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1. Introduction 

The most common 2D geometrical arrangements of photonic crystals (PhC) are square and 
triangular (hexagonal) lattices as shown in Fig.1. Assuming that a PhC structure is expanded 
to infinity along the x-axis, the problem belongs to a so-called vector 2D class (Gwarek et al., 
1993). However, it may frequently be simplified even further to a scalar 2D class, restricting 
a wave vector k to a PhC plane (yz-plane in Fig.1). In such a case, any electromagnetic field 
propagating in the PhC plane can be decomposed into two orthogonal modes, usually 
denoted as transverse magnetic (TM) and transverse electric (TE) with respect to the x-axis. 

Although performance of PhC-based devices relies, in most cases, on the confinement of 
light within a photonic bandgap (PBG), photonic crystals also exhibit remarkable dispersion 
properties in their transmission bands, thus opening the perspective for new optical 
functionalities. 

A lot of research activities have been undertaken in the development of planar PhC passive 
optical devices, like waveguides (Loncar et al., 2000; Chow et al., 2001), filters (Ren et al., 
2006; Fan et al., 1998), couplers (Yamamoto et al., 2005; Tanaka et al., 2005), power splitters 
(Park et al., 2004; Liu et al., 2004) or, recently, active devices for laser beam generation 
operating as a surface-emitting microcavity laser (Srinivasan et al., 2004), a photonic band-
edge laser (Vecchi et al., 2007) or an edge-emitting laser (Shih et al., 2006; Lu et al., 2009). 
However, PhC devices in practical realizations are of a finite thickness (see Fig.2), thus, 
limiting applicability of the approximate 2D modelling approach to those scenarios where 
the PhC’s thickness is large enough with respect to wavelength. Otherwise, the problem 
becomes 3D and a complete full-wave EM approach is essential. 

Similarly to 2D waveguiding slabs, optical confinement of light in thin membranes depends 
primarily on a contrast between the membrane’s and cladding’s refractive indices. Most of 
all, a propagating mode has to be located beyond a light cone of the cladding, if energy 
leakage wants to be suppressed. Secondly, the mode has to be confined within a channel 
processed between the surrounding photonic crystal boundaries. The photonic bandgap 
exists only for those modes that are totally internally reflected at the interface between the 
channel and the photonic crystal. Furthermore, if the membrane is deposited on a low-index 
dielectric film, instead of being symmetrically surrounded with air, additional complications 
of a design process are introduced. 
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Fig. 1. The definition of square (left) and triangular (right) air-hole lattices. 

         

Fig. 2. A perspective view of dielectric membranes with square (left) and triangular (right) 
PhC air-hole lattices. 

In the next Section, a brief overview of the developments of mutli-channel laser generation 
techniques is given, especially in the context of so-called supermode multi-channel 
propagation. 

2. State-of-the-art in multi-channel laser generation techniques 

A phase-locked operation of multi-channel waveguide devices supporting propagation of 

lateral modes (also known as supermodes) was studied mostly in 80’s. The main goal of 

theoretical and experimental research was to achieve higher power density of the coherent 

laser beams generated in semiconductors. Phased array lasers, consisting of N single-mode 

waveguides, can guide, in total, N array modes. In practice, the most likely excited mode is 

of the highest order (Yariv, 1997). Consequently, relatively broad far-field patterns as well as 

broad spectral linewidths are obtained. To solve or at least alleviate that disadvantageous 

property, it is essential to distinguish appropriate supermodes. 

Fig.3 shows near-field patterns of five supermodes supported by index-guided arrays 

consisting of five identical and non-identical channels. The supermode patterns were 

calculated with a numerical solver of Maxwell’s equations (Kapon et al., 1984a). In 

particular, the excitation of a fundamental supermode results in a single-lobe radiation 

beam aligned with the array channels. However, as it has been shown in Fig.3a, in uniform 

arrays with identical channels, intensity patterns of the fundamental and the highest order 

supermodes are similar to each other, so their discrimination becomes difficult. Moreover, 

as it has been shown in (Kapon et al., 1984a), since inter-channel regions are usually lossy, 

the highest order supermode, with a two-lobe far field pattern, is often favoured over the 

other modes. Subsequently, variation in the channels’ width (known as chirped arrays) 
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results in significantly different near field envelope patterns of the fundamental and higher-

order supermodes, in contrast to the case of uniform arrays (Kapon et al., 1984a). In such 

arrays, higher order supermodes can be suppressed by employing a proper gain 

distribution.   
 

a) b) c) 

Fig. 3. Near-field patterns of the supermodes in a five-element a) uniform array b) inverted-
V chirped array, c) linearly chirped array (Kapon et al., 1984a). 

Next, in an inverted-V chirped array (Fig.3b), the power of the fundamental supermode is 

concentrated in central channels, whereas the higher order supermodes are more localized 

in the outermost channels. Since gain in the active region is larger when the laser channels 

are wider, the fundamental supermode is expected to have a higher modal gain (near 

threshold) and, in consequence, is more likely to oscillate (Kapon et al., 1984b). 

