
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



6 

A Novel Compact Photonic Crystal Fibre 
Surface Plasmon Resonance Biosensor  

for an Aqueous Environment 

Emmanuel K. Akowuah, Terry Gorman, Huseyin Ademgil,  
Shyqyri Haxha, Gary Robinson and Jenny Oliver 

University of Kent, Canterbury 
United Kingdom 

1. Introduction  

Surface plasmon resonance (SPR) sensors provide high sensitivity without the use of 

molecular labels (Homola, Yee, and Gauglitz 1999). They been widely used in the analysis of 

biomolecular interactions (BIA) and detection of chemical and biological analytes (Homola, 

Yee, and Gauglitz 1999), where they provide benefits of real-time, sensitive and label-free 

technology. They have also been used for the detection of various chemical and biological 

compounds in areas such as environmental protection, food safety and medical diagnostics  

(Mouvet et al. 1997; Nooke et al. 2010). 

Most commercial SPR biosensors are based on the simple, robust and highly sensitive 

traditional prism-coupled configuration. However, they are not amenable to miniaturization 

and integration (Jha and Sharma 2009). There is therefore a growing interest in the 

development of robust, portable and highly sensitive SPR sensing devices capable of out of 

laboratory measurements (Akowuah et al. 2010; Piliarik et al. 2009; Wang et al. 2010). 

Several compact configurations, enabling coupling between optical waveguide modes and 

surface plasmon waves have been investigated over the last decade. Among these inlcude 

metalized single-mode, polarization maintaining, and multimode waveguides, metalized 

tapered fibers, metalized fiber Bragg gratings and lapped D-shaped fiber sensors have been 

studied(Jorgenson and Yee 1993; Monzon-Hernandez and Villatoro 2006). Fibre optic SPR 

biosensors offer miniaturization, a high degree of integration, and remote sensing 

capabilities (Patskovsky et al. 2010; Hoa, Kirk, and Tabrizian 2007).  

There is currently interest in the design of photonic crystal fibre (PCF) SPR sensors, which 
are based on the coupling of a leaky core mode to the SPP mode along a metalized fiber 
micro-structure (Dhawan, Gerhold, and Muth 2008). This has resulted in the proposal of 
many types of PCF and micro structured optical fiber (MOF)  SPR biosensors, some of which 
include a three-hole MOF SPR biosensor with a gold layer deposited on the  holes, PCF SPR 
biosensor with enhanced micro fluids and photonic bandgap SPR biosensors  (Gauvreau et 
al. 2007; Hassani et al. 2008; Hassani and Skorobogatiy 2006; Hautakorpi, Mattinen, and 
Ludvigsen 2008). PCFs are thin silica glass fibers possessing a regular array of microscopic 
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holes that extend along the whole fiber length (Ferrando et al. 2000). The discovery of PCFs 
has led to several possibilities, ranging from guidance of light in vacuum, to achieving 
unusual dispersion properties, from enhancing non-linear effects to high confinement of 
light and minimizing the same non-linear effects through very large mode area single mode 
fibers (Ademgil et al. 2009). These unusual properties of PCFs have led to an increasing 
interest in their application in areas such as sensing, signal processing and optical 
communication systems (Ferrando et al. 2000; Ademgil et al. 2009).  

This chapter presents the numerical analysis of a novel sensitive PCF SPR biosensor optimised 
for operation in aqueous environments. The proposed sensor, shown in Fig. 1, consists of two 
metalized micro fluidic slots, air holes for light guidance and a small central air hole to 
facilitate phase matching between guided and plasmon modes. The proposed PCF SPR sensor 
incorporates extra air holes between the main air holes as a means of reducing the propagation 
losses whilst ensuring efficient coupling between the core guided and plasma modes. 

It will be shown that the proposed PCF SPR sensor can be optimised to achieve a sensitivity 
of 4000 nm/RIU with regards to spectral interrogation, which is much higher than the 1000 
nm/RIU and 3000 nm/RIU reported by (Hautakorpi, Mattinen, and Ludvigsen 2008) and 
(Hassani and Skorobogatiy 2006) respectively.  

