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1. Introduction 

Germ cell tumors arise from anomalies in primordial germ cells (PGCs) (Stevens, 1967), the 

embryonic precursors of oocytes and sperm. Their normal development follows three steps: 

migration, proliferation and differentiation into mature germ cells (Mauduit et al., 1999). 

Abnormalities in these steps can result in sterility, reduced fertility, or in some cases to 

transformation into ovarian tumors in females or testicular germ cell tumors (TGCTs) in 

males (Stevens, 1967), both of which present remarkable cellular and tissue heterogeneity 

reflecting the pluripotent nature of the TGCT stem cell. 

Although representing only 1-2% of all cancers in men, TGCTs are the most common 

malignancy affecting young men 15-35 years of age (Buetow, 1995). Over the past decade, 

TGCT incidence has risen ~1.2% per year with about 8,300-8,400 new cases reported in the 

United States (American Cancer Society, www.cancer.org). TGCT risk varies more than 5-

fold among ethnic groups and geographic regions (McGlynn et al., 2005; www.cancer.org). 

In addition, developmental anomalies such as undescended testis are indicators of TGCT 

risk (Dieckmann & Pichlmeier, 2004). Finally, environmental factors such as pesticides or 

insecticides strongly influence susceptibility. However, the mechanisms by which genetic 

and environmental factors affect susceptibility remain elusive.  

Genetic factors account for 25% of susceptibility to TGCTs, making these tumors the third 

most heritable cancer (Gilbert et al., 2011). Family history is a significant risk factor with 8- 

to 10-fold risk for brothers of men with TGCTs and 4- to 6-fold risk for sons (Hutter et al., 

1967). The risk increases 75-fold for monozygotic twins (Swerdlow et al., 1999). Genome-

wide association studies (GWAS) in humans reveal various loci that contribute to 

susceptibility, but the identity of these genes has not yet been established (Gilbert et al., 

2011). Discovery of TGCTs in the 129 family of inbred strains of mice has enabled 

identification and characterization of specific genes and their interactions (Stevens & Little, 

1954; Stevens, 1973).  

In this chapter, after discussing the various mouse models for TGCTs, we review the 

evidence for TGCT genes and their role in tumorigenesis in both humans and mice. We 

consider the consequence of their mutation, as well as the role of gene interactions, to better 

understand molecular pathways of PGC transformation and pathogenesis. Finally, we 

discuss evidence for transgenerational effects that influence TGCT incidence.  
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2. Mouse models for human TGCTs 

Studies of TGCT development before birth are not feasible in humans. Laboratory mice 

therefore provide unique opportunities to determine the genetic basis for TGCT 

susceptibility and for characterizing key components contributing to PGC transformation. 

2.1 TGCT predisposition in the 129 inbred strain 

During gastrulation in the mouse embryo, PGCs arise from the ectoderm and the precursors 

of Leydig and Sertoli cells arise from the coelomic epithelium (Clark & Eddy, 1975; Karl & 

Capel, 1998). At 8 days post-coitum (E8), 50-100 PGCs are evident at the base of the allantois 

where they begin to be highly mobile (Fig. 1) (Clark & Eddy, 1975; Molyneaux et al., 2001). 

From E9.5 onwards, PGCs rapidly exit the hind-gut epithelium and migrate toward the 

genital ridges (Molyneaux et al., 2001). During migration, PGCs proliferate reaching a 

maximum of 20,000-25,000 cells at E13.5 (Mauduit et al., 1999). Then, in males, PGCs become 

quiescent (mitotic arrest) and are called gonocytes (Mauduit et al., 1999). Pre-Sertoli cells 

appear in male gonads around E11 for playing roles in: (1) sex determination because of 

their SRY factor released (Albrecht & Eicher, 2001); (2) migration of PGCs depending on 

chemotactic factors (i.e. KITLG, a specific-Sertoli factor) and germ-Sertoli interactions 

(Griswold, 1995); and (3) the arrest of male germ cell mitosis in G1/S phase (Karl & Capel, 

1998). Mitotic arrest is maintained until three days after the birth (P3) (Mauduit et al., 1999).  

At P6, gonocytes differentiate into Type A1 spermatogonia and begin radial migration in the 

seminiferous tubule (Nagano et al., 2000). Germ cells undergo either a proliferative period 

(to maintain the progenitor population throughout the reproductive life of males) or meiosis 

(to mature germ cells) (Nagano et al., 2000). During these postnatal days, pre-Sertoli cells 

transform into mature Sertoli cells that support germ cell differentiation and 

spermatogenesis (Griswold, 1995; Hess et al., 2006). Remarkably, a significant proportion of 

PGCs remains scattered along the migratory route. These ectopic PGCs are eliminated 

between E10 and E17 by activating the intrinsic cell death pathway (Stallock et al., 2003). 

This intrinsic pathway is regulated by BCL2 family members (i.e. BAX, BAK and BCL2), 

which activate mitochondria leading to secretion of cytochrome C, an initiator of apoptosis 

(Shimizu et al., 1999; Stallock et al., 2003). Another BAX-dependent apoptotic control point 

occurs at P10-P13 before meiosis to eliminate germ cells that fail either to migrate in the 

seminiferous tubules or to repair DNA (de Rooij, 2001).  

In the 129 family of inbred strains, 5%-10% of males develop spontaneous TGCTs (Fig. 1) 

(Stevens & Little, 1954; Stevens, 1967), making these strains highly relevant for learning 

about TGCT development in humans. Indeed, TGCTs in mice are most similar to pediatric 

TGCTs in humans, and both species have a similar left-sided preference of the tumors. 

Bilateral TGCTs are infrequent in mice and usually involve less than 5% of all cases in 

humans (Dieckmann & Pichlmeier, 2004). The critical period for transformation is between 

E11.5-E13.5 in mice (Stevens & Little, 1954; Stevens, 1967). Interestingly, syncytial masses of 

atypical gonocytes are detected in embryonic testis cords from E13 onward in 129 wild-type 

and mutant males (Stevens, 1967; T. Noguchi & M. Noguchi, 1985; Rivers & Hamilton, 1986; 

Matin et al., 1999). These atypical cells may result from incomplete cell cycle, mitotic arrest 

defects, or de-differentiation after their entrance in quiescence (Rivers & Hamilton, 1986). 
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These so-called embryonal carcinoma (EC) cells escape necrosis, and then proliferate and 

aggregate together to form clusters, which are correlated with partial or complete germ cell 

deficiency (Stevens, 1967; T. Noguchi & M. Noguchi, 1985; Rivers & Hamilton, 1986; Matin 

et al., 1999). Furthermore, EC clusters have been suggested as the precursors of either 

testicular abnormalities, which have been found in an appreciable frequency (18%) in 129 

males, or TGCTs (Rivers & Hamilton, 1986). Similar abnormalities, termed carcinoma in situ, 

have been found in humans many years before invasive malignancy (Skakkebaek, 1972). 

Why some germ cells transform into EC clusters while others develop normally is unclear, 

just as why some abnormal gonocytes die while others persist.  

 

Fig. 1. Male germ cell development in mouse models for TGCTs in the 129 strain. 