In (Kapon et al., 1986), a buried ridge array has been proposed. In such arrays, a small 

refractive index contrast between the channels and inter-channel regions is applied. That 

soft index profile ensures effective coupling between the adjacent array laser channels via 

their evanescent optical fields. Since the channels in those arrays are defined by a built-in 

distribution of the refractive index, it is possible to achieve a uniform gain distribution 

across the array, while maintaining the channel definition. Such an approach makes the 

buried ridge arrays different from the gain guided arrays, in which inter-channel regions are 

inherently more lossy. Moreover, buried ridge arrays operate mainly with the fundamental 

supermode, thus, producing a single-lobe radiation beam. 
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The first analytical interpretation of supermodes behaviour in the phased array lasers was 
proposed in (Scifres et al., 1979). Experimental data was interpreted by considering a 
diffraction pattern of a structure with equally-spaced slits corresponding to individual laser 
array elements. Such an approach is usually known as a simple diffraction theory. Although 
the simple diffraction theory has been proved useful to interpret some experimental results 
(Scifres et al., 1979; AcMey & Engelmann, 1981; van der Ziel et al., 1984), it provides no 
means to describe the allowed oscillating modes in the array of coupled emitters. 

In the early 70’s, an alternative method, known as a coupled mode theory, was intensively 
investigated (Yariv, 1973; Yariv & Taylor, 1981; Kogelnik, 1979). It has been successfully 
applied to the modelling and analysis of various guided-wave optoelectronic and fibre 
optical devices, such as optical directional couplers (Taylor, 1973; Kogelnik & Schmidt, 
1976), optical fibres (Digonnet & Shaw, 1982; Zhang & Garmire, 1987), phase-locked laser 
arrays (Kapon et al., 1984c; Mukai et al., 1984; Hardy et al., 1988), distributed feedback lasers 
(Kogelnik & Shank, 1972) and distributed Bragg reflectors (Schmidt et al., 1974). 

One of major assumptions made in the conventional coupled mode theory is that the modes 
of uncoupled systems are orthogonal to each other. In coupled systems, however, one often 
chooses the modes of isolated systems as the basis for the mode expansion and these modes 
may not be orthogonal. Therefore, the orthogonal coupled mode theory (OCMT) is not 
suitable for the description of the mode-coupling process in that case. Non-orthogonality of 
modes in optical couplers, due to crosstalk between the waveguide modes, was first 
recognized in (Chen & Wang, 1984). Later on, several formulations of the non-orthogonal 
coupled mode theory (NCMT) were developed by several authors (Hardy & Streifer, 1985; 
Chuang, 1987a; Chuang, 1987b; Chuang, 1987c). It has been shown that NCMT yields more 
accurate dispersion characteristics and field patterns for the modes in the coupled 
waveguides. Better accuracy is even more essential to the modelling of coupling between 
non-identical waveguides. It is evident for weak coupling, though the new formulation 
extends the applicability of the coupled mode theory to geometries with more strongly 
coupled waveguides. However, NCMT becomes inaccurate when considering very strongly 
coupled waveguide modes (Hardy & Streifer, 1985). 

To the best of authors’ knowledge, edge-emitting multi-channel membrane lasers have not 
been manufactured so far, although single-channel membrane lasers processed on a GaAs 
photonic crystal membrane were already presented (Yang, et al., 2005; Yang, et al., 2007; Lu, 
et al. 2009). One of the major reasons lies in technological challenges in achieving acceptable 
repeatability of the photonic crystal structure manufacturing process (Massaro, et al., 2008). 
However, with the advent of new technology nodes those challenges will likely be 
overcome or at least substantially alleviated, opening a wide range of applications to the 
methodology addressed below. 

In this Chapter, a complete design cycle of a new type of phased array laser structures 
processed in photonic crystal membranes is presented. Due to a very strong coupling 
between the adjacent channels in the array, a non-orthogonal coupled mode theory was 
applied in order to maintain the rigidity of the analysis. 

3. Numerical modelling of optical channels in photonic crystal membranes 

A complete electromagnetic design cycle of single- and multi-channel optical propagation in 

PhC membranes is presented in this Section, together with the computational methods and 
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tools applied. First, dispersive properties of an infinitely large PhC membrane with no 

defects are investigated to exemplify general rules for the photonic bandgap (PBG) 

generation as a function of PhC membrane geometry and incident light wavelength. Once a 

PBG dispersion diagram is achieved, a defect channel is processed in the PhC membrane 

and dispersive properties of such an optical waveguide are considered. For the purpose of 

this Chapter, propagation of transverse–electric (TE) modes in defect PhC membrane 

channels based on the square lattice type is studied only. However, the introduced 

methodology may be easily extended to other lattice types with either TE or TM 

polarisation. The obtained PBG diagrams will help detecting the supermodes within a 

photonic bandgap. Eventually, electric field patterns of those modes are computed to assess 

their applicability to the laser beam generation. As it is shown in Section 4.3, those field 

distributions are useful to calculate laser characteristics of the single- and multi-channel 

photonic crystal membrane lasers. 

