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1. Introduction 

The mammalian immune system consists of two branches- innate and adaptive immune 

systems and together they provide protection against infection. Innate immunity is a first 

line of host defense and is responsible for immediate recognition of pathogens to prevent 

microbial invasion. In addition innate immune responses also stimulate adaptive immune 

system (Medzhitov and Janeway, 1997). Cellular components of innate immune system 

include mucosal epithelial cells, macrophages, neutrophils, natural killer cells, basophils, 

eosinophils and others. The airway mucosa represents the body’s largest mucosal surface 

and is the first point of contact for inhaled microorganisms, environmental pollutants, 

airborne allergens and cigarette smoke (Diamond et al., 2000). Airway mucosa provides 

protection against potentially hazardous inhaled factors by multiple mechanisms. For 

instance, mucus secreted by the airway epithelium covers the apical surface of airway 

epithelium and traps inhaled microorganisms, allergens and particulate material. The 

trapped material is then cleared by mucociliary escalator away from lungs and towards the 

pharynx. Tight junctions between the polarized airway epithelial cells restrict the 

paracellular movement of solutes and ions, and prevent pathogens from gaining access to 

the submucosal compartment. In addition to its role as a physical barrier between 

environmental factors and internal milieu, airway epithelial cells also play a critical role in 

bridging innate and adaptive immune defenses (Hammad and Lambrecht, 2011; Kato and 

Schleimer, 2007). Airway epithelial cells express number of innate immune receptors also 

known as pattern recognition molecules, which recognizes pathogen-associated molecular 

patterns (PAMPS) or danger-associated molecular patterns (DAMPS) to initiate appropriate 

innate defense mechanisms. This includes elaboration of antimicrobial molecules, pro-

inflammatory cytokines and chemokines that recruits and activates other mucosal innate 

immune cells. The responses of activated innate immune cells lead to recruitment of 

immune cells into epithelium or airway lumen and initiate adaptive immune responses. 

Continuous exposure to environmental stimuli, such as cigarette smoke, noxious gases or 

other environmental hazards may lead to prolonged and aberrant activation of airway 

epithelial cells resulting in excessive expression of pro-inflammatory cytokines and 

chemokines that recruit large number of inflammatory cells into airway lumen. This in turn 

leads to persistent inflammation, airway damage and abnormal repair, impaired innate 

immune responses. There are reports suggesting that exposure to cigarette smoke also 
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dampens the needed innate immune responses to infection, thereby promoting the 

persistence of infecting organism. This may result in delayed but sustained inflammation 

that can lead to progression of lung disease. In this chapter, we will discuss how the 

impaired innate immune defense mechanisms fail to provide protection against invading 

pathogens and its impact on progression of lung disease in patients with chronic obstructive 

pulmonary disease (COPD). 

2. Barrier function of airway epithelium 

Airway epithelium lines the entire airway mucosa. In normal adult human, the large 

airways are cartilaginous and mainly made up of ciliated cells, mucus producing goblet 

cells, undifferentiated columnar cells and basal cells with a capacity to multiply and 

differentiate into ciliated or goblet cells. Large airways are also surrounded by submucosal 

and serous glands. As the large airways branches out, it gradually becomes non-

cartilaginous, loses surrounding submucosal and serous glands, the cells become more 

columnar and cuboidal, and Clara secreting cells replace goblet cells in the small airways. 

Airway epithelium also consists of other minor cell types such as neuroendocrine cells, 

dendritic cells and others. 

The three essential components that contributes to barrier function of airway epithelium are 

mucociliary apparatus (Knowles and Boucher, 2002), intercellular tight and adherens 

junctions (Pohl et al., 2009) that regulates epithelial paracellular permeability, and secreted 

antimicrobial products that kill the inhaled pathogens (Bals and Hiemstra, 2004).  