2.2 TGCTs in the 129-Ter strain 

The Ter allele, also known as Teratoma, has dramatic effects on PGC biology and TGCT 

susceptibility (Stevens, 1973; T. Noguchi & M. Noguchi, 1985), and was recently identified 

as a spontaneous mutation in the Dead-end (Dnd1) gene (Youngren et al., 2005). Ter 

homozygosity causes severe germ cell deficiency in both sexes, probably mediated through 

BAX-dependent apoptosis after E8.5 (Stevens, 1973; T. Noguchi & M. Noguchi, 1985; Cook 

et al., 2009). EC clusters develop from E13 in 129-Ter/Ter male embryos probably due to a 

defect in G1/S mitotic arrest (Rivers & Hamilton, 1986). The few surviving PGCs 

successfully migrate to the genital ridges, suggesting that DND1 is not essential for 
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migration (Youngren et al., 2005). Deficiency progresses with age until P11 when PGCs are 

no longer detectable (T. Noguchi & M. Noguchi, 1985; Cook et al., 2009). As a result, adult 

mutant males are sterile (Fig. 1) (T. Noguchi & M. Noguchi, 1985). Somatic development of 

Sertoli and Leydig progenitors is not affected in accordance with the PGC-specific 

expression of Dnd1 (Weidinger et al., 2003). Interestingly, 17% of 129-Ter/+ males develop 

tumors, 10% of which are bilateral, but these males are fertile. This rate increases to 94% in 

homozygotes with 75% of cases having bilateral tumors (T. Noguchi & M. Noguchi, 1985).  

DND1 was originally proposed to be a component of the cytidine to uridine RNA editing 
complex given its similarity with the Apobec complementation factor (A1CF) (Weidinger et 
al., 2003). More recently, DND1 was shown to block miRNA access to their mRNA targets 
(Kedde et al., 2007). The reactivated target genes are involved in PGC pluripotency (i.e. Sox2, 
Nanos1 and Nanog), in cell cycle regulation (i.e. Cyclin-dependent kinase inhibitors (Cdkn) 1b, 
Cdkn1a) and in PGC survival (i.e. Transformation related protein (Trp53), apoptotic factor Bax 
and Phosphatase and tensin homolog (Pten)) (Kedde et al., 2007; Cook et al., 2011; R. Zhu et al., 
2011). Dnd1 is expressed throughout embryogenesis with an up-regulation between E12.5 
and E15.5 in males, the critical period for TGCT development (Youngren et al., 2005; Cook et 
al., 2009). Thus, loss of DND1 in Ter mutants strongly affects differentiation, survival and 
entry in quiescence of PGCs and dramatically enhances the TGCT frequency in the 129 
strain. 

2.3 Consomic 129 inbred strains 

Chromosome Substitution Strains (CSSs, consomic strains) carry entire chromosomes 
derived from another inbred strain. Some CSSs were created to study the genetic linkage of 
the MOLF-derived TGCT modifier genes. MOLF is derived from Mus musculus molossinus, 
which is genetically distinct from 129 and has no predisposition for TGCTs (Mieno et al., 
1989; Matin et al., 1998). We will review results for two consomic strains. 

2.3.1 129-M18  

The 129-M18 CSS substitutes MOLF-derived chromosome 18 for its homologue in 129 wild-
type mice (Anderson et al., 2009a). 129-M18 males show complete resistance to develop 
TGCTs with no homozygous males affected. Four quantitative trait loci (QTLs, Region I-IV) 
were identified independent of the Dnd1 gene, which is also located on this chromosome.  

Region I shows homology with the 10p11 region in humans (Copeland et al., 1993). One 
candidate gene may be Map3k8, which encodes a mitogen-activated protein kinase (MAPK) 
that acts downstream of tyrosine kinase-dependent pathway (Patriotis et al., 1994). Region II 
belongs to a conserved region 5q in humans (Copeland et al., 1993). In mice, this region 
contains Eif1a gene, which encodes a translational regulator that is functionally related to 
eIF2α, encoded by Eif2s2 gene, loss of which suppresses TGCT development (Heaney et al., 
2009) (Section 3.5). However, the three homologues of Eif1a gene are EIF1AD on 
chromosome 11, and EIF1AX and EIF1AY on sex chromosomes in humans. Region III 
contains at least one TGCT enhancer and is conserved with the 18q region in humans 
(Copeland et al., 1993). An interesting candidate gene is Noxa, which encodes a 
mitochondria-mediated apoptotic factor (Krishna et al., 2011). Interestingly, Noxa is 
activated by the TGCT suppressor TRP53 (Michalak et al., 2005; Donehower et al., 1992) 
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(Section 3.3). Region IV contains the F-box only protein 15 gene, one of the few known targets 
of the stem cell pluripotent factor OCT3/4 (Tokuzawa et al., 2003).  

2.3.2 129-M19  

The 129-M19 CSS substitutes MOLF-derived chromosome 19 for its homolog in 129 wild-

type mice (Matin et al., 1999). Surprisingly, 80% of the homosomic males develop TGCTs 

and this unusually high tumor frequency remain elevated (20%) when only one copy of M19 

is present (129-M19/+) compared with 129 wild-type mice (5%), suggesting a semi-

dominant effect of the MOLF susceptibility locus (Matin et al., 1999; Youngren et al., 2003). 

In contrast with the 129-Ter strain, M19 does not cause complete germ cell deficiency (Fig. 

1). Indeed, some PGCs can develop normally leading to fertility in both homozygous and 

heterozygous males. Furthermore, the incidence of bilateral tumors in 129-M19/M19 is 

reduced (57%) compared with the 129-Ter strain (75%) and are non-existent in heterozygous 

males (similar than in 129 wild type males) (Matin et al., 1999; Youngren et al., 2003). Thus, 

the phenotype of this consomic M19 strain is less severe than in the 129-Ter strain.  

Regions on chromosome 19 are homologous to either 9p, which contains the TGCT modifier 

doublesex- & Mab3-related transcription factor 1 (Dmrt1) gene (Section 3.4), 9q, 10q, which 

contains the TGCT modifier Pten (Section 3.2) and 11q in humans (Copeland et al., 1993). An 

interesting candidate gene is Splicing factor 1 (Sf1), which encodes an RNA binding protein 

that functions as a pre-mRNA splicing factor (Z. Liu et al., 2001). Interestingly, Sf1 deficiency 

(heterozygous Sf1-/+) in 129-M19/+ males reduces the incidence of TGCTs (R. Zhu et al., 

2010), suggesting that Sf1 may be one of the TGCT enhancer genes on chromosome 19. 

D19Bwg1357e is a predicted gene down-regulated in the gonads of MOLF strain mice (R. 

Zhu et al., 2007). This gene has an RNA-binding domain homologous to those in Pum1 and 

Pum2 genes, which encode two major components of P-bodies, the center of RNA 

processing (Moore et al., 2003), suggesting a similar role for D19Bwg1357e.  

Thus, CSSs are powerful tools for identifying new genes that, alone or in combination and 

with conventional additive or epistatic effects, confer susceptibility to TGCTs. These 

candidate genes are involved in RNA biology, epigenetic regulation and intracellular 

pathways regulating PGC survival, proliferation and pluripotency.  

3. TGCT modifier genes in the 129 strain 

Spontaneous and engineered mutations are essential for characterizing molecular pathways 

involved in PGC development and transformation into TGCTs. In this section, we review 

the phenotypic traits of 129 mice that carry mutations on TGCT modifier genes.  