3.1 Bandgaps in photonic crystal membranes 

Two common lattice types processed in a photonic crystal membrane are investigated, 

namely square and triangular (see Fig.4). The lattices are cut with air holes in an indium 

gallium arsenide phosphide (InGaAsP) layer with a refractive index of n = 3.4. At this stage, 

the goal is to specify design rules for the photonic bandgap generation as a function of the 

most critical parameters of those structures, that is, a membrane’s thickness d, a lattice 

constant a and an air holes’ radius r. 

Numerical computations are performed using a full-wave electromagnetic approach with a 

finite-difference time-domain (FDTD) method implemented in a QuickWave-3D simulator 

(Taflove & Hagness, 2005; QWED). Since the structure is periodic in two dimensions, the 

computation with FDTD is enhanced with the Floquet’s theorem (Collin, 1960), also known 

as the Bloch’s one, which allows us to reduce a computational domain to a single period of 

the lattice (Salski, 2010), as exemplified in Fig.4. Considering periodicity along the z-axis, the 

following periodic boundary conditions (PBCs), derived from the Floquet’s theorem, are 

enforced at periodic faces of the structure: 

    , , , , , , jE x y z L t E x y z t e 
  

 
 (1) 

    , , , , , , jH x y z t H x y z L t e 
  

 
 (2) 

where L is the period of the structure along the z-axis,  denotes the components transverse 

to periodicity (in this case x- and y- components), and  is a fundamental Floquet phase shift 
per period L understood as a user-defined parameter. 

As it has been shown in (Celuch-Marcysiak & Gwarek, 1995; Salski, 2010), incorporation of 
the Floquet’s theorem into FDTD schemes results in a complex notation of time-domain 
electromagnetic fields with the real and imaginary FDTD grids computed simultaneously at 
the same structure’s mesh and coupled via PBCs in each iteration cycle. The method is 
known as Complex-Looped FDTD (CL-FDTD) and is implemented in the QuickWave-3D 
simulator (QWED). Additionally, due to conformal meshing implemented in QuickWave-
3D (Gwarek, 1985), curvature of the air holes, as shown in Fig.4, is accurately represented on 
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the FDTD mesh with no deteriorating effect on memory storage and computing time. A 
vertical cross-section of a unit membrane lattice cell sketched in Fig.4 (right) indicates that 
the structure is situated in air which, in order to reduce the computational volume, is 
truncated with absorbing boundary conditions, usually known as Mur superabsorption 
(Mei et al., 1992). 

                 

Fig. 4. A horizontal cross-section view of FDTD models of a unit cell of square (left) and 
triangular (centre) air-hole lattices and a vertical cross-section (right) with absorbing 
boundary conditions truncating the air regions below and above the membrane. 

In each simulation run, for a particular set of Floquet’s phase shifts per y- and z- periods, a 
point excitation located somewhere inside a unit cell is driven with a wideband pulse (e.g. a 
Dirac’s delta), injecting energy into the structure. As the simulation continues, the Fourier 
transform is iteratively calculated until a convergent state is achieved. Fig.5 shows an 
exemplary spectrum of an injected electric current for the lattice shown in Fig.4 (left). 
Resonances indicate the eigenvalues (frequencies) of the detected modes satisfying Floquet’s 
phase shifts imposed by periodic boundary conditions. 

 

Fig. 5. The spectrum of an electric current injected into a unit cell of a square PhC membrane 
as shown in Fig.4 (left) with the imposed Floquet’s phase shifts along y- and z-axis               

y = z = 0 radians (n = 3.4, r/a = 0.4, d/a = 0.4). 
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Fig. 6. A TE mode photonic bandgap diagram for an air-hole square lattice cut in                  
an InGaAsP membrane (n = 3.4, r/a = 0.4, d/a = 0.4). 

Owing to the wideband spectral properties of the CL-FDTD method, a single simulation 
provides information about all the modal frequencies within the spectrum of our interest 
satisfying the imposed Floquet’s phase shifts. Thus, the simulator has to be invoked as many 
times as the number of wave vector points chosen to collect a PBG diagram along a whole 
contour of an irreducible Brillouin zone (Salski, 2010). In this case, a single simulation of the 
model consisting of 18 400 FDTD cells (ca. 4MB RAM) takes 11 seconds on Intel Core i7 CPU 
950 with the speed of 1785 iter/sec. An FDTD cell size is set to a/20, leading to at least 40 
FDTD cells per wavelength in free space and ca. 12 in the membrane. Calculation of the 
whole PBG diagram shown in Fig.6 with 55 wave vector points takes, in total, ca. 55 x 11  
sec = 10 minutes. 