2.1 Mucociliary clearance 

The primary players of mucociliary apparatus are mucus produced by goblet cells and 
submucosal glands that overlay the airway epithelium and cilia. Mucociliary dysfunction 
results in recurrent and persistent respiratory infections as evidenced in patients with cystic 
fibrosis, ciliary dyskinesia and COPD (Bhowmik et al., 2009; Jansen et al., 1995; Livraghi and 
Randell, 2007; Sethi, 2000). In COPD patients, the dysfunction of mucociliary clearance is 
due to combined effect of mucus hypersecretion, increased viscosity of mucus and 
dysfunction or loss of cilia (Mehta et al., 2008). The airway mucus is a viscoelastic gel and 
contains more than 200 proteins, and it is secreted by goblet cells that are present in the 
airway epithelium and by submucosal glands. The main components of airway mucus are 
mucins, which are high molecular weight glycoproteins and cross link to form structural 
framework of mucus barrier (Rose et al., 2001; Thornton et al., 2008). At least 12 mucins are 
detected in human lungs, of these MUC5AC and MUC5B are the predominant mucins in 
normal airways (Rose and Voynow, 2006). Airways infection with virus or bacteria, 
exposure to toxic agents such as cigarette smoke and pollutants that induce airway 
inflammation and oxidative stress have been shown to upregulate expression of MUC5AC 
and MUC5B (Borchers et al., 1999; Casalino-Matsuda et al., 2009; Dohrman et al., 1998; 
Gensch et al., 2004; Haswell et al., 2010; Shao et al., 2004). Cigarette smoke induces 
expression of number of inflammatory mediators including IL-1┚, IL-8, TNF-┙, MCP-1, 
leukotrienes through oxidative stress-related pathways from airway epithelial cells, resident 
macrophages and infiltrated neutrophils, which can increase mucus secretion (Adcock et al., 
2011; Choi et al., 2010; Cohen et al., 2009; Mebratu et al., 2011). Cigarette smoke also causes 
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mucus hypersecretion by increasing expression of hypoxia-induced factor 1 and growth 
factors such as TGF-┚, and EGF ligands (Yu et al., 2011a, b). Smokers with COPD also show 
goblet cell metaplasia and submucosal gland hypertrophy (Innes et al., 2006). Increased EGF 
receptor expression and activation and increased expression of platelet activating factor 
caused by cigarette smoke are thought to play a role in development of goblet cell 
metaplasia (Curran and Cohn, 2010; Komori et al., 2001; O'Donnell et al., 2004). Cigarette 
smoke decreases water and ion transport by inhibiting apical chloride channel and 
basolaterally located potassium channel in primary human and mouse airway epithelial 
cells(Cohen et al., 2009; Savitski et al., 2009). This essentially reduces the periciliary liquid 
layer in which cilia can beat rapidly and also increases the viscosity of mucus resulting in 
reduced clearance of mucus from the airways. In addition, respiratory epithelial cells 
exposed to cigarette smoke extract or condensate showed 70% less cilia and shorter cilia 
compared to control cells (Tamashiro et al., 2009). Mice exposed to cigarette smoke although 
showed slight increase in ciliary beat frequency at 6 weeks and 3 months, it was significantly 
reduced at 6 months and these mice also showed significant loss of tracheal ciliated cells 
(Simet et al., 2010). Decreased number of cilia, reduced ciliary function combined with 
hypersecretion of mucin, increased viscoelasticity of secreted mucus in COPD patients can 
lead to airways obstruction and promote persistence of trapped pathogens in the 
airways(Rose and Voynow, 2006; Voynow et al., 2006). Persistence of bacteria or viruses can 
further increase production of mucus in the airways (Baginski et al., 2006).  

Normal

COPD

 

Fig. 1. Airway epithelial cells isolated from COPD patient cultured at air/liquid interface 
show more goblet cells (arrows) than the similarly grown normal airway epithelial cells. 