3.1 Kit and Kitlg 

In the mouse, mutations at the White-spotting (W) or Steel (Sl) loci cause sterility and severe 

anemia that lead to in utero or perinatal death in homozygotes (McCoshen & McCallion, 

1975; Nocka et al., 1990). The W locus, located on chromosome 5 in mice (region 4q12 in 

humans), encodes KIT, a tyrosine kinase receptor (Manova et al., 1990). The ligand of KIT, 

named KITLG, is encoded at the Sl locus on chromosome 10 in mice (region 12q21 in 
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humans) (Flanagan et al., 1991). These two factors are essential for hematopoiesis, 

melanogenesis and gametogenesis (Bernstein et al., 1991; Besmer et al., 1993).  

In the testis, KIT is expressed on the surface of PGCs from E7.5 to E13.5, and then at P5, on 

differentiating germ cells and interstitial Leydig cells (Manova et al., 1990; Yoshinaga et al., 

1991). KITLG is only expressed by the pre-Sertoli and Sertoli cells (Rossi et al., 1991; Tajima 

et al., 1991). The two forms of KITLG, soluble and membrane-bound, are differentially 

expressed depending on developmental stages (Matsui et al., 1990; Flanagan et al., 1991; E.J. 

Huang et al., 1992). The membrane-bound KITLG is predominantly expressed during 

proliferative periods: between E8 and E14 and just after the birth (P3), and the soluble form 

when PGCs are quiescent (between E13.5 and P3) (Matsui et al., 1990; Flanagan et al., 1991; 

E.J. Huang et al., 1992). In addition of their essential role during migration, the interaction of 

KITLG with its receptor leads to the dimerization of KIT and its auto-phosphorylation 

activates two major pathways: (1) the PI3K/AKT signaling cascade regulates transcription 

of mitotic inhibitors such as CDKN1a, CDKN1b and cyclin D1, and enhances the 

translational factor eIF4E; (2) the MAPK pathway regulates factors involved in pluripotency 

such as NANOG and SOX2, and in proliferation (Mithraprabhu & Loveland, 2009). By 

acting on TRP53 activity, KIT/KITLG pathway controls apoptosis of PGCs by regulating the 

BCL2 components (i.e. BAX, BAK, BCL2) and their cofactors (i.e. PUMA, NOXA) (Pesce et 

al., 1993; Carson et al., 1994), explaining why ectopic PGCs that lose KIT/KITLG interaction 

in 129 wild-type mice are eliminated by apoptosis.  

Loss of KIT (KitW and KitWv) or KITLG (KitlgSl, KitlgSlJ and KitlgSlgb) leads to massive PGC 

loss, resulting from high levels of apoptosis beginning on or before E9 (Stevens, 1967; 

McCoshen & McCallion, 1975; Nocka et al., 1990; Heaney et al., 2008). In these Kit and Kitlg 

heterozygous mutants, the wild-type allele is sufficient to rescue PGC viability at E13.5 and 

fertility in adult males. Loss of only membrane-bound KITLG in the KitlgSld deletion leads to 

a mild phenotype characterized by partial PGC deficiency because of a proliferation defect 

(Fig. 1) (Flanagan et al., 1991; Tajima et al., 1991). At later stages, this mutation adversely 

affects PGC differentiation resulting in sterility. In KitlgSl17H mutants, the membrane-bound 

form is not functional due to absence of its cytoplasmic tail (Brannan et al., 1992). These 

mutants present a slight phenotype apparent after birth with anomalies in spermatogenesis, 

leading to sterility (Fig. 1). Surprisingly, KitlgSld and KitlgSl17H mutants have normal 

apoptosis when mice lacking KIT or KITLG have a high apoptotic rate, suggesting that 

soluble KITLG alone is sufficient to re-establishing normal apoptosis (Flanagan et al., 1991; 

Brannan et al., 1992). Nonetheless, neither KitlgSld nor KitlgSl17H mutants are fertile, 

suggesting that membrane-bound KITLG is necessary for complete PGC development 

(proliferation and differentiation). Thus, the KIT/KITLG pathway controls the migration, 

proliferation and survival of PGCs during embryogenesis, and the proliferation, 

differentiation and the radial development of germ cells after birth. 

Although loss of KIT and KITLG have similar effects on PGC development, only KitlgSl, 

KitlgSlJ and KitlgSlgb heterozygotes have 2-fold increase in occurrence of TGCT-affected males 

(Fig. 1) (Stevens, 1967; Heaney et al., 2008), suggesting that KIT is haplosufficient to promote 

TGCT formation. Interestingly, KitlgSld allele has no effect on TGCT susceptibility (Heaney et 

al., 2008), suggesting that soluble KITLG is sufficient to suppress TGCT formation. The 

presence of EC clusters and the frequency of testicular abnormalities in KitlgSl and KitW 
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heterozygous males remain to be evaluated. However, given that EC clusters are probably 

the origin of TGCTs and that some clusters have been described in mice lacking the PI3K 

binding site on KIT (Kissel et al., 2000), we expect to find EC clusters at least in KitlgSl, KitlgSlJ 

and KitlgSlgb heterozygous males. Determining whether soluble KITLG in KitlgSld mutants 

reduces the frequency of these clusters, or whether KitW mutants also carry EC clusters 

without transformation into tumors, could highlight the molecular pathway involved in 

transformation of benign EC masses into malignant tumors. 

3.2 Pten 

Pten encodes a phosphatase that antagonizes both PI3K/AKT and MAPK signaling cascades 

through its dual phosphatase activities (Myers et al., 1997). Thus, PTEN is a key element of 

the KIT/KITLG pathway. Interestingly, PTEN regulates its own expression by stabilizing its 

transcriptional activator TRP53 (Tang & Eng, 2006).  

In the testis, PTEN is expressed in PGCs, but not in Sertoli cells (Kimura et al., 2003). Loss of 

PTEN leads to embryonic death, and heterozygotes have a high tumor incidence (Di 

Cristofano et al., 1998). PGCs lacking PTEN have defects in mitotic arrest and slow 

pluripotency loss after E13.5 (Fig. 1), and form EC clusters (Kimura et al., 2003). A high 

apoptotic rate is observed in the testis after E13.5 but remains insufficient to counterbalance 

abnormal proliferation. All mutant males develop bilateral TGCTs (Kimura et al., 2003). Pten 

transcript levels are reduced at least 2-fold in E13.5 gonads in MOLF males compared with 129 

males (R. Zhu et al., 2007), suggesting that Pten is one of the genes on chromosome 19 that 

contribute to the high TGCT frequency. Furthermore, Pten is the only genetic variant that 

increases TGCT susceptibility to 100% in a mixed genetic background (Kimura et al., 2003).  

Adenosine triphosphate-binding domains on PTEN regulate its subcellular localization 

(Lobo et al., 2009). Defect in these domains results in a predominantly nuclear localization, a 

DNA repair defect, and an inappropriate regulation of G1/S progression associated with a 

reduced apoptotic rate (He et al., 2011). PTEN mislocalization also leads to a reduced 

nuclear TRP53 level and transcriptional activity (He et al., 2011). Thus, PTEN plays an 

important role in cell growth and tumorigenesis, by regulating apoptosis, pluripotency, 

chromosome stability, DNA repair and cell cycle arrest (Kimura et al., 2003; Shen et al., 2007; 

Saal et al., 2008; He et al., 2011). Whether PTEN localization affects TGCT susceptibility is an 

open question. 