In the case of an air-hole square lattice cut in an InGaAsP membrane, the PBG diagram of 
which is shown in Fig.6, an 8.8% wide indirect X-M TE bandgap for the normalised 

frequency a/ = 0.348 … 0.380 is found. Although it is not exemplified in Fig.6, a TM 
bandgap is not present in that spectrum range, what may be considered as a potential 
disadvantage in applications when the precise control of beam propagation is necessary. It 
can be solved using a triangular lattice, where both TE and TM bandgaps may coincide 
within the same spectrum range. However, this issue extends beyond the scope of the 
Chapter and is not considered here. 

Consider now the impact of geometrical settings on a TE bandgap in the investigated square 
PhC membrane. Fig.7 shows the modal dispersion as a function of the membrane’s thickness 
d/a. It can be seen that, the TE bandgap decreases with the increasing membrane’s thickness 
d/a, while covering the spectrum width of 8.8%, 9.2% and 10.4% for d/a = 0.4, 0.5 and 0.6, 
respectively. It shows that the membrane’s thickness d/a has a relatively minor impact on the 
photonic bandgap width. Next, Fig.8 presents the computation results for a variable air-
holes’ radius r/a, and it is evident that the radius, in contrast to the membrane’s thickness, 
has a substantial impact on the bandgap width, which reaches zero below ca. r/a = 0.25. 
Later in this paper, those PhC structures are applied for single- and multi-channel 
propagation of optical pulses. 
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Fig. 7. TE mode photonic bandgap diagrams for air-hole square lattices cut in an InGaAsP 
membrane in function of a membrane’s thickness d/a (n = 3.4, r/a = 0.4). 

 

Fig. 8. TE mode photonic bandgap diagrams for air-hole square lattices cut in an InGaAsP 
membrane in function of an air-holes’ radius r/a (n = 3.4, d/a = 0.4). 

Similar computations were carried out for a membrane with a triangular air-hole lattice. 

First of all, as it may be inferred from Fig.9, a direct TE bandgap is achieved at a  critical 
point. Secondly, the achieved TE bandgap spectra are much wider when compared to their 
counterparts computed for the square lattice. Fig.9 shows that the spectrum width amounts 
to 40.7%, 42.6% and 43.8% for d/a = 0.4, 0.5 and 0.6, respectively. Next, Fig.10 depicts the 
impact of the air-holes’ radius r/a on the TE bandgap spectrum width, which amounts to 
16.6%, 40.7% and 36.9% for r/a = 0.3, 0.35 and 0.4, respectively. The simulations show that if 
a narrow bandgap is favourable in a considered application, the square lattice is a better 
option, while the triangular one allows creation of a wider bandgap. 
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Fig. 9. TE mode photonic bandgap diagrams for air-hole triangular lattices cut in     
an InGaAsP membrane in function of a membrane’s thickness d/a (n = 3.4, r/a = 0.35). 

 

Fig. 10. TE mode photonic bandgap diagrams for air-hole triangular lattices cut in     
an InGaAsP membrane in function of an air-holes’ radius r/a (n = 3.4, d/a = 0.4). 

Concluding, it may be noticed from the investigation given in this Section and from the 
literature as well, that two-dimensional air-hole photonic crystals processed in thin 
dielectric membranes exhibit the following properties: 

- PBG for TE modes shifts up in frequency and broadens with the increasing air-holes’ 
radius r/a for both square and triangular air-hole lattices, 

- PBG for TE modes shifts up in frequency with the increasing membrane’s thickness d/a 
with no meaningful influence on its bandwidth for both square and triangular air-hole 
lattices, 

- a PBG bandwidth for TE modes is much wider when a triangular air-hole lattice is 
used, 
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- PBG cannot be created for TM modes in a two-dimensional square air-hole photonic 
crystal processed in a dielectric membrane, while it is feasible in a triangular one when 
the membrane is thick enough (Joannopoulos et al., 2008). 

3.2 Bandgaps in defect channels processed in photonic crystal membranes 

Spectral properties of TE modes propagating in defect channels, as exemplified in Fig.11, 
processed in PhC membranes are investigated below. PBG diagrams are computed with 
the aid of the QuickWave-3D electromagnetic FDTD simulator (QWED), in the same way 
as in the case of non-defect PhC membranes as shown in Fig.4. This time, however, an 
FDTD model consists of a single PhC row, as marked with a red dashed line in Fig.11. 
Since it is assumed that the waveguide is infinitely long, the Floquet’s periodic boundary 
conditions are enforced only along the channel’s axis, while lateral dimensions are 
truncated with the absorbing boundary conditions (Mei, 1992). PBG diagrams for the 

square lattice channels are computed for phase shifts within a range designated by  and 
X critical points of the first irreducible Brillouin zone of the corresponding non-defect 
PhC membranes. 