With regards to fabrication, the proposed structure should be relatively easy to fabricate due 
to the notably large micro fluidic slots. Deposition of metal layers inside of the micro fluidic 
slots can be performed either with the high-pressure chemical vapour deposition technique  
(Sazio 2006) or electroless plating techniques used in fabrication of metalized hollow 
waveguides and microstructures (Harrington 2000; Takeyasu, Tanaka, and Kawata 2005). 

 

Fig. 1. Cross section of the proposed PCF SPR biosensor showing various sections. 

A full – vectorial Finite Element Method (FEM) with perfectly matched layers (PML) is 
employed to investigate the variation of key performance parameters such as sensitivity and 
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confinement losses with structural parameters such as air hole diameter and gold thickness 
in the next section of the chapter, followed by conclusion in the final section. 

2. Full Vectorial FEM 

The finite element method (FEM) can be applied to waveguides in general and PCFs in 
particular to investigate propagation characteristics of modes. In the case of PCFs, the fibre 
cross section is divided into homogeneous subspaces where Maxwell’s equations are solved 
by accounting for the adjacent subspaces. These subspaces are triangles which give good 
approximation of circular structures (Saitoh and Koshiba 2001).  

In order to allow the study of fibers with arbitrary air filling fraction and refractive index 
contrast, a full vector formulation is required.  A full vector FEM  formulation based on 
anisotropic perfectly matched layers (PMLs) is able to calculate as many modes as desired in 
a single run without setting any iterative procedure (Saitoh and Koshiba 2001; Koshiba and 
Saitoh 2001). 

2.1 Implementation of FEM on PCFs 

The full – vectorial wave equation can be derived from Maxwell’s equations for an optical 
waveguide with an arbitrary cross section as (Koshiba 1992): 

     2
0 0p k q      (1) 

where   represents the electric  E or magnetic H field. The relative permittivity and 

permeability tensors [p] and [q] can be written as (Koshiba 1992); 
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  for magnetic field ( H  ). In the above 

expressions, xn , yn  and xn represent the refractive indices in the x, y and z directions 

respectively. 

2.2 Analysis of FEM with anisotropic PML 

Technically, a PML is not a boundary condition but an additional domain that absorbs the 
incident radiation without producing reflections. It can have arbitrary thickness and is 
specified to be made of an artificial absorbing material. The material has anisotropic 
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permittivity and permeability that matches that of the physical medium outside the PML in 
such a way that there are no reflections regardless of the angle of incidence, polarisation and 
frequency of the incoming electromagnetic radiation (Koshiba and Saitoh 2001; Buksas 
2001). The PML formulation can be deduced from Maxwell’s equations by introducing a 
complex-valued coordinate transformation under the additional requirement that the wave 
impedance should remain unaffected (Buksas 2001). 

If one considers a PML which is parallel to one of the Cartesian coordinate planes, an s 
matrix of the form (Koshiba 1992; Koshiba and Saitoh 2001): 
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 (5) 

can be substituted into Eqn. (1) to permit the use of anisotropic PML. The modified equation 

thus becomes; 

       1 2
0 0p s k q s

      (6) 

The parameters sx, sy, and sz are complex valued scaling parameters. These parameters are 

set to α (α = 1 – αj for leaky mode analysis), when we want to absorb the travelling wave in 

that direction and unity when no absorption is need. Thus, the absorption by the PML can 

be controlled by appropriate choice of αj. A parabolic profile is assumed for αj such that: 

 
2

maxj j
      

 (7) 

where ρ is the distance from the beginning of the PML and ω, the thickness of the PML. 

3. Sensor design and numerical modelling 

The proposed PCF SPR biosensor (Fig. 1) consists of circular air holes arranged in a 
hexagonal lattice, with a small circular air hole at the center. The air hole to air hole spacing 
is denoted by Λ, whilst d2 represents the diameters of the circular air holes in the first ring. 
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Extra air holes of diameter d01 are inserted between the main air holes as a means of 
reducing the propagation losses whilst ensuring efficient coupling between the core guided 
and plasma modes. A small air hole of diameter d1 is introduced into the core to facilitate 
phase matching with a plasmon by lowering the refractive index of the core-guided mode. 
The first layer of holes work as a low refractive index cladding, enabling mode guidance in 
the fiber core. The second ring has two slots of uniform thickness d3, which houses the 
analyte. Theses slots are coated with gold of thickness tAu. The gap between slots is set to be 
equal to d2 throughout this study. 

The background material is made of silica which is modeled using the Sellmeier equation 
(Sellmeier 1871);  

 
22 2

31 2
2 2 2

1 2 3

( ) 1
BB B

n
C C C

 
    

     
 (8) 

where n is the refractive index, ǌ , the wavelength in µm, B(i = 1,2,3) and C(i = 1,2,3) are 
Sellmeier coefficients. The Sellmeier coefficients used for the background material are 
B1=0.696166300, B2=0.407942600, B3=0.897479400, C1=4.67914826×10-3Ǎm2,  C2=1.35120631×10-2 
Ǎm2 and C3= 97.9340025 Ǎm2 (Sellmeier 1871). The permittivity of gold and silver is modeled 
using data from Johnson and Christy(Johnson and Christy 1972). 

Simulations were carried out using a full-vectorial finite element method (FEM) with 

perfectly matched layers (PMLs). The cross section of the proposed PCF SPR biosensor is 

divided into many sub-domains with triangular shaped elements in such a way that the step 

index profiles can be exactly represented. Due to the symmetrical nature of the PCF 

structure, only one-quarter of the sensor cross section is divided into curvilinear hybrid 

elements. This results in a computational window area of   (5 Ǎm × 5 Ǎm) terminated by a 

PML of width   = 1 Ǎm. The mesh size is 19,062 elements. Modal analysis of the fundamental 

mode has been performed on the cross section in the x-y plane of the PCF as the wave is 

propagating in the z – direction. 

4. Simulation results  

We begin our analysis by investigating the potential of the proposed PCF for sensing. The 
structural parameters used are Λ = 1.5 Ǎm, d1/Λ= 0.2, d2/Λ= 0.35, d01/Λ = 0.15, d3= 1.5 Ǎm 
and tAu = 40 nm. The slots in the second ring are first filled with an analyte whose refractive 
index, na = 1.33 (water) after which the confinement loss of the fundamental mode is 
calculated. The process is repeated with an analyte of refractive index of 1.34 and the 
calculated loss spectra for both cases are plotted in Fig 2. It can be observed from Fig. 2 that 
there are two major attenuation peaks which correspond to the excitation of plasmonic 
modes on the surface of the metalized channels filled with aqueous analyte , na=1.33.  It is 
important to note that the shape of a metallized surface can have a significant effect on the 
plasmonic excitation spectrum. Hence, a planar metallized surface supports only one 
plasmonic peak, while a cylindrical metal layer can support several plasmonic peaks.  

By changing the analyte refractive index from 1.33 to 1.34, it is observed in Fig. 2 that there 
is a corresponding shift (dashed curves) in the resonant attenuation peaks. This transduction 
mechanism is commonly used for detecting the bulk analyte refractive index changes, as 
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well as monitoring formation of the nanometer-thin biolayers on top of a metallized sensor 
surface (Hassani and Skorobogatiy 2006).  In this particular design, there is considerably 
more field penetration into the analyte-filled channels for the first plasmonic peak as 
compared to that of the second. This makes it more sensitive than the second with regards to 
analyte refractive index changes. All subsequent analysis will be based on the first 
plasmonic peak as it is the most sensitive to refractive index change. 
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Fig. 2. Calculated loss spectra of the fundamental modes. Loss spectra (solid curves) feature 
several attenuation peaks corresponding to the excitation of plasmonic modes on the surface 
of metallized channels filled with aqueous analyte (na = 1.33). A change in analyte refractive 
index (dashed curves) leads to a corresponding shift in the points of phase matching 
between the core-guided and plasmon modes. 

4.1 Optimisation of structural parameters 

In order to optimise the several structural parameters of the proposed PCF SPR biosensor 

for high spectral sensitivity, it is important to understand the effects these parameters have 

on the sensor properties. Surface plasmon waves, being surface excitations, are very 

sensitive to the thickness of metallic layers. We therefore investigate the changes in the 

spectra for the first plasmonic peak when the thickness of gold tAu, is varied from 30 nm to 

50 nm. The analyte in this case is fixed at a refractive index of 1.33 and all other structural 

parameters are kept constant. The confinement loss for the fundamental mode is calculated 

for each case of tAu and plotted to give the spectra in Fig. 3.  

