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1. Introduction 

The long history of investigations into the causes and potential treatments of emphysema 
encompasses a vast array of chemical and biological research disciplines. A key finding that 
played a major role in initiating these inquiries occurred in 1963 when Laurell and 
Eriksson[1] found that individuals with a genetic deficiency in serum alpha-1-antitrypsin 
(AAT) were prone to develop pulmonary emphysema[2]. This genetic linkage was given a 
mechanistic basis when Turino and colleagues in 1969 discovered that patients with reduced 
inhibition of pancreatic elastase also lacked serum AAT and were prone to develop severe 
pulmonary emphysema[3]. Subsequent studies in the early 1970s confirmed that excessive 
elastase activity due to lack of AAT was in fact the genetic mechanism responsible for the 
onset of emphysema [4-7]. A key environmental connection was made with the discovery 
that cigarette smoke increased macrophage secretion of elastase[8] in the lungs, oxidized 
AAT[9], and that the chemical irritants in smoke recruited neutrophils to the lungs via 
chemotaxis[10-12]. This integrated genetic-environmental understanding firmly established 
elastase inhibition as a mechanistic target for preventing the alveolar destruction 
characteristic of emphysema. 

The validation of elastase[13, 14 ] as a protein target for treating emphysema, motivated 
three different therapeutic approaches, 1) infusing patients with AAT purified from 
serum[15], 2) development of small molecule inhibitors[13, 16, 17], 3) novel association of 
small peptides[18] and synthetic inhibitors [19] with albumin microspheres. The first 
approach is a biological therapeutic, the second approach is a chemical therapeutic, and the 
third approach is a prescient recognition that in vivo efficacy will likely require long lung 
residence time pharmacodynamics. The Pharmaceutical industry launched several major 
multi-decade programs to develop orally available small molecule inhibitors, while 
apparently completely ignoring the concurrent academic medical research beginning to 
unravel the complex biology of emphysema and its indication that oral delivery of small 
molecules was unlikely to have any therapeutic benefit. Interestingly, a completely different 
basic research discipline, X-ray crystallography, had a seminal impact on the class of 
molecules from which Zeneca derived their clinical candidate. The first structure[20] was 
solved In 1976 by Alber, Petsko, and Tsernoglou, which showed atomic resolution details of 
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elastase digesting a substrate. Sawyer and colleagues deposited the first high resolution 
crystal structure of porcine pancreatic elastase[21] into the protein data bank, and in 1982 
Hughes and colleagues[22] solved a structure of the enzyme bound to a trifluoroacetyl 
dipeptide inhibitor (deposited in the PDB in 1986), thus making high resolution structures 
with and without bound ligand available to the research community. The trifluoroacetyl 
motif (shown in Figure 1) became a cornerstone of Zeneca’s small molecule research 
program[23-32], which resulted in the clinical candidate ICI 200,880[33]that was halted due 
to lack of efficacy in Phase II clinical trials. 

 

Fig. 1. Co-crystal structure taken from the protein data bank file 2EST. This structure shows 
the catalytic serine (shown in space fill) performing a nucleophilic attack on the carbon of 
the ketone attached to a trifluoromethyl group – the fluorines are shown in light blue. The 
highly electronegative fluorine atoms significantly enhance the electropositive nature of this 
carbon and hence trifluoromethyl-ketone molecules have a high affinity for elastase. 

Even as the first therapeutics were being developed, a report on neutrophil lung recruitment 
via elastin peptide chemotaxis [34] gave the first indications of the complexity and 
immunological involvement [35] in the development of pulmonary diseases. Elastase digests 
elastin resulting in peptide fragments that elicit circulating neutrophils to enter the lungs. 
These neutrophils secrete fresh elastase causing new lung damage, new elastin peptide 
fragments and recruitment of new neutrophils again secreting fresh elastase into the lungs 
in a destructive feedback loop. These studies already presented evidence that inhibiting 
elastase in the short term would be insufficient to treat emphysema. Compounding the 
complexity, early elastase inhibitors administered intraperitoneally that showed promise in 
stemming emphysema, cleared rapidly [36] in vivo with concomitant renal nephropathy [17]. 
The complex interplay between lung injury and immune response that begins with a single 
intratrachael instillation of elastase motivated many detailed studies aimed at elucidating 
the basic biology of emphysema progression. Early key findings on the long term effects on 
lung tissue of only one exposure to elastase includes, 1) ultrastructural changes occurring 16 

www.intechopen.com



 
The Dichotomy Between Understanding and Treating Emphysema 

 