Fig.12 depicts the modes computed for a single square channel in an air-hole square lattice 

cut in an InGaAsP membrane (n = 3.4, r/a = 0.4, d/a = 0.4, b/a = 0.3). Black curves indicate the 

propagating modes with one distinguished by a green colour, while the red curves depict 

the modes of the non-defect PhC membrane surrounding the channel. It can be seen that a 

single defect mode is achieved (green) within a photonic bandgap (red semi-transparent 

zone) of the surrounding PhC. The mode has a uniquely defined phase constant within the 

a/ = 0.356… 0.369 spectrum range, that is 3.6% wide, although a light cone additionally 

limits the allowed spectrum range to a/ = 0.356… 0.365 (2.5% wide). Since single-mode 

propagation is achievable in that spectral range, it may be useful to design edge-emitting 

lasers based on 2D photonic crystal membranes. 

             

Fig. 11. The definition of square single- (left) and dual-channel (right) air-hole lattices with 
regions chosen for an FDTD simulation (see red dashed line). 

A single simulation of a model consisting of 220 320 FDTD cells (ca. 26MB RAM) takes 140 
seconds on Intel Core i7 CPU 950 with the speed of 220 iter/sec. An FDTD cell size is set to 
a/20, leading to at least 40 FDTD cells per wavelength in free space and ca. 12 in the 

membrane. Thus, calculation of the whole PBG diagram with the step of /10 takes about 19 
x 140 sec = 45 minutes. 
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Fig. 12. A TE mode photonic bandgap diagram for a single-channel in an air-hole square 
lattice cut in an InGaAsP membrane (n = 3.4, r/a = 0.4, d/a = 0.4, b/a = 0.3). The light cone is 
shown with a blue semi-transparent colour. 

Fig.13 shows a PBG diagram for TE polarisation computed for a square dual-channel (n = 
3.4, r/a = 0.4, d/a = 0.6, b/a = 0.3). Two supermodes are distinguished with blue and green 
colours. However, only the 1st order supermode (green) has a uniquely defined phase 
constant within a photonic bandgap (red semi-transparent zone), additionally reduced by a 

light cone to the a/ = 0.337… 0.342 spectrum range (1.5% wide). Comparing the results 
shown in Fig.14 with those in Fig.13, it can be seen that an increase in the channel’s width 
b/a from 0.3 to 0.4 results in a decrease of the supermode’s frequency. Most of the 1st order 
supermode’s unique phase constant range shown in Fig.14 is within the photonic bandgap 

(red semi-transparent zone). Unfortunately, the light cone limits the choice to the a/ = 
0.318… 0.323 spectrum range (1.5% wide). In this case, however, the allowed spectrum is 
more distant from the 2nd order supermode (blue), reducing the risk of its unintended 
oscillation. On the other hand, excitation of the modes in the photonic crystal surrounding 
the channel is more likely to happen. Concluding, it can be seen that an appropriate 
adjustment of the light cone, photonic bandgap and channel’s width gives a lot of 
possibilities to modify the allowed supermode’s spectrum range (Lesniewska-Matys, 2011). 

In the next Section, electric field distributions of a few exemplary supermodes obtained in 
photonic crystal membrane channels are given. 

3.3 Electromagnetic field distribution in photonic crystal membrane channels 

The calculation of laser characteristics of above-threshold generation in the considered PhC 

membrane channels requires quantitative knowledge of a field distribution of an 

undisturbed travelling wave propagating along the channel at one of selected modes (see 

Section 4.3). Therefore, envelopes of electric field components within a unit row of the 

photonic crystal waveguides have to be computed. For that purpose, an FDTD 

computational model as shown in Fig.15 is used to generate a travelling wave in the 

channel(s), which may be then integrated in time to obtain the envelopes. The photonic 

crystal is equipped on the left with an additional input section, where an appropriate mode  
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Fig. 13. A TE mode photonic bandgap diagram for a dual-channel in an air-hole square 
lattice cut in an InGaAsP membrane (n = 3.4, r/a = 0.4, d/a = 0.6, b/a = 0.3). The light cone is 
shown with a blue semi-transparent colour. 

 

Fig. 14. A TE mode photonic bandgap diagram for a dual-channel in an air-hole square 
lattice cut in an InGaAsP membrane (n = 3.4, r/a = 0.4, d/a = 0.6, b/a = 0.4). The light cone is 
shown with a blue semi-transparent colour. 

is excited using a mode template generation technique (Celuch-Marcysiak et al., 1996). The 
end of the waveguide on the right is truncated with a perfectly matched layer (PML) 
(Berenger, 1994) to avoid any reflections that would disturb the travelling wave. 