3.3 Trp53 

The Trp53 gene encodes a tumor suppressor expressed in both PGCs and pre-Sertoli cells 

during embryogenesis, down-regulated after the birth in spermatogonia, and re-expressed 

in primary spermatocytes at pachytene, suggesting a role for TRP53 in control of meiosis 

(Almon et al., 1993; Schwartz et al., 1993). TRP53 activity is under the control of the 

PI3K/AKT pathway and depends of TRP53 phosphorylation (Xu, 2003). TRP53 regulates 

expression of several genes encoding mitotic regulators (i.e. CDKN1a, cyclin G1), the tumor 

suppressor PTEN, the pluripotent factor NANOG, and several apoptotic regulators (i.e. 

BAX, NOXA, PUMA) (Lin et al., 2005; Michalak et al., 2005; Tang & Eng, 2006). TRP53 also 

activates PUMA, which controls activity of BCL2 components and induces a mitochondria-
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dependent apoptosis (Chipuk et al., 2004; D. Liu et al., 2010). Thus, TRP53 controls many 

key cellular pathways including apoptosis, pluripotency, G1/S cell cycle arrest, and meiosis.  

DNA damage leads to deficiency of both germ and Sertoli cells after γ-irradiation of fetal 

testis due to apoptosis and a proliferation defect (Lambrot et al., 2007). PGC deficiency is 

associated with increased TRP53 activity and induction of BAX, PUMA and CDKN1a 

expression (Lambrot et al., 2007). In mice, loss of TRP53 phosphorylation leads to 

constitutive activation of TRP53 and in turn too embryonic lethality (D. Liu et al., 2010). In 

contrast, Trp53 -/- mice have normal development but a significantly reduced lifespan due 

to high predisposition for spontaneous tumors, especially lymphomas (Donehower et al., 

1992; Jacks et al., 1994). Disruption of the Trp53 gene in a pure 129 background increases 

TGCT incidence to 35-50% (Fig. 1) (Rotter et al., 1993; Donehower et al., 1995). Homozygotes 

have a giant-cell degenerative syndrome characterized by abnormal primary spermatocytes 

that arrest meiosis at pachytene, and form clusters leading to germ cell deficiency but 

remain fertile (Rotter et al., 1993). Heterozygotes are fertile with a 2-fold increase of TGCT 

frequency in the 129 strain (Rotter et al., 1993; Donehower et al., 1995). In a 50/50 mixed 

background of C57BL/6 and 129, the TGCT incidence is reduced to ~20% (Jacks et al., 1994). 

On these backgrounds, heterozygotes exhibit apparently normal testicular morphology 

(Rotter et al., 1993; Jacks et al., 1994; Muller et al., 2000). Thus, the combination of the Trp53 

defect and the 129 genetic background results in a synergistic increase of giant-cell 

syndrome and TGCT penetrance.  

3.4 Dmrt1 

Dmrt1 encodes a male-specific transcriptional factor (Raymond et al., 1999). In the testis, 

DMRT1 is strongly expressed in pre-Sertoli cells and then in both Sertoli and 

undifferentiated germ cells from P1 onward (Raymond et al., 1999). DMRT1 disappears in 

germ cells that enter meiosis, suggesting that DMRT1 regulates initiation of either meiosis, 

mitotic arrest, or both, in a stage-dependent manner (Raymond et al., 2000; Fahrioglu et al., 

2007). During embryogenesis, DMRT1 controls transformation of PGCs into gonocytes by 

regulating expression of pluripotent factors such as SOX2 and NANOG, and their entrance 

into a quiescent state by controlling some cell cycle inhibitors such as CDKN2d (Krentz et 

al., 2009; Murphy et al., 2010). After birth, the DMRT1 control of cell cycle kinases allows 

mitotic reactivation of male gonocytes. DMRT1 also plays a role in radial migration 

(Fahrioglu et al., 2007). Finally, DMRT1 acts as a transcriptional gatekeeper that controls the 

switch from mitosis to meiosis in the undifferentiated spermatogonia (Matson et al., 2010).  

Interestingly, DMRT1 also has an indirect control of critical developmental steps by 

regulating expression of the retinaldehyde dehydrogenases ALDH1A1 and ADH4 (Matson 

et al., 2010). These enzymes are expressed in Sertoli cells and convert vitamin A-derived 

retinal into retinoic acid. Retinoic acid regulates cell proliferation, migration and 

differentiation (Bowles et al., 2006; Koubova et al., 2006). Catabolism of retinoic acid is 

facilitated by cytochrome P450 enzymes such as CYP26B1, which is highly expressed until 

E13.5 by mitochondria in Sertoli cells (Li et al., 2009). Moreover, retinoic acid signaling is 

under the control of NANOS2, which is an RNA binding protein located in P-bodies, and is 

essential for male PGC development (Tsuda et al., 2003; A. Suzuki & Saga, 2008). PGCs 

lacking CYP26B1 enter meiosis at E13.5 and have a high apoptotic rate (MacLean et al., 
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2007). Similarly, NANOS2 loss affects gonocytes that re-enter in the proliferative phase at 

E15, immediately initiate meiosis, and finally are completely depleted at E18.5 (Tsuda et al., 

2003; A. Suzuki & Saga, 2008). DMRT1 loss in the 129 strain increases 10-fold the numbers of 

PGCs that escape mitotic arrest at E16.5 and return into pluripotent state to form EC clusters 

but without re-entry into meiosis as observed in Nanos2 -/- and Cyp26b1 -/- mutants 

(Raymond et al., 2000; Krentz et al., 2009). Thus, NANOS2, CYP26B1 and consequently 

retinoic acid are required in PGCs for quiescence, meiosis and survival, whereas DMRT1 is 

only required for quiescence and differentiation despite its role on retinoic acid pathway. 

Furthermore, Dmrt1-/- males are sterile and 90% of those develop TGCTs (Fig. 1) (Krentz et 

al., 2009). Interestingly, heterozygotes are fertile and the incidence of TGCTs is similar to 

that in 129 wild-type mice, suggesting that DMRT1 is haplo-insufficient for TGCTs.  

3.5 A
y
 and Eif2s2 

The Agouti-yellow (Ay), which is a ~170 kb deletion on chromosome 2 in mice includes the 

entire coding region of both Eif2s2 and Raly genes as well as a part of the Agouti gene 

(Michaud et al., 1994). Eif2s2 gene encodes the beta subunit of translation initiation factor 

eIF2 (Sarre, 1989). Raly encodes an RNA-binding protein that acts in pre-mRNA processing. 

Agouti encodes a signaling protein involved in the pigment synthesis in melanocytes 

(Michaud et al., 1994). Interestingly, the Ay deletion places the coding region of Agouti under 

the control of the Raly promoter, resulting in ectopic expression of Agouti (Duhl et al., 1994). 

As a result, Agouti is expressed in both PGCs and Sertoli cells, while RALY and eIF2s2 are 

lost in embryonic testes of Ay mice (Heaney et al., 2009). Homozygosity for Ay results in a 

pre-implantation lethality, whereas heterozygous Ay mice develop obesity, diabetes, yellow 

coat color traits, and have an increase of the propensity to develop a variety of spontaneous 

tumors (Duhl et al., 1994). Surprisingly, the Ay allele is the only genetic modifier known to 

suppress TGCT susceptibility in 129 mice and this phenotype results from loss of Eif2s2 

(Lam et al., 2004; Heaney et al., 2009). Indeed, loss of one Eif2s2 allele decreases at least 2-

fold (less for Ay allele) the high TGCT susceptibility observed in the 129-M19/M19 males 

(Fig. 1) (Lam et al., 2004; Heaney et al., 2009). This protective effect is due to a rescue of the 

G1/S mitotic arrest from E16.5 onward, but without effect on apoptosis, suggesting that 

Eif2s2 deficiency affects only the mitotic activity but not the survival of PGCs (Heaney et al., 

2009). In addition, spermatogenesis is normal in the mutant adult testis although the weight 

of testes is significantly reduced compared with their control 129-M19/M19 males, 

suggesting that reduced Eif2s2 impedes but does not repress adult germ cell maturation 

(Heaney et al., 2009).  