71 

days later [37], 2) dose related changes in pulmonary function after 4 weeks [38], 3) 14 day 
lung residence time of the enzyme complexed with alpha-macroglobulin [39], 4) resistance 
to AAT inactivation in the presence of activated neutrophils [40], 5) uptake by alveolar 
macrophages with subsequent re-release of elastase [41]. Additionally, activated neutrophils 
can secrete elastase for over 12 days [42].  

2. Lessons from the Stone lab 

While the complex biology of emphysema most likely precludes treatment using a simple 
small molecule elastase inhibitor strategy, important physiological parameters essential for 
developing an effective therapeutic modality were reported by Stone and Lucey between 
1988 and 1991. These investigators showed that, 1) one intratracheal dose of elastase causes 
maximum damage after 4 weeks [43], 2) a potent elastase inhibitor given intratracheally in 
170-fold molar excess has a lung half-life of 4 minutes (Figure 2) and actually results in 
worse emphysema relative to animals given saline with no elastase [44], 3) covalently 
linking an active small molecule to a polymer of hydroxyethyl-aspartamide (stationary 
phase for hydrophilic column chromatography) results in a lung half-life of 441 minutes and 
amelioration of elastase induced emphysema [45]. This collection of results indicates that 
long lung residence time is an essential component of any meaningful emphysema 
treatment and that elastase must be down-regulated continuously for at least 4 weeks. 

 

Fig. 2. This is a recreation of the data from Phil Stone’s lab showing that small molecule 
elastase inhibitors have a lung half-life of 4-5 minutes. It is important to understand that these 
experiments were conducted by intratracheally instilling the small molecule elastase inhibitor 
and thus 100% of the dose was initially deposited into the lungs. Small molecules administered 
orally will result in only a tiny fraction of the dose ever actually entering the lungs. 
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3. Combining inhibitors with surfactant replacement therapy 

Even though Zeneca’s clinical candidate ICI 200,880 was halted in Phase II clinical trials for 
lack of human efficacy, the molecule possessed two essential features of a drug, 1) high affinity 
anti-elastase activity, and 2) it was deemed safe to give to humans as evidenced by passing 
Phase I clinical trials. When the small molecule chemistry work of Zeneca is combined with the 
in vivo biology work of Phil Stone, the logical conclusion is that an efficacious in vivo 
emphysema treatment requires that ICI 200,880 somehow be recast so that it spreads across the 
vast surface area of the lungs and resists being expelled into systemic circulation. If such a 
recasting could be achieved, the long lung residence time could result in an immune response, 
thus ultimately negating the treatment. So the next logical step places the strong constraint that 
any adjuvant molecule used to do the recasting must naturally reside in the lungs. A natural 
lung molecule that has the intrinsic properties of spreading across the vast surface area of the 
lungs is a defining property of the lung surfactants. 

 

Fig. 3. NMR structure of residues 1-25 from the N-terminal of surfactant peptide B taken 
from the protein data bank file 1DFW. An important feature of this peptide is its 
amphiphilic structure as illustrated by having one face composed of hydrophobic residues 
and the opposite face composed of charged and hydrophilic amino acids. 