  

Fig. 15. The view of an FDTD model of a photonic crystal waveguide. 
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Fig. 16. Vector views of an instantaneous electric field for a/ = 0.356 (left) and for a/ = 0.321 
(right) for the single-channel (left) and dual-channel (right) waveguides, the PBG diagrams 
of which are shown in Fig.12 and Fig.14, respectively. 

For instance, Fig.16 shows the distribution of an instantaneous electric field vector in the 

single-channel waveguide for a/ = 0.356. It can be seen that the field is mostly concentrated 
within the channel near the hole and has its minimum in the middle between the rows, 
where the longitudinal electric component dominates over the transverse one. Similarly, 
Fig.17 presents the distribution of an instantaneous electric field vector in the dual-channel 

waveguide for a/ = 0.321. This time, it is crucial to determine whether the fields in both 
channels oscillate in-phase or not. A thorough look onto the picture reveals that vectors in 
the adjacent channels have the same direction prompting the conclusion that both modes 
creating the supermode are in-phase polarised. Thus, the gain of a far-field radiation pattern 
increases leading to higher laser beam intensity. 

Instantaneous electric field distributions like those shown in Fig.16 are, afterwards, 
integrated in time and in a whole volume of a single row of a channel. As it is shown in the 
subsequent Section, those envelopes are used to compute gain characteristics of phased 
array lasers based on photonic crystal membranes. 

4. Supermode laser generation in photonic crystal membranes 

4.1 The model of an effective planar waveguide 

Taking advantage of the already computed PBG diagrams of the photonic crystal 
membranes with one and two waveguide channels (see Section 3), the phase constant of the 
supermodes may be easily determined. That knowledge is essential to build an equivalent 
effective waveguide model, which enables an approximate analytical representation of a 
field distribution of the guided modes in passive structures (Lesniewska-Matys, 2011). As it 
can be seen in Fig.17, in the proposed model, a photonic crystal waveguide is replaced with 
a two dimensional planar one with the same membrane’s thickness but the channel’s width 
adjusted so as to obtain the same phase constant. 
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Refractive indices in the planar equivalent structure are chosen in the following way: the 
refractive index of a waveguide core (n1 in Fig.17b) is the same as in the photonic crystal 
structure, while n4 and n5 are equal to the value of the material filling the holes in the 
photonic crystal structure (air in the examples considered in this Chapter). 

 

Fig. 17. A perspective view of a) a single-channel in a square-PhC membrane and b) an 
effective planar waveguide equivalent. 

Next, to evaluate the field distribution in the already defined effective planar waveguide, a 

method proposed in (Marcuse, 1974) is applied. Those analytically derived waveguide 

modes are used, afterwards, to describe the operation of laser modes in such effective planar 

waveguides. Subsequently, the field distribution in a multichannel structure with the 

propagating supermodes is obtained using a non-orthogonal (strongly) coupled mode 

theory as proposed in (Chuang, 1987a; Chuang, 1987b; Chuang, 1987c). The overlapping 

integrals between the modes and their coupling coefficients in planar dual-channel 

waveguides are derived using formulae describing an EM field distribution in the single-

channel planar structure. Eventually, the obtained field distributions for the single- and 

dual-channel structures may be used to estimate approximate operation conditions of laser 

structures above a generation threshold. (see Section 4.3). 

4.2 Mode propagation in an effective N-waveguide structure 

Fig.18 shows a top view of a dual-channel defect waveguide, where shaded regions indicate 

the equivalent effective planar structure. The channels’ widths in the equivalent model are 

adjusted so as to provide the same phase constant of the fundamental supermode as in the 

corresponding PhC channels. 

A total EM field distribution in the coupled planar waveguides may be represented as a 

weighted sum of the modes propagating in each of the waveguides separately: 

      
1

( , ) ,
N

p
t p t

p

E x y a z E x y


 
 

 (3) 
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where: tE


, tH


, ( zE


, zH


) denote transverse (longitudinal) electric and magnetic field 

components, respectively. 

 

Fig. 18. A top view of a dual-channel defect waveguide processed in a membrane with a 
photonic crystal square lattice. Shaded regions indicate an equivalent effective waveguide 
structure. 

According to (Kogelnik & Shank, 1972; Schmidt et al., 1974; Chen & Wang, 1984), the 
amplitudes of the modes guided in the coupled waveguides satisfy the following conditions: 

    d
C a z i S a z

dz


 
    or       d

a z i M a z
dz


 

 (7) 

where an N-element vector ( )a z


 consists of ap(z) amplitudes of the modes propagating in 

consecutive waveguide channels. 

The matrices S and M are defined as follows: 

 S CB K       or    1 1M C S B C K    
 (8) 

where C  is an NxN square matrix, where each element of the overlapping integrals pqC  is 

defined as follows: 

 
2

pq qp
pq qp

C C
C C


   (9) 
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where 

 
    1

ˆ
2

q p
pq t tC E H z dx dy

 



  
 

 (10) 

It should be emphasized that the electromagnetic field was normalised so as to: 

 1pp qqC C   (11) 

Another NxN matrix K , applied in Eq.8, consists of coupling coefficients between all the N 

waveguides, which are defined in the following way: 

        
   

4

p
p qq p q

pq z zt tK E E E E dx dy
 



  
     

  
 

   
 (12) 

where:    q q     ,     2q q
n  . 