By using genetic targeting in mice, several genes have been identified that play a crucial role 

in PGC development and transformation into TGCTs. These genes act in distinct pathways 

and understanding their interrelation is a challenge for future research. 

4. From mouse models to humans: Molecular basis of TGCT development 

In this section, we compare results for genetic studies of TGCT susceptibility in humans and 

in mice (Table 1), with an emphasis on gene functions and protein pathways that control 

development of the PGC stem cell lineage and that modulate susceptibility to TGCTs. 
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4.1 The KIT/KITLG pathway  

The KIT/KITLG pathway controls migration, proliferation, survival and differentiation of 

PGCs during embryogenesis and spermatogenesis. Although both Kit and Kitlg mutations 

affect development of several stem cell lineages including PGCs, only specific mutations 

in the Kitlg gene affect TGCT risk in mice (Heaney et al., 2008). In humans, four different 

GWAS identified allelic variations at the KITLG locus in individuals with TGCTs (Rapley 

et al., 2009; Turnbull et al., 2010; Kanetsky et al., 2009, 2011). Somatic mutations of KIT are 

also reported in men with TGCTs (Looijenga et al., 2003). In addition, deregulated 

expression of KITLG and KIT was found in TGCT biopsies (Murty et al., 1992). Thus, the 

KIT/KITLG pathway appears to be crucial for TGCT development both in humans and 

mice.  

Similar evidence supports the hypothesis that the PI3K/AKT and MAPK signaling cascades 

modulate PGC transformation into TGCTs in humans and in mice:  

 The SPROUTY 4 (SPRY4) gene encodes an inhibitor of MAPK signaling by inhibiting 
RAS activation (Leeksma et al., 2002). SPRY4 is associated with TGCT susceptibility in 
humans (Rapley et al., 2009; Turnbull et al., 2010; Kanetsky et al., 2009, 2011). 

 TRP53 deficiency is a potent but unusual modifier of TGCT susceptibility in both 
humans and mice. Although common in many cancers in humans (K. Suzuki & 
Matsubara, 2011), somatic TRP53 mutations are exceptionally rare in TGCTs in humans 
(Murty et al., 1994; Peng et al., 1995); somatic Trp53 mutations do not appear to have 
been surveyed in mice. By contrast, germline TRP53 mutations are the molecular basis 
for Li-Fraumeni syndrome, which increases susceptibility to various cancers including 
TGCTs (Malkin et al., 1990), and germline Trp53 mutations also increase susceptibility 
to many cancers including TGCTs in mice (Rotter et al., 1993; Donehower et al., 1995). 
Together these observations suggest that TRP53 mutations act in the soma, rather than 
in the germline, to promote transformation of PGCs. 

Various elements of TRP53-mediated apoptosis have been implicated in TGCT 
development. Indeed, variation within the BAK1 gene is associated with TGCT cases in 
humans (Rapley et al., 2009; Turnbull et al., 2010). In addition, expression of Cox15, which 
encodes the mitochondrial cytochrome C oxidase assembly protein that is essential for the 
cell death program, is altered in testes of 129-M19 mice, which have a dramatically elevated 
TGCT risk (R. Zhu et al., 2007). 

Interestingly, double homozygosity for the KITLG and DMRT1 risk haplotypes increases 

risk 14-fold in humans (Kanetsky et al., 2011), suggesting that these haplotypes affect TGCTs 

in a non-additive manner. These interactions could arise either through pathways 

downstream of KIT that regulate DMRT1 activity, or through membrane-bound KITLG 

activating an intrinsic pathway in Sertoli cells that modulate the DMRT1 or the retinoic acid 

pathways. Pre-Sertoli cells are depleted in KitlgSl mutants (Tajima et al., 1991) and their 

development is altered in Dmrt1 -/- mice (Raymond et al., 2000; Krentz et al., 2009), 

suggesting that DMRT1 and KITLG are essential to Sertoli cell development and that pre-

Sertoli cells might be involved in tumorigenesis, reinforcing the hypothesis of functional 

relations between KIT/KITLG and DMRT1. Finally, it is possible that at least one element of 

the KIT/KITLG pathway is a target gene of the transcriptional regulator DMRT1.  
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Table 1. Candidate modifiers of TGCTs in humans and their orthologues in mice.  
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Other tyrosine kinase receptors that are expressed in PGCs may also contribute to TGCT 
development. A strong candidate is RET, which is activated by the growth factor GDNF 
receptor GFRA1. Gfra1 gene is located at 19D3 in mice, within a locus that was proposed as 
candidate TGCT modifier (Matin et al., 1999; Youngren et al., 2003). Furthermore, Ret is a 
known proto-oncogene (Grieco et al., 1990) and its expression is indirectly under the control 
of the TGCT modifier DMRT1 (Krentz et al., 2009). Allelic variations were identified at 
18q21 in TGCTs in humans (Murty et al., 1994; Crockford et al., 2006). This locus contains 
the Docking protein 6 (DOK6) gene that plays a role in RET signaling cascade (Crowder et al., 
2004). Interestingly, Dok6 gene is located on chromosome 18 in mice, reinforcing the 
hypothesis of the role of other tyrosine kinase receptors such as GDNF receptors on TGCT 
development (Anderson et al., 2009a). 

4.2 Telomerase and TGCTs 

By extending the TTAGGG telomeric nucleotide repeats, telomerase counterbalances loss of 
telomere length that usually occurs during cell division, and thus preserves chromosomal 
integrity (Venteicher et al., 2009). The active telomerase complex involves TERT (telomerase 
inverse transcriptase), the RNA component TERC, the ribonucleoprotein dyskerin (encoded 
by the X-linked DCK1 gene) and several other cofactors (Venteicher et al., 2009). Telomerase 
is activated by the telomerase Cajal body protein-1 (TCAB1) which is encoded by the 
WRAP53 gene (Jady et al., 2004).  

Mutations in TERT (Marrone et al., 2007), TERC (Vulliamy et al., 2001), DKC1 (Heiss et al., 

1998) and more recently WRAP53 (Zhong et al., 2011), which all lead to absence or 

dysfunction of telomerase, are found in congenital dyskeratosis, a human genetic deficiency 

characterized by abnormal skin pigmentation, bone marrow failure, and an elevated tumor 

frequency. Telomere defects are also associated with segmental progeria syndrome, which is 

characterized by accelerated ageing and is associated with a severe deficiency of adult stem 

cells in brain, bone marrow and testis (Burtner & Kennedy, 2010). Furthermore, telomerase 

dysfunction enhances tumor incidence in mice (Blasco et al., 1997). Thus, telomerase seems 

to play an essential role in stem cell development and cancer formation.  