Another feature that is frequently noted in airways of COPD patients is squamous 
metaplasia (Araya et al., 2007) and it correlates with the severity of airway obstruction 
(Cosio et al., 1978). The airway epithelium exposed to cigarette smoke responds by secreting 
TGF-┚ (de Boer et al., 1998), which is required for repair of injured epithelium and maintain 
homeostasis. However, chronic exposure to cigarette smoke can induce sustained 
production of TGF-┚ and increased TGF-┚ activation leading to expression of the ┚6 
integrin, a TGF-┚ responsive gene (Wang et al., 1996). This in turn contributes to a 
phenotypic switch from columnar ciliated to squamous epithelium (Masui et al., 1986a; 
Masui et al., 1986b). Squamous epithelial cells secrete increased amounts of IL-1┚, which 
acts as a paracrine factor with adjacent airway fibroblasts to further activate TGF-┚ (Araya et 
al., 2006), thereby increasing squamous metaplasia and further contributing to impaired 
barrier function and persistence of inhaled pathogens. 
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In our laboratory, we observed that cultured airway epithelial cells isolated from COPD 
patients show goblet cell metaplasia, decreased number of ciliated cells (Figure 1), and 
increased MMP activity suggesting that epigenetic changes that occur in vivo are maintained 
even when cells are expanded ex vivo (Schneider et al., 2010). COPD epithelial cells also 
showed increased viral load following rhinovirus challenge compared to normal cells. 
Similarly, we also found that elastase/LPS exposed mice which show typical features of 
COPD, including emphysema, airway remodeling, diffuse lung inflammation and goblet 
cell hypertrophy, also showed increased persistence of virus compared to normal mice 
following rhinovirus challenge and majority of the virus particles were observed in the 
airway epithelium (Sajjan et al., 2009). Rinovirus infection increased mucin expression 
further in these mice. Since goblet cells are the target for rhinovirus infection (Lachowicz-
Scroggins et al., 2010) we suggest that COPD airway epithelial cultures which have 
increased number of goblet cells are more susceptible to rhinovirus infection than the 
controls. Patients with COPD, cystic fibrosis and asthma show goblet cell metaplasia and 
this may be one of the reasons these patients are more susceptible to rhinovirus infection. In 
addition, airway epithelial mucins also interact with several other respiratory pathogens 
including Pseudomonas aeruginosa, Staphylococcus aureus, Heamophilus influenza, Streptococcus 
pneumonia, Burkholderia cenocepacia, influenza virus, adenovirus and coronavirus (Landry et 
al., 2006; Matrosovich and Klenk, 2003; Plotkowski et al., 1993; Ryan et al., 2001; Sajjan and 
Forstner, 1992; Sajjan et al., 1992; Walters et al., 2002). The bound pathogens which are 
cleared under normal conditions, persist in the airway lumen when the mucociliary 
clearance is impaired and initiate inflammatory response and damage the airway 
epithelium. 

2.2 Junctional adherens complexes and airway epithelial permeability 

Epithelial permeability is maintained through the cooperation of two mutually exclusive 
structural components: Tight junctions and adherence junctions on the lateral membranes 
(Pohl et al., 2009). While tight junctions regulate the transport of solutes and ions across 
epithelia, adherence junctions mediate cell to cell adhesion (Hartsock and Nelson, 2008; 
Schneeberger and Lynch, 2004; Shin et al., 2006). Under homeostatic conditions, these 
intercellular junctions prevent inhaled pathogens and also serve as signaling platforms that 
regulate gene expression, cell proliferation and differentiation (Balda and Matter, 2009; Koch 
and Nusrat, 2009). Therefore disassociation or sustained insult that affects junctional 
complex will disrupt not only barrier function, but also prevent normal repair of airway 
epithelium. Compared to control nonsmokers, airway epithelium is leaky, 
hyperproliferative and abnormally differentiated in smokers (Hogg and Timens, 2009). 
Consistent with this observation, various in vivo and in vitro studies showed that cigarette 
smoke increases airway epithelial permeability (Boucher et al., 1980; Gangl et al., 2009; 
Olivera et al., 2007; Serikov et al., 2006). Recently, transcriptome analysis of airway epithelial 
cells from normal and COPD patients revealed global down-regulation of physiological 
tight junction complex gene expression (Shaykhiev et al., 2011). Further, normal airway 
epithelial cells exposed to cigarette smoke extract also showed similar down-regulation of 
genes related to tight junction complex. This was associated with decreased expression of 
PTEN and FOXO3A, a transcriptional factor in the PTEN pathway, suggesting that cigarette 
smoke down-regulates expression of apical junctional complex genes by modulating PTEN 
signaling pathway. Consistent with this notion, cigarette smoke in combination with IL-1┚ 
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has been shown to induce disassembly of tight junction complex in endothelial cells by 
suppressing PTEN activity (Barbieri et al., 2008). Chen et al showed that cigarette smoke 
also alters epithelial permeability by disrupting cell polarity via activation of EGFR, 
dissociation of ┚-catenin and E-cadherin from adherence junctional complex and 
redistribution of apical MUC1 membrane bound mucin to cytoplasm (Chen et al., 2010). In a 
homestatic epithelium, ┚-catenin cooperates with E-cadherin to form apical junctional 
complex and maintain cell polarity (Xu and Kimelman, 2007). In airway regeneration or 
oncogenic formation ┚-catenin translocates to nucleus, and activates canonical Wnt 
signaling pathway (Mazieres et al., 2005; Tian et al., 2009). Similar to ┚-catenin, the 
cytoplasmic tail of MUC1 also supports structural barrier during homeostasis (Chen et al., 
2010). Since cigarette smoke causes aberrant activation of both EGFR and canonical Wnt/┚-
catenin signaling (Khan et al., 2008; Lemjabbar et al., 2003), it is plausible that chronic 
cigarette smoke exposure decreases barrier function and promote microbial invasion of 
airway epithelium.  