The matrix B is an NxN diagonal matrix with phase constants i (i = 1…N) of the modes 

propagating in all the waveguide channels. It should be noted that matrices C  and S  are 

symmetric, what is very important to prove the orthogonality of the supermodes, whereas 

the matrix M, in general, is not necessarily symmetric. 

The solution of the coupled mode equations given by Eq.8 leads to the modal field distribution 

in the entire array for a given propagation constant P. In the system consisting of N coupled 
waveguides, P supermodes are generated (N = P), which may be written as follows: 
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

 

 (13) 

where Ak (k = 1…P) are scaling coefficients, P is the order of a supermode, and  1
Na  indicates 

the amplitude of a field distribution of the 1st supermode in the Nth waveguide. 

4.3 The model of light generation in planar multi-channel photonic crystal  
membrane lasers 

In this Section, an approximate model of laser generation in planar multi-channel PhC 
membranes is described. Fig.19 shows phased array lasers with mirrors made of 1D and 2D 
photonic crystals processed in a membrane. The effective values of reflection coefficients are 
denoted with r1 and r2. It is assumed hereafter that the reflection coefficient of an input 
mirror is r1 = 1.0. 

In the proposed model of light generation, a field distribution in the single- and multi-
channel photonic crystal membrane lasers is substituted with a field in the equivalent 
effective planar waveguides (see Section 4.2). To achieve laser characteristics of those 
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structures, energy theorem is used (Szczepanski et al., 1989; Szczepanski, 1988). It allows us 
to represent a normalised small-signal gain saturation of the laser as a function of a 
saturation power, a distributed losses coefficient and a laser’s geometry. The field 
distribution of the modes generated in the membrane was obtained in two ways: applying 
the FDTD method (Taflove & Hagness, 2005; QWED) and using analytical formulas derived 
for the effective planar waveguides. As it is shown in the next Section, discrepancy between 
lasers characteristics achieved with both methods remains below ca. 10 %. 

 

Fig. 19. A schematic view of phased array photonic crystal lasers processed in a membrane 
with a square photonic crystal lattice with mirrors made of a) a 1D photonic crystal and b) a 
2D photonic crystal. 

The field distribution in the laser is written in the following way: 

 
         
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
 (14) 

where  is a phase constant of a laser mode, fR(z) and fS(z) denote complex amplitudes of 
forward and backward propagating waves, whereas ER(x,y,z) and ES(x,y,z) represent a 
transverse distribution of the laser mode. 

The coupled-mode equations for the considered laser structures may be written as 
(Szczepanski, 1994): 
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where go is a small-signal gain coefficient, L stands for laser’s distributed losses,  denotes a 
frequency-shift parameter understood as the discrepancy between an oscillating frequency 
in passive and active resonators. The normalisation factors NR and NS may be calculated as: 

   2
, ,R RN E x y z dxdy  ,   2

, ,S SN E x y z dxdy   (16) 

The shape of a gain spectral line applied in Eq.15 is given by: 

    1
D i


      (17) 

whereas the other parameters are given as follows: 
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   1
2 2 2 2i

c i c i i cd C e C C C C C





       
 (21) 

where L denotes the length of the laser (see Fig.19). 

The saturation power in the active region can be written as: 

 
S S lP I A   (22) 

where IS is a saturation intensity 

 
S

h
I





 (23) 

and Al denotes a cross-section of the laser, h is the Planck constant, is the frequency of a laser 

mode, is an emission cross-section,  represents recombination lifetime in the active region. 

Operations on Eq.15 lead to (Szczepanski et al., 1989; Szczepanski, 1988): 
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The solution of Eq.24 requires boundary conditions to be specified: 

    20 0R Sf r f  (25) 

       22 2
, 20 1 , ,0S out S SP f r E x y dxdy    (26) 

    1S Rf L r f L  (27) 

      
22 2

, 11 , ,R
R out RP f L r E x y L dxdy    (28) 

where , ,out R out S outP P P   is a total power generated by the laser. 

In a threshold approximation, fR(z) and fS(z) are equal to: 

    expR ff z A z   (29) 

    1
2 expS ff z A r z   (30) 
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1 1
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L r r
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An approximate expression relating the normalised small-signal gain coefficient goL to the 
output power and the parameters of the planar laser is given as follows: 
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, (32) 

where: 

        2 22 2
1 21 0 1R SK f L r f r     (33) 

The transverse electric field distribution of the laser mode in the photonic crystal membrane 
ER = ES = Et was calculated numerically (see Section 3.3) and analytically using the effective 
planar waveguide model (see Section 4.2). 