Specific markers of TGCT susceptibility have been recently identified in humans at 12p13, 

which contains the gene encoding ATF7IP, an enhancer of TERT and TERC transcription, 

and at 5p15 within TERT (Turnbull et al., 2010). Furthermore, a marker of familial TGCT risk 

was located 50kb downstream of TERC (Crockford et al., 2006), and amplification of human 

Xq28 containing DCK1 was found in TGCTs (Skotheim et al., 2001). In mice, the primordial 

germ cell tumor 1 locus (pgct1), that contains Tert on chromosome 13, has been identified as 

an enhancer of TGCT susceptibility (Muller et al., 2000). Furthermore, loss of Tert in mice 

leads to PGC deficiency which increases accross generations, due to both reduced 

proliferation and increased apoptosis (Lee et al., 1998). This phenotype is more severe in 

males where PGC deficiency is complete at the sixth generation (Lee et al., 1998). Taking 

together, these observations highlight the involvement of telomerase and telomere biology 

in TGCT development. 

Interestingly, pgct1 locus interacts with TRP53 to modulate TGCT susceptibility in mice 

(Muller et al., 2000), and Wrap53 is a natural antisense transcript of Trp53 and regulates the 

levels of TRP53 in response to DNA damage (Mahmoudi et al., 2009). Furthermore, 
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telomerase dysfunction activates TRP53-dependent apoptosis (Chin et al., 1999). By contrast, 

progeria-like syndromes have been associated with alterations in TRP53-dependent 

apoptosis (D. Liu et al., 2010). Given these results and that both congenital dyskeratosis and 

segmental progeria affect similar stem cell lineages as KIT/KITLG defect (melanogenesis, 

gametogenesis and hematopoiesis), we propose an interrelation between KIT/KITLG 

pathway, via TRP53, and telomerase, via TERT and WRAP53, during embryogenesis that 

contributes to tumorigenesis. 

4.3 Sex chromosomes and TGCTs  

Males with Klinefelter’s syndrome (also known as XXY syndrome) have 50-fold greater 

TGCT risk (Gustavson et al., 1975). Secondly, gain of X chromosomes has been described in 

TGCTs in humans (Peltomaki et al., 1990; Skotheim et al., 2001). Third, chromosome X from 

the C57BL/6 strain reduces tumor incidence in 129-Ter/Ter mice (Hammond et al., 2007), 

suggesting that genes linked to chromosome X both in mice and humans modulate TGCT 

incidence. In addition to DCK1 at Xq28 in humans, other interesting genes are Sperm protein 

associated with the nucleus mapped to the X chromosome (SpanX) clusters at Xq27, a locus named 

Tgct1, which has been linked with bilateral TGCTs and undescended testicular syndrome in 

humans (Rapley et al., 2000; Kouprina et al., 2004; Crockford et al., 2006). Although the 

function of SPANX proteins is unknown, evidence is accumulating that suggests their 

involvement in tumorigenesis. For example, SPANX genes are deregulated in Down’s 

syndrome subjects who have undescended testis and an increased risk of TGCTs (Satge et 

al., 1997), further suggesting interaction of genes located on chromosome X and 

chromosome 21 for TGCT susceptibility. SPANX genes have a testis-specific expression that 

is conserved in rodents and humans, and was also detected in EC clusters and TGCTs 

(Westbrook et al., 2004; Salemi et al., 2006).  

Similarly, a complete loss of chromosome Y in humans (45 XO karyotype) reduces TGCT 
susceptibility (Soh et al., 1992). Furthermore, the rare gr/gr deletion of the Y chromosome 
that removes part of the AZFc region (Yq11) is found in men with infertility and low-
penetrance for TGCT susceptibility (Nathanson et al., 2005). This deletion affects DAZ 
(deleted in azoospermia), BPY2 (Basic protein, Y-linked) and CDY1 (chromodomain protein, 
Y-linked 1). DAZ encodes an RNA-binding protein that interacts with the P-body 
component PUM2 in PGCs (Moore et al., 2003). The functions of CDY1 and BPY2 remain 
unknown. Moreover, aberrant expression of testis-specific protein on Y (TSPY) at Yp11 in 
humans may contribute to predisposition for TGCTs (Y.F. Lau, 1999), revealing a differential 
effect of the Y chromosome on TGCT risk. In mice, neither the MOLF-derived nor the 
C57BL/6-derived chromosome Y significantly affects susceptibility in 129 mice (Hammond 
et al., 2007). However, by using a sex-reversed mouse model, TGCTs were not found in the 
absence of the Y chromosome (Anderson et al., 2009b). Furthermore, a possible interaction, 
which suppress TGCT susceptibility in mice, was described between the Y-linked genes, 
which have a low-penetrance for TGCTs, and either the Dnd1 gene (chromosome 18) or the 
genes located on chromosome 19 (perhaps Dmrt1 given its role in sex differentiation and in 
TGCT susceptibility) (Anderson et al., 2009b). This hypothesis is supported by the fact that 
Dnd1 has sex-dependent effects on PGC survival and tumor susceptibility. Indeed, Dnd1 is 
differentially expressed in XX (down-regulation) and XY (up-regulation) gonads (Youngren 
et al., 2005). Loss of Dnd1 leads to PGC deficiency that increases with age in males, but not 
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in females (T. Noguchi & M. Noguchi, 1985). Furthermore, the few mutant germ cells that 
successfully migrate to the gonad give rise to mature oocytes in females, while in testes, they 
give rise to TGCTs in 95% of cases (Cook et al., 2009).  

Thus, sex chromosomes seem to play a crucial role in TGCT susceptibility. Identification of 

the candidate genes and of their interrelation remains to be elucidated. 

4.4 RNA biology, epigenetic regulation and TGCTs  

The translational complex eIF2 is composed of the alpha (eIF2s1), beta (eIF2s2) and gamma 

(eIF2s3) subunits (Sarre, 1989). Eif2s2 is a TGCT modifier in mice (Heaney et al., 2009), but 

remains to be confirmed in humans. Eif2s3 is located on both Y (Eif2s3y) and X (Eif2s3x) 

chromosomes in mice (in humans, no Y homologues have been found) (Ehrmann et al., 

1998). Given the role of sex chromosomes discussed above, Eif2s3 should be considered as a 

candidate for TGCT susceptibility. EIF4E is another translational factor which acts 

downstream of PI3K/AKT pathway. Interestingly, eIF4E is a potent oncogene (Wendel et 

al., 2004), regulated by the poly(A)-binding protein and its cofactor PAIP2 (Yanagiya et al., 

2010). Paip2 is located on mouse chromosome 18 near the Ter locus (Asada et al., 1994). 

Finally, Eif3a encodes another translational factor located on chromosome 19 in mice within 

a region involved in TGCT susceptibility (Matin et al., 1999; Youngren et al., 2003), but its 

direct role in TGCTs remains to be tested in mice and humans.  

Translation is under the control of P-bodies, which regulate many mRNA processes (i.e. 

post-transcriptional regulation, degradation, storage, transport, and stabilization) in cells 

under normal physiological conditions or in response to stress (Seydoux & Braun, 2006; 

Parker & Sheth, 2007). P-bodies are essential for male PGC development and probably also 

for tumorigenesis given the involvement of its major components (Hayashi et al., 2008; K.M. 