2.3 Antimicrobial products of airway epithelium 

In addition to acting as a physical barrier, airway epithelial cells also secrete antimicrobial 

substances, which include enzymes, protease inhibitors, oxidants and antimicrobial 

peptides. Lysozyme is an enzyme found in airway epithelial secretions and exerts 

antimicrobial effect against wide range of gram-positive bacteria by degrading 

peptidoglycan layer (Ibrahim et al., 2002). Lysozyme is also effective against gram-

negative bacteria in the presence of lactoferrin, which disrupts the outer membrane 

allowing lysozyme to gain access to peptidoglycan layer (Ellison and Giehl, 1991). 

Lactoferrin is an iron-chelator and inhibit microbial growth by sequestering iron which is 

essential for microbial respiration (Ganz, 2002). Lactoferrin also display antiviral activity 

against both RNA and DNA viruses either by inhibiting binding of virus to host cells or 

by binding to virus itself (van der Strate et al., 2001; Laube et al., 2006). Lactoferrin levels 

increase in response to bacterial and viral infections. Epithelial cells produce protease 

inhibitors, such as secretory leukoprotease inhibitor (SLPI), elastase inhibitor, ┙1-

antiprotease and antichymotrypsin. These protease inhibitors mitigate the effects of 

proteases expressed by pathogens and recruited innate immune cells. Administration of 

SLPI decreased the levels of IL-8 and elastase activity in airway secretion of cystic fibrosis 

patients (McElvaney et al., 1992). 

Human beta defensins (hBD) are the most abundant antimicrobial peptides expressed on the 

surface of airway epithelium and are effective against wide range of bacteria and viruses 

(Ganz, 2003; Kota et al., 2008; McCray and Bentley, 1997). While hBD1 is constitutively 

expressed, hBD2 to hBD4 expression is induced by LPS via NF-κB activation and also by IL-

1 (Becker et al., 2000; Singh et al., 1998). hBD2 is induced by P. aeruginosa infection in normal 

but not in cystic fibrosis airway epithelia (Dauletbaev et al., 2002). Environmental factors 

such as air pollutants decrease defensin gene expression in the airways (Laube et al., 2006). 