4.4 Laser gain characteristics 

In this Section, exemplary gain characteristics of phased array lasers processed in  
defect photonic crystal membranes are given. The transverse field distribution of the  
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laser supermode is calculated numerically with the FDTD method (Taflove & Hagness, 
2005; QWED) and analytically, using the non-orthogonal mode theory applied to the 
calculation of the effective waveguide structure. It is assumed that the distributed losses 

coefficient is equal to L = 200 cm-1 (Zielinski et al. 1989; Lu et al., 2008), whereas the 
output power to saturation power ratio is Pout / Ps = 10-6 (Lu et al., 2009; Susaki et al., 2008; 
van den Hoven, 1996). 

 

Fig. 20. A normalised small-signal gain at  = 1.55m as a function of cavity mirror 
reflectivity for a single-channel square-PhC membrane laser (r/a = 0.4, d/a = 0.4, b/a = 0.3,  

a = 0.55m). Red curve: computed with the aid of FDTD for (a/ , a) = (0.356, ); blue curve: 
effective waveguide model with beff / a = 0.55. 

Fig.20 presents a normalised small-signal gain at  = 1.55m as a function of output mirror 

reflectivity r2 for a single-channel square-PhC membrane laser (r/a = 0.4, d/a = 0.4, b/a = 0.3,  

a = 0.55m), the PBG diagram of which is shown in Fig.12. The red curve depicts the gain 

characteristics calculated for (a/ , a) = (0.356, ) with the aid of FDTD, whereas the blue 

one indicates the result of analytical computation with Eq.32 for the corresponding effective 

waveguide model with the channel width beff / a = 0.55. In principle, the minimum of the 

calculated characteristics indicates an optimum value of the mirror reflection coefficient r2 of 

an output mirror, for which maximum output power efficiency is achieved. It can be seen 

from Fig.20 that, although the shape of both curves is substantially different, their minima 

are in a similar position and the optimum reflectivity r2 amounts to 0.93 and 0.997 for the 

red and blue curves, respectively. Consequently, it leads to ca. 7.2% of a relative discrepancy 

between the optimum values computed with the two approaches. 

Similar computations were carried out for dual-channel scenarios with r/a = 0.4, d/a = 0.6,  

b/a = 0.3 and 0.4. Fig.21,22 show the corresponding laser characteristics for (a/, a) = (0.340, 

13) and (0.321, 12) with a = 0.53m and 0.50m, respectively. In both cases, the 
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reflection coefficient r2 is equal to 0.91 and 0.996 for numerical and analytical (effective) 

computations, respectively, leading to ca. 9.4% of the relative discrepancy. 

 

Fig. 21. A normalised small-signal gain at  = 1.55m as a function of cavity mirror 
reflectivity for a single-channel square-PhC membrane laser (r/a = 0.4, d/a = 0.6, b/a = 0.3, 

a = 0.53m). Red curve: computed with the aid of FDTD for (a/ , a) = (0.340, 13); 
blue curve: effective waveguide model with beff / a = 0.49. 

 

Fig. 22. A normalised small-signal gain at  = 1.55m as a function of cavity mirror 
reflectivity for a single-channel square-PhC membrane laser (r/a = 0.4, d/a = 0.6, b/a = 0.4, 

a = 0.50m). Red curve: computed with the aid of FDTD for (a/ , a) = (0.321, 12); 
blue curve: effective waveguide model with beff / a = 0.52. 

Concluding, exemplary laser small-signal gain characteristics have been shown, which 

enable the generation of a laser single-mode both in the single- and dual-channel structures 
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in two-dimensional photonic crystal lattices processed in dielectric membranes. It has also 

been shown that both rigid full-wave and approximate computations of the modal field 

distributions provide the values of the optimum reflection coefficient of the output mirror, 

which are in less than 10% agreement. 

5. Conclusions 

In this Chapter, a complete design cycle of phased array lasers based on photonic  
crystals processed in dielectric membranes has been given. First, full-wave 
electromagnetic computations with the FDTD method allow us to determine a photonic 
bandgap of the selected passive photonic crystal lattices processed in a dielectric 
membrane. Second, a single- either multi-channel waveguide array is introduced into the 
lattice and dispersive properties of the modes within the corresponding photonic 
bandgap are computed. The goal is to evaluate the spectrum, where a single-mode 
propagation of the supermodes is possible along the channels. Third, for given geometry 
settings and the mode’s wavelength spectrum, the above-threshold laser small-signal gain 
characteristic is computed with the non-orthogonal coupled mode theory. Gain 
computations are two-fold. In the first approach, numerical computations of an electric 
field envelope within a passive structure are executed with the aid of the FDTD method, 
while the second method is based on an equivalent effective waveguide structure.  
Both methods provide similar values of the optimum reflection coefficient of the  
output mirror. 
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