Nelson & Weiss, 2008). DDX3, which encodes a helicase of P-body, is located on both Y 

(DDX3y) and X (DDX3x) chromosomes in mice and humans, and has been identified as a 

tumor suppressor (Chao et al., 2006). Given the role of sex chromosomes and the close 

location of Ddx3y and Eif2s3y in mice, DDX3 should also be considered as a candidate for 

TGCT susceptibility. Interestingly, another DDX gene (DDX23) is located at 12q13 in 

humans, a locus which has been associated with TGCTs (Crockford et al., 2006). In addition, 

PGCs lacking DICER1, another helicase, are depleted around E13.5 in mice (Hayashi et al., 

2008), suggesting an essential role of Dicer1 in PGC development. Dicer1 has been also 

identified as a potential tumor suppressor in mice and probably also in humans (Su et al., 

2010). Nanos1, which encodes an RNA binding protein, is located on chromosome 19 in 

mice, within a region involved in TGCT susceptibility (Matin et al., 1999; Youngren et al., 

2003). Finally, allelic variations within the X-fragile mental retardation (FMR) genes (FMR1, 

FMR1nb and FMR2) at Xq27 in humans have been identified in TGCTs (Crockford et al., 

2006). These genes encode RNA binding proteins that are involved in translation regulation 

through an interaction with the DICER and Argonaute proteins (Jin et al., 2004). The number 

of CGG trinucleotide repeats in the 5’-untranslated region of FMR1 and their DNA 

methylation pattern determine the severity of FMR-related pathogenicity (Fu et al., 1991; 

McConkie-Rosell et al., 1993). Furthermore, loss of Fmr1 alters both proliferation and 

differentiation of several stem cell lineages including PGCs (Castren et al., 2005), suggesting 

a role of FMR1 in TGCT susceptibility.  
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Additional evidence shows an association between DNA methylation and TGCT 

susceptibility. First, DNA methylation in male PGCs is largely erased at E10.5-E11.5 and 

partially reestablished at E13-E14 (Sasaki & Matsui, 2008). This epigenetic reprogramming 

completely overlaps the critical period for TGCT formation (E11.5-E13.5) (Stevens & Little, 

1954; Stevens, 1967). Secondly, the DNA methyltransferase DNMT3L has been recently 

identified as a novel marker of TGCTs in humans (Minami et al., 2010), in accordance with 

the fact that TGCTs have a distinct epigenetic profile from other cancers (Ushida et al., 2011). 

Third, other genetic markers for TGCTs have been identified: (1) in humans, at 2p23 which 

contains DNMT3A, and at 12q13 which contains gene encoding the histone deacetylase 

HDAC7 (Crockford et al., 2006); (2) in mice, on a region of chromosome 18 that contains 

genes encoding two methyl-binding proteins MBD1 and MBD2 (Anderson et al., 2009a), and 

on chromosome 19 at a region that contains the remodeling chromatin factor Smarca2 (Matin 

et al., 1999; Youngren et al., 2003). Other studies correlate up-regulation of DNMT3A with 

demethylation of specific loci in TGCTs in humans (Ishii et al., 2007), and inhibition of both 

DNMTs and HDACs with prevention of cancer formation (W.G. Zhu & Otterson, 2003). 

Another TGCT marker has been identified at 4q24 in humans near the CENP-E gene that 

encodes a centromeric-associated protein required for establishing and maintaining of the 

mitotic checkpoint (Abrieu et al., 2000; Rapley et al., 2009). CENP-E is described in mice as 

tumor-suppressing or -promoting factor depending on the context (Weaver et al., 2007). 

Interestingly, TRP53 has been associated with DNA demethylation (Ashur-Fabian et al., 

2010) and several TRP53-target genes show aberrant methylation pattern in TGCTs in 

humans (Christoph et al., 2007). 

5. Transgenerational genetic effects on TGCT susceptibility 

Growing evidence suggests an alternative molecular basis of inheritance that complements 

conventional Mendelian inheritance with a similar strength, frequency and persistence 

across multiple generations (V.R. Nelson & Nadeau, 2010). These alternatives could involve 

four different forms: (1) environmental factors that create an epigenetic state that persists 

across generations (transgenerational environmental effects); (2) ancestral genetic factors 

that are sufficient to initiate epigenetic inheritance (transgenerational genetic effects); (3) 

environmental factors that have an epigenetic effect only in genetically predisposed 

individuals (transgenerational gene-environmental interactions); and (4) genetic variants in 

parents and others in offspring that interact to create an epigenetic state in offspring 

(transgenerational gene-gene interactions) (V.R. Nelson & Nadeau, 2010). The evidence for 

transgenerational genetic effects, as well as the implication inheritance of TGCT 

susceptibility will be discussed in this section.  

5.1 Environmental effects  

Pesticides and insecticides were intensively used in agricultural industries during previous 

decades. These chemicals, which are now found in foods and water, contain endocrine 

disruptors that act primarily through nuclear hormone receptors such as estrogen and 

androgen receptors (Danchin et al., 2011). In utero, perinatal or neonatal exposures affect 

male reproduction leading to infertility with an increase of testicular abnormalities and 

germ cell cancers in humans (A. Giwercman & Y.L. Giwercman, 2011). These effects can be 
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reversible, permanent or even transgenerational, and involve alterations of DNA 

methylation (Anway et al., 2005; Danchin et al., 2011; Kalfa et al., 2011).  

Other natural nutrients could also modulate predisposition to disease such as TGCTs. As 
discussed above, vitamin A plays an essential role in PGC development and might also 
influence TGCT susceptibility. Similarly, folate which is a methyl-donor nutrient affects 
DNA methylation and is essential for PGC development (Danchin et al., 2011). Determining 
the effects of folate and vitamins on TGCT susceptibility, and whether supply of these 
nutrients can reverse TGCT development is a challenge for future research both in rodents 
and humans. A related challenge is understanding relation between genetic modifiers and 
environmental factors on TGCT susceptibility. 

5.2 Parent-of-origin effects  

While environmental factors could affect reproductive health across generations in a parent-
of-origin manner (Anway et al., 2005; Kalfa et al., 2011), two examples reveal similar 
parental-dependent transgenerational effect of TGCT modifier genes in mice.  

Loss of KITLG (KitlgSl, KitlgSlJ and KitlgSlgb) in mice causes 2-fold increase of TGCT 
susceptibility in the 129 strain (Stevens, 1967; Heaney et al., 2008). Surprisingly, among the 
progeny of the KitlgSlgb/+ males, wild-type sons never develop TGCTs (5% expected), 
whereas wild-type sons of the reciprocal crosses (maternal KitlgSlgb allele) are affected at the 
expected rate (Fig. 2) (Heaney et al., 2008). Thus, absence of one Kitlg allele in the male 
germline leads to an epigenetic change that affects TGCT susceptibility in the predisposed 
129 strain. Whether this protective effect persists across generations is currently being tested 
(E. Leung & J.H. Nadeau). Determining the molecular basis of this epigenetic modification, 
and whether other Kitlg mutant males (i.e. KitlgSl and KitlgSlJ) have similar effects remain to 
be determined. 

 

Fig. 2. Example of parental transgenerational effects in a mouse model for TGCTs. 

Similarly, wild-type sons of females with the Ay allele, which acts as a TGCT suppressor due to 
the deletion of Eif2s2, have a 65% of risk being affected (80% expected) (Heaney et al., 2009; 
J.D. Heaney & J.H. Nadeau, unpublished), revealing another example of a transgenerational 
effect on TGCTs transmitted in this case through the maternal germ-lineage.  