In CF airway epithelia activity of hBD2 is also decreased due to increased salt concentration 

(Goldman et al., 1997). Cathelicidins are another class of antimicrobial peptides and LL37 is 

the only human cathelicidin identified to date. LL37 bind to LPS and inactivate its biological 

function. Overexpression of human LL37 in CF mouse model increased killing of P. 

aeruginosa and reduced the ability of this bacterium to colonize the airways (Bals et al., 1998). 
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Airway epithelial cells also generate oxidants such as nitric oxide (NO) and hydrogen 

peroxide. Three NO synthases contribute to production of NO in airway epithelia: the 

constitutively expressed NOS1 and NOS3 and inducible NOS2. Viral infections and pro-

inflammatory cytokines induce expression of NOS2 and defective NOS2 expression is 

responsible for increased viral replication in cystic fibrosis and overexpression of NOS2 

provides protection against viral infection (Zheng et al., 2003; Zheng et al., 2004). Hydrogen 

peroxide is produced by dual oxidase 1 and 2. These belong to a family of NADPH oxidases 

and are located in the plasma membrane and secrete hydrogen peroxide to extracellular 

milieu. The dual oxidase-generated hydrogen peroxide in combination with thiocyanate and 

lactoperoxidase generates the microbicidal oxidant hypothiocyanite , which effectively kills 

both gram positive and gram negative bacteria and this innate defense mechanism is 

defective in cystic fibrosis airway epithelium due to impaired transport of thiocyanate 

(Moskwa et al., 2007).  

In COPD patients, levels of lysozyme and SLPI decrease with bacterial infection, while 

lactoferrin levels remain unchanged (Parameswaran et al., 2011). Lower levels of salivary 

lysozyme in clinically stable COPD patients correlated with increased risk of exacerbations 

(Taylor et al., 1995). Reduced lysozyme levels in COPD is thought to be due to degradation 

by proteases elaborated by bacterial pathogens or neutrophils(Jacquot et al., 1985; Taggart et 

al., 2001). These proteases also inactivate SLPI (Parameswaran et al., 2009). In addtion, SLPI 

forms complexes with neutrophil elastase and binds to negatively charged membranes, thus 

decreasing the levels of SLPI further in the airway secretions during infection. In clinically 

stable patients however, the levels of SLPI were increased compared to smokers without 

COPD and never smokers (Tsoumakidou et al., 2010). In contrast, hBD2 was absent in 

COPD patients. Herr et al showed that hBD2 is significantly reduced in pharyngeal wash 

and suptum of current or former smokers compared to non-smokers, and exposure of 

airway epithelium to cigarette smoke in vitro inhibited induction of HBD2 by bacteria (Herr 

et al., 2009). Recently, we showed that COPD airway epithelial cells show a trend in 

decreased expression of NOS2 and Duox oxidases and this was associated with impaired 

clearance of rhinovirus (Schneider et al., 2010). 

3. Innate immune receptors of airway epithelium 

Airway epithelium in addition to providing a physical barrier, it also plays a pivotal role in 

recognition of pathogens and releasing appropriate chemokine and cytokines to initiate an 

inflammatory response. This inflammatory response includes recruitment of phagocytes to 

clear pathogens that are not cleared by barrier function of epithelium, and immune cells, 

such as dendritic cells and lymphocytes that initiate adaptive immune response. Airway 

epithelium recognizes pathogens or pathogen associated molecular patterns (PAMPS) by 

innate immune receptors also known as pattern recognition receptors (PRRs), which are 

germ-line encoded receptors. One of best characterized PRRs are Toll-like receptors 

(TLRs)(Akira et al., 2001; Medzhitov, 2001).  

3.1 Toll-like receptors 

TLRs are type I transmembrane receptors with an extracellular domain that contains 

leucine-rich-repeat motifs, a transmembrane domain and a cytoplasmic domain known as 
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the toll/interleukin-1 receptor (TIR) homology domain (Hoffmann, 2003) (Figure 2). To date 

thirteen TLRs have been identified in mammalian system. Only TLRs1 to 10 are expressed in 

humans. TLRs1, -2, -4, -5 and -6 are expressed on the cell surface and TLRs3, -7,- 8 and -9 are 

expressed in the endosomes, lysozomes and the endoplastic reticulum. (Kawai and Akira, 

2009). TLRs recognize a wide range of PAMPS- lipoproteins by TLRs 1, -2, and -6 (Aliprantis 

et al., 1999; Schwandner et al., 1999; Takeuchi et al., 2001; Takeuchi et al., 2002), LPS by TLR4 

(Poltorak et al., 1998), flagella by TLR5 (Hayashi et al., 2001), DNA by TLR9 (Hemmi et al., 

2000), and RNA by TLR3, -7 and -8 (Alexopoulou et al., 2001; Diebold et al., 2004; Heil et al., 

2004). TLR4 also recognizes respiratory syncytial virus (Kurt-Jones et al., 2000).  
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Fig. 2. Impact of cigarette smoke on persistence of bacteria and inflammation. Under 
homeostasis, TLR4 recognizes infecting bacteria and activates both MAP kinase and NF-kB 
pathway to stimulate normal levels of CXCL-8, IL-6 and IL-1┚ to recruit neutrophils, which 
clear bacteria. Decreased expression of TLR4 caused by acute exposure to cigarette smoke 
attenuates release of CXCL-8, IL-6 and IL-1┚, there by decreasing the neutrophil infiltration 
and increasing the bacterial persistence. Under chronic exposure as noted in COPD patients, 
if the TLR4 expression is increased, then chemokine and cytokine expression is increased 
leading to decreased bacteria coupled with increased inflammation.  

TLRs initiate signaling by MyD (myeloid differentiation primary-response protein) 88-
dependent and –independent pathways. Except for TLR3, all TLRs initiate signaling by MyD-
88-depnedent pathway to activate NF-κB. MyD88 is located in the cytoplasm and is similar to 
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TLR in structure and has an N-terminal death domain, an intermediary domain and C-
terminal TIR domain. Upon recognition of PAMPs by TLRs, the TIR domain of TLR interacts 
with TIR domain of MyD88 directly or indirectly via MyD88-adaptor like protein (MAL)/TIR 
adaptor protein (TIRAP)(Horng et al., 2002; Li et al., 2005). TLR5, -7, -8 and -9 does not require 
TIRAP to initiate signaling events that leads to NF-κB activation (Horng et al., 2002). 
Association of MyD88 to TLR leads to recruitment of IL-1R associated kinase (IRAK)-4, IRAK-
1, TNFR-associated factor 6 (TRAF6), which then through a number of kinases activates NF-κB 
and AP-1 and stimulates expression of CXCL-8, IL-6, IL-1┚ and TNF-┙ (Adachi et al., 1998; 
Mukaida et al., 1990; Jeong and Lee, 2011). TLR4 also signals via MyD88-independent pathway 
and the first supporting evidence came from the studies on MyD88 knockout mice, which 
failed to respond normally to TLR2, -5, -7 and -9 ligands, but not to TLR4 (Kawai et al., 1999). 
Later TLR4 endocytosed upon binding to LPS was shown to signal through TIR-domain-
containing adapter-inducing interferon (IFN)-┚ (TRIF) pathway similar to TLR3 (Alexopoulou 
et al., 2001; Hoebe et al., 2003; Kagan et al., 2008). TLR2 was shown to be internalized and 
stimulate type I interferon (IFN) response by MyD88-dependent pathway in virus-, but not 
bacteria infected inflammatory monocytes (Barbalat et al., 2009).  

The airway epithelium expresses all 10 TLRs, but the expression of TLR2 to TLR6 is stronger 
than the others. Expression of TLRs7 through -10 is variable depending on type of cells used 
(Mayer et al., 2007; Platz et al., 2004; Sha et al., 2004). Expression of TLRs 1 through -6 and -9 
on the cell surface was confirmed by flow cytometry (Greene et al., 2005). However the 
signaling from these TLRs depends on the expression of adaptor molecules and co-
receptors. Primary airway epithelial cells are hyporesponsive to LPS despite expressing 
TLR4 and this is because of reduced surface expression of co-receptor CD14 and low 
expression levels of co-stimulatory molecule MD2 (Jia et al., 2004). This may be necessary to 
restrict TLR4 activation under unstimulated conditions to prevent chronic inflammation of 
airways that is constantly exposed to inhaled bacteria and endotoxin. On the contrary, LPS 
was shown to activate TLR4 signaling in small airway and alveolar epithelial cells even 
though the TLR4 was localized to cytoplasmic compartment (Guillