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Fig. 13. Activity of M(V, Fe and Cr)-Ti-MCM-41 for the photoisomerization of 
norbornadiene (Zou et al., 2010). 

Since some photocatalysts show absorption in visible-light region, one may wonder 

whether they can catalyze the isomerization under visible-light irradiation. However, 

there is no any observable conversion when the experiment was conducted using visible 

irradiation (>420 nm). This is different from the case of H2 generation and organic 

degradation, where Cr-Ti-MCM-41 is reported to exhibit visible-light activity (Yamashita 

et al., 2001; Davydov et al., 2001; Chen & Mao, 2007). These results suggest that the 

reaction mechanism between the photoisomerization and other photocatalytic reactions 

may be very different. 

4. Mechanism for NBD photoisomerization 

Photoisomerization of NBD in the presence of sensitizers generally proceeds via triplet state 

mechanism (Bren’ et al., 1991; Dubonosov et al., 2002), see Scheme 4. Under irradiation, the 

sensitizer is excited to triplet state (3S) via single state (1S), that subsequently transfers 

energy to NBD molecules and excites it to triplet state (3NBD). Then 3NBD undergoes 

adiabatic isomerization and forms triplet state of QC (3QC) that rapidly decays to its ground 

state and produces QC. 
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Scheme 4. Triplet sensitized photoisomerization of norbornadiene. 

However, with the presence of Ti-containing photocatalyst, this mechanism is not suitable 

because the vertical triplet energy transfer from Ti-oxide species to NBD is very difficult. 

NBD molecules have to be firstly positively charged by photoinduced holes, but the free 

radical ion isomerization mechanism is ruled out because the energy of free NBD·+ is 

significantly lower than free QC·+. In fact, the transformation of QC to NBD is through the 

QC·+→NBD·+ free radical route (Ikezawa & Kutal, 1987). So the photoisomerization of NBD 

over semiconductors should be an adsorption-photoexcited process, which is very likely 

through the exciplex (charge-transfer intermediate), see Scheme 5. First, NBD molecule is 

adsorbed on the photoexcited Ti-oxides. Then surface-trapped hole is transferred to 

adsorbed molecule and a complex with NBD positively charged is formed. Subsequently the 

complex is transformed to structure with QC skeleton. Finally, QC is released into the liquid 

phase and the charge is recombined through reverse electron transfer. In this case the 

adsorption and charge transfer are two critical steps. The adsorptive site on different Ti-

containing materials may be different. For Zn-TiO2, surface OH very likely serves as the site 

because it plays an important role in the reaction, and the excited complex may 

be 2TiO OH NBD   . For Fe-TiO2 and V-TiO2, however, the lattice oxygen may work as 

the adsorbing site with the complex of 4 2 4 2[ ]Ti O Ti O NBD          . Any charge 

recombination process can deactivate the complex, so the function of dopants and 

framework Ti species is to retard the undesired recombination. 
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Scheme 5. Photoisomerization of norbornadiene via adsorption-photoexcitation over 
semiconductor. 

5. Summary 

The transform of norbornadiene is typical photoisomerization and of great importance for 
both solar energy harvesting and aerospace fuel synthesis. Our recent work shows that the 
heterogeneous Ti-containing materials show activity comparable to homogeneous 
sensitizers, along with many additional advantages in manipulation and scale-up. Ti-
containing photocatalysts are extensively used in environmental and energy science and 
show many exciting and rapid progress, which will undoubtedly benefit the 
photoisomerization of alkenes like NBD. Specially, surface modulation may be very helpful 
because it can tune the adsorption and even charge transfer between reactant and catalyst. 
Even though, the photoisomerization shows some unique characteristics and further work is 
necessary to understand the mechanism and substantively improve the efficiency. It is 
expected that the heterogeneous photocatalysis may provide a new and promising pathway 
for photoisomerization of alkenes.  
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