Human lung surfactant is a complex mixture of lipids and peptides that was extensively 
studied in the 1980s when it was realized that delivering surfactant harvested from animals to 
the lungs of severely pre-term infants is a life-saving [46-52] procedure. Early biophysical 
studies of lung surfactant indicated that it was ~90% lipids and ~10% protein by weight [53]. 
Detailed analysis showed that the protein component was actually made up of 4 different 
molecules, 2 larger hydrophilic proteins and 2 smaller hydrophobic proteins [54, 55]. 
Remarkably, when 1% or 0.1% by weight of the smallest of these proteins isolated from lavage 
fluid was added to synthetic phospholipids, both mixtures essentially eliminated dynamic 
surface tension in biophysical experiments [56, 57], a result that the investigators admitted was 
truly startling. The protein with such astounding surface active properties is a 79 residue 
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peptide now called surfactant protein B. What is even more amazing is that subsequent 
biophysical studies demonstrated that the first 25 amino acids possesses essentially identical 
surface active properties[58, 59] to the whole protein (Figure 3). Further confirmation of the 
importance of the first domain of surfactant protein B comes from Discovery Labs with their 
Phase III clinical studies that one dose of (Lys-Leu-Leu-Leu)4 [60] a mimetic of SP-B 1-25 added 
to cow lavage dramatically reduces mortality in severely preterm infants [61].  

4. Conclusion 

The long, involved, complicated history of emphysema integrates genetics, protein and 
small molecule therapies, medicinal chemistry, crystallography, biophysics, and several 
other research disciplines. Interestingly, all of this complexity can lead to a rather simple 
conclusion - that covalently linking Zeneca’s clinical candidate to the first 25 residues of 
surfactant peptide B (Figure 4) would be an effective long acting anti-emphysema treatment 
if delivered intratracheally. When these studies were carried out[62], one dose of the SP-B 
(1-25)-Zeneca peptide-small molecule construct completely protected rodents exposed to 
near lethal doses of the human neutrophil elastase for 4 weeks (Figures 5&6). Of course it 
remains to be seen whether or not this simple idea will prove to be efficacious in humans, 
because recent studies have demonstrated that AAT plays a complex multifactorial role in 
the recruitment of neutrophils into the lungs. For example, Li[63] and colleagues have 
demonstrated that oxidized AAT induces lung epithelial cells to release IL-8, resulting in 
CXCR1 mediated neutrophil chemotaxis into the lungs, while Bergin[64] and coworkers 
have shown that glycosylated AAT sequesters IL-8 disrupting activation of CXCR1 and 
neutrophil mobilization. To further complicate matters, calpain[65] induces TNF-alpha 
mediated neutrophil chemotaxis and AAT binds to and inhibits calpain[66] thus preventing 
lung neutrophil infiltration by yet another mechanism. Even with all of this complexity and 
its implications that antioxidant therapy may be beneficial, the long established destructive 
role of unchecked elastase activity makes this enzyme a central target for inhibiting the 
progression of the alveolar wall destruction characteristic of emphysema as evidenced by 
the extensive pharmaceutical development that has gone into this endeavor, which includes 
small molecules from ONO[67], Merck[68], Zeneca[24], and Glaxo[69] (Figure 7). 

 

 

Fig. 4. A small molecule from the Zeneca family of fluoro-peptidomimetics covalently linked 
to the N-terminal of the first 25 residues of surfactant peptide B. 
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Fig. 5. Emphysema is induced in rodents by intratracheally instilling human neutrophil 
elastase. When elastase is administered with a potent Zeneca small molecule inhibitor, the 
rodents develop emphysema after 4 weeks to the same degree as rodents given no inhibitor. 
The small molecule was in 70-fold molar excess concentration relative to elastase. 

 

Fig. 6. When this exact same small molecule was covalently linked to the fragment of 
surfactant peptide B as shown in Figure 4, one dose given in 30 fold molar excess completely 
protected the animal for 4 weeks. All animals were dosed with a mixture of HNE and either 
the Zeneca small molecule or the Zeneca small molecule covalently attached to the 
surfactant peptide and sacrificed after 4 weeks. 
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Fig. 7. Small molecule elastase inhibitors from ONO, Merck, Zeneca, and Glaxo. 
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