Figure 3 shows a general decrease in modal propagation loss at resonance when the 
thickness of the gold layer increases. In addition, there is a shift in the resonant wavelength 
towards longer wavelengths for every increase in tAu. Specifically, the resonant wavelength 
shifts from about 580 nm to 640 nm for tAu values of 30 nm and 50 nm respectively. This 
sensitivity of the resonant wavelength to the gold thickness can be used in the study of 
metal nanoparticle binding events on the metallic surface of the sensor (Hassani and 
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Skorobogatiy 2006). Practically, this can be used in the monitoring of concentration of metal 
nanoparticles attached to the photosensitive drugs in photodynamic cancer therapy 
(Hassani and Skorobogatiy 2006). 
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Fig. 3. Loss spectra of proposed PCF SPR biosensor in the vicinity of the first plasmonic peak 
for variation in gold layer thickness (tAu). Analyte refractive index (na=1.33), d01/Λ = 0.15, 
d1/Λ = 0.2, d2/Λ = 0.35. 

In this particular design, a central air hole of diameter d1, has been employed to tune the 
phase matching condition. In what follows, we investigate the effect of size variation of the 
central air hole, with a view of tuning and optimizing plasmon excitation by the core-guided 
mode of the proposed PCF SPR biosensor. In order to achieve this, d1/Λ is varied from 0.15 
to 0.25 whilst keeping all other structural parameters constant. The micro-fluidics slots are 
filled with analyte of refractive index, na = 1.33 for each calculation of the loss spectra for 
every change in the value of d1/Λ. Figure 4 shows that there is an overall increase in the 
modal losses of the fundamental mode for the larger diameters of the central air hole. An 
increase in the size of the central air hole promotes expulsion of the modal field from the 
fiber core. This in turn, leads to the greater modal presence near the metallic interface, 
resulting in higher propagation losses.   

Another consequence of the modal expansion from the fiber core into the air-filled 
microstructure is reduction of the modal refractive index (Fig. 5), leading to the shift of a 
plasmonic peak toward longer wavelengths (Fig. 4).  

In particular, the resonant wavelength changes from about 615 nm to 620 nm for d1/Λ 
values of 0.15 and 0.25 respectively. 

The next step of the analysis focuses on the influence of the extra air holes, d01, on the 
confinement loss and resonant wavelength of the PCF SPR sensor. To achieve this, d01/Λ is 
varied from 0.10 to 0.20, whilst keeping all other structural parameters constant. The micro-
fluidics slots are filled with analyte of refractive index, na = 1.33 for each computation of the  
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Fig. 4. Loss spectra of proposed PCF SPR biosensor in the vicinity of the first plasmonic peak 
for variation in d1. Analyte refractive index (na=1.33), d01/Λ = 0.15, tAu = 40 nm, d2/Λ = 0.35. 
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Fig. 5. Dispersion relation of the fundamental mode for variation in d1. Analyte refractive 
index (na=1.33), d01/Λ = 0.15, tAu = 40 nm, d2/Λ = 0.35. 
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Fig. 6. Loss spectra of proposed PCF SPR biosensor in the vicinity of the first plasmonic peak 
for variation in d01. Analyte refractive index (na=1.33), tAu = 40 nm, d1/Λ = 0.20, d2/Λ = 0.35. 
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Fig. 7. Dispersion relation of the fundamental mode for variation in d01. Analyte refractive 
index (na=1.33), tAu = 40 nm, d1/Λ = 0.20, d2/Λ = 0.35. 
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loss spectra for a change in the value of d01/Λ.  Figure 6 shows that the extra air holes 
could be used to play a significant role in confinement loss reduction. Unlike d1, 
increasing d01 reduces the confinement loss whilst shifting the resonant wavelength 
towards longer wavelength. However, d01 has less influence on the resonant wavelength 
as compared to d1 and can be considered as a loss control parameter. An increase in d01 
prevents expulsion of the modal field from the fibre core, thus ensuring better 
confinement to the core. This ultimately reduces the confinement loss at the resonant 
wavelength. The decrease in the modal effective index (Fig. 7) for an increase d01/Λ is due 
to the fact that the “escaping” mode field from the core interacts with relatively larger air 
filled spaces. 

4.1.1 Characterization of sensitivity of the proposed PCF SPR biosensor 

The detection of changes in the bulk refractive index of an analyte is the simplest mode of 

operation of fibre - based SPR biosensors (Hassani and Skorobogatiy 2006; Piliarik, Párová, 

and Homola 2009; Homola 2003). There is a strong dependence of the real part of a plasmon 

refractive index on the analyte refractive index, which makes the wavelength of phase 

matching between the core-guided and plasmon modes sensitive to the changes in the 

analyte refractive index (Homola 2003; Piliarik, Párová, and Homola 2009). Amplitude 

(phase) and wavelength interrogation are two main detection methods (Homola 2003; 

Piliarik, Párová, and Homola 2009).  

In the amplitude or phase based method, all measurements are done at a single wavelength 

(Homola 2003). This approach has the merit of its simplicity and low cost as there is no 

spectral manipulation needed (Homola 2003). The disadvantage however, is that a smaller 

operational range and lower sensitivity when compared with the wavelength interrogation 

methods, where the transmission spectra are taken and compared before and after a change 

in in analyte refractive index has occurred(Homola 2003).   

The amplitude sensitivity is given by(Hassani and Skorobogatiy 2006): 

 ( ) ( ( , ) / ) / ( , )A a a aS n n n         [RIU-1] (9) 

where α(ǌ, na) represents the propagation loss of the core mode as a function of wavelength. 

When the sensor operates in the wavelength interrogation mode, changes in the analyte 

refractive index are detected by measuring the displacement of a plasmonic peak. The 

sensitivity in this case is given by (Hassani et al. 2008; Homola 2003): 

 ( )
peak

a

S
n




 


 [nm / RIU] (10) 

where ǌpeak is the wavelength corresponding to the resonance (peak loss) condition. The 

proposed SPR sensor operates in wavelength interrogation mode. Thus all sensitivity 

analysis will be limited to spectral interrogation.  

It can be observed from Fig. 8 that the thickness of the gold layer (tAu) in the microfluidic 
slots has an influence on the shift in resonant wavelength. Specifically, the change in 
resonant wavelength (ǌpeak) is inversely proportional to tAu.  This is due to the fact that when 

www.intechopen.com



A Novel Compact Photonic Crystal Fibre Surface  
Plasmon Resonance Biosensor for an Aqueous Environment 

 

91 

the thickness of the gold layer becomes significantly larger than that of its skin depth, (~20–
30 nm), the fibre core mode becomes effectively screened from a plasmon, resulting in a low 
coupling efficiency, culminating in low sensitivity.  Hence, the maximum shift of 20 nm 
occurs for tAu of 30 nm (Fig. 8). This results in a maximum sensitivity of 2000 nm/RIU 
according to Eqn. (9). 

The next step involves investigating the influence of d1 on the spectral sensitivity of the PCF 
SPR sensor under consideration. It can be observed from Fig. 9 that the effect of d1 on the 
spectral sensitivity follows the same trend as that of tAu. Specifically, the sensitivity increases 
with d1/Λ to a maximum of approximately 2100 nm / RIU for d1/Λ value of 0.25. An increase 
in d1/Λ ensures more leakage of the fundamental mode into the metal / analyte layer in the 
microfluidic slots, resulting in greater sensitivity of analyte refractive index change. 

5. An optimised structure for higher spectral sensitivity  

The analysis done so far gives some insight into the effects the structural parameters have 
on sensor performance. These results are summarised in Table 1. 
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Fig. 8. Shift in resonant wavelength of the loss spectrum for a variation in tAu of the 
proposed SPR sensor. Analyte refractive index (na =1.33), d01/Λ = 0.15, d1/Λ = 0.2,  
d2/Λ = 0.35. 

According to Table 1, d01, tAu and d1 can be considered as loss control parameters. With 

regards to spectral sensitivity, the main candidates to consider are tAu and d1. Of these two 

parameters, d1 appears relatively easier to control as compared to tAu. It will therefore be 

more convenient to fix tAu to an appropriate value and optimise d1 to achieve the desired 

sensitivity. It must also be noted that there is a limit to which d1 can be increased due to the 

associated high confinement losses. To minimise the confinement losses, d01 can optimised 
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to keep much of the field inside the core without compromising much sensitivity. By  

taking all these factors into consideration, the final set of device parameters to maximise 

sensitivity whilst maintaining an appreciable confinement loss are; Λ = 1.5 Ǎm, d1/Λ = 0.50,  

d01/Λ = 0.20, tAu = 40 nm.  
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Fig. 9. Shift in resonant wavelength of the loss spectrum for a variation in d1 of the proposed 
SPR sensor. Analyte refractive index (na=1.33), d01/Λ = 0.15, tAu = 40 nm, d2/Λ = 0.35. 

 
 

Parameter Sensitivity ǌS (ǌ)  Resonant Wavelength  
( ┣peak) 

Confinement Loss 

d1↑ ↑ ↑ ↑ 

d01↑ 

↑ -  But has less 
influence on it due to 
the fact that there is a 

relatively small 
change in ǌpeak for a 
slight increase in d01. 

↑ -  But it has less 
influence on it as 

compared to tAu and d1. 
↓ 

tAu↑ ↑ ↑ ↓ 
 
 

Table 1. Summary of influence of structural parameters on properties of the proposed PCF 
SPR biosensor.↑ represents an increase in a parameter or property whilst ↓ represents a 
decrease. 
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Fig. 10. Shift in resonant wavelength of the optimised PCF SPR biosensor. Structural 
parameters; Λ = 1.5 Ǎm, d1/Λ = 0.50, d01/Λ = 0.20, tAu = 40 nm. 

Figure 10 shows the shift in resonant wavelength for a change in analyte refractive index 

from na = 1.33 to na = 1.34 for the optimised structure. It indicates an improvement in the 

spectral sensitivity, which is now approximately 4000 nm / RIU. If the assumption is made 

that 0.1nm change in the position of a resonance peak can be detected reliably, the resulting 

sensor resolution is 2.5×10-5  RIU, which is better than the 3×10-5  RIU and 1×10-4  RIU 

reported by (Hassani and Skorobogatiy 2006) and (Hautakorpi, Mattinen, and Ludvigsen 

2008)respectively. The optimisation procedure presented so far can give an indication of the 

manufacturing tolerances acceptable, to maintain the estimated sensor sensitivity. Of 

particular interest is the fabrication tolerance of the air holes of the PCF SPR sensor 

structure. It can be concluded from Fig. 6, 9 and 10 that the maximum allowable change in 

both  d01 /Λ and d1/Λ to maintain the estimated sensitivities, is 50%. Hence, the proposed 

design can maintain its estimated sensitivity of 4000 nm / RIU provided the holes are 

fabricated within the 50% tolerance assuming all other conditions remain constant. The 

current state of advanced PCF fabrication technologies, make fabrication within this 

tolerance possible. 

Since sensor length is inversely proportional to the modal loss, optimization of the PCF 
structural parameters allows design of PCF SPR sensors of widely different lengths (from 
millimetre to meter), while having comparable sensitivities. Due to the relatively high loss of 
our proposed PCF SPR sensor, its length is limited to the centimetre scale. Therefore, the 
proposed sensor should be rather considered as an integrated photonics element than a fibre.  

6. Conclusion 

The design and optimisation of a novel PCF SPR biosensor has been presented in this 
chapter. The loss spectra, phase matching conditions and sensitivity of the proposed 
biosensor have been presented using a full – vector FEM with PML.  
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It has been shown that the proposed PCF SPR sensor can be optimised to achieve a 
sensitivity of 4000 nm/RIU with regards to spectral interrogation, which is much higher 
than the 1000 nm/RIU and 3000 nm/RIU reported by (Hassani and Skorobogatiy 2006) and 
(Hautakorpi, Mattinen, and Ludvigsen 2008) respectively. In addition, the PCF SPR sensor 
incorporates the micro-fluidics setup, waveguide and metallic layers into a single structure. 
This makes the proposed design compact and more amenable to integration as compared to 
conventional fibre SPR biosensors.  

With regards to fabrication, the proposed structure should be relatively easy to fabricate due 
to the notably large micro fluidic slots. Deposition of metal layers inside of the micro fluidic 
slots can be performed either with the high-pressure chemical vapor deposition technique 
(Sazio 2006) or electroless plating techniques used in fabrication of metalized hollow 
waveguides and microstructures (Harrington 2000; Takeyasu, Tanaka, and Kawata 2005). 
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