5.3 Gene-gene interactions  

The intercross of Trp53 -/+ and KitWv -/+ mice yields {KitWv -/+; Trp53 -/+} double 
heterozygotes which are intercrossed to generate double homozygotes (Jordan et al., 1999). 
Surprisingly, {KitWv -/-; Trp53 -/-} males are fertile due to a rescue of PGCs at E13.5 (Jordan et 
al., 1999), confirming that the high rate of apoptosis observed in KitWv -/- embryonic gonads 
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depends on KIT/KITLG-TRP53 interactions. Loss of both TRP53 alleles is necessary to 
rescue fertility because both {KitWv -/-; Trp53 +/+} and {KitWv -/-; Trp53 -/+} males are sterile 
(Jordan et al., 1999). Interestingly, only 10% of normal {KitWv -/-; Trp53 -/-} germ cells are 
present in the adult testes, compared to 34% after birth. This deficiency in the adult testes 
correlates with presence of testicular abnormalities (germ cell radial migratory defect, 
meiotic failure and apoptosis). As discussed above, these testicular abnormalities could be 
the origin of TGCTs. Unfortunately, this study was conducted on a mixed background and 
the TGCT susceptibility of these offspring remains to be investigated in the 129 strain. 
However, intercrosses of Trp53 -/+ and KitlgSlJ -/+ mice give the double heterozygous {KitlgSlJ 
-/+; Trp53 -/+} males that have a surprising 4-fold reduced TGCT frequency (7%; 26% 
expected) (Lam et al., 2004), suggesting that Kitlg and Trp53 genes can interact to 
counterbalance their effects on TGCT susceptibility. The effect of this gene interaction on 
PGC development remains to be investigated. 

KitlgSlJ allele interacts also with the MOLF-derived chromosome 19. Indeed, the double 
heterozygotes {KitlgSlJ -/+; M19/+} have a significantly increased TGCT susceptibility (57%; 
45% expected) due to an increase in the number of bilateral cases (Lam et al., 2004). These 
results suggest that KitlgSlJ hemizygosity potentiates the effect of M19 on TGCT susceptibility.  

The intercross of C57BL/6-Bax -/- and 129-Ter/Ter mice yields double homozygotes {Ter/Ter; 

Bax -/-} that show at least 50% of PGCs rescued at E13.5 (Cook et al., 2009), demonstrating 

that the PGC deficiency in 129-Ter/Ter males is due to BAX-mediated apoptosis. However, 

rescued PGCs are completely lost in adult, suggesting that mechanisms affecting PGC 

development after E13 are BAX-independent in 129-Ter/Ter mice. This hypothesis is 

supported by the observation that loss of BAX does not affect the TGCT frequency, which 

remains elevated (91%; 94% expected) (Cook et al., 2009). Surprisingly, the {Ter/Ter; Bax -/+} 

males have a 2-fold decrease of tumor risk and {Ter/Ter; Bax +/+} males do not develop 

TGCTs (Cook et al., 2009). This protective phenotype is interesting but we cannot determine 

whether it results from a genetic background effect (C57BL/6 vs 129) or from a genetic 

interaction (Bax vs Dnd1). Backcrosses of the double homozygotes {Ter/Ter; Bax -/-} to pure 

C57BL/6 background mice suppress the TGCT susceptibility (Cook et al., 2011), favoring a 

background effect on TGCT susceptibility.  

The double {Ter/Ter; Sf1 -/+} mutants in the 129 strain have a 2-fold reduction in risk due to a 

reduced frequency of bilateral tumors (R. Zhu et al., 2010). Despite this protective effect on 

TGCT formation, all mutant males are sterile due to a complete germ cell deficiency (R. Zhu 

et al., 2010). This phenotype is similar as those observed in the {Ter/Ter; Bax -/+} males 

suggesting a common pathway involving both SF1 and BAX on PGC deficiency in 129-

Ter/Ter mice.  

The interaction of Ter allele with the four risk alleles KitlgSlJ, mutated Trp53, M19 and Ay in 

the respective double heterozygous males increased TGCT susceptibility at least 2-fold in 

the 129 strain by enhancing the frequency of bilateral tumors (Lam et al., 2007). Surprisingly, 

all {Ter/+; +/+} males of these four intercrosses also have a 2-fold increase in TGCT 

frequency, suggesting transgenerational epistasis that acts only in the presence of the Ter 

allele in the offspring generation. The mechanism underlying interactions with the Ter allele 

remains elusive, although the new role of DND1 in the micro-RNA biology (Kedde et al., 

2007) may be one ways by which this transgenerational effect acts.  
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6. Conclusions 

Mouse models of TGCTs have made major contributions to stem cell biology, 

developmental biology of the PGC lineage, and genetic and epigenetic studies of TGCT 

susceptibility.  

The germ cell lineage, which has been termed the ‘mother of all stem cells’, carries DNA and 

other molecular features that together constitute our genetic and epigenetic heritage 

(Donovan, 1998). Controlling differentiation and proliferation of PGCs, which belong to the 

only lineage of cells that naturally show totipotency is therefore essential for maintaining 

their integrity. Many factors have been shown to affect molecular mechanisms regulating 

pluripotency versus differentiation, proliferation versus death, and migration versus stasis 

during normal PGC development (Pesce et al., 1993; Lin et al., 2005; Shen et al., 2007; 

Heaney et al., 2009; Murphy et al., 2010; Cook et al., 2011). In parallel, insights are beginning 

to emerge about the ways in which anomalies in these factors and processes lead to 

transformation (Rotter et al., 1993; Kimura et al., 2003; Youngren et al., 2005; Heaney et al., 

2008; Krentz et al., 2009). Despite their fundamental relevance to understanding important 

aspects of human biology, these studies are obviously difficult to conduct in humans. Thus, 

studies of PGCs and their transformed derivatives in mice will likely remain relevant to our 

understanding of the genetics and developmental origins of TGCTs in humans. 

Despite being a common cancer in young men (Buetow, 1995), with heritable TGCT risk 

among the highest of all cancers (Gilbert et al., 2011), the genetic control of inherited 

susceptibility has proven to be remarkably elusive. However, with the availability of 

complete panels of genetic markers, high-throughput assays, and increasingly rigorous 

analytical methods, both linkage analysis and GWAS have begun to yield results. The first 

breakthrough involved the gr/gr deletion on the X chromosome (Nathanson et al., 2005), 

followed more recently with GWAS evidence for KITLG, SPRY4, DMRT1, TERT, BAK1 

and ATF7IP as strong candidate susceptibility genes (Rapley et al., 2009; Turnbull et al., 

2010; Kanetsky et al., 2009, 2011). The recent evidence for involvement of KITLG in 

humans was anticipated by corresponding evidence in mice involving mutations in the 

Kitlg gene (Heaney et al., 2008). The fact that some but not all Kitlg mutants affect 

susceptibility implies that allele-specific tests and structure-function studies will both be 

important to understand the ways in which KITLG variants affect TGCT susceptibility in 

humans.  

More recently, heritable epigenetic changes have been shown to strongly influence TGCT 

risk in mouse models. In particular, TGCT modifier genes in the parental generation were 

shown to interact with the Dnd1 modifier to increase both the number of affected males and 

the proportion of bilateral cases (Lam et al., 2007). Similar evidence for transgenerational 

genetic effects has also been reported for Kitlg mutants (Heaney et al., 2008). These and 

related discoveries suggest that heritable epigenetic changes might be as important as 

conventional genetic effects in controlling inherited TGCT risk, and might account for the 

substantial difference in risk between sons and brothers of cases (Hutter et al., 1967). 

Identifying the nature of these epigenetic factors, characterizing their molecular 

mechanisms, and testing their contribution to TGCT susceptibility in humans and in mice 

remain major challenges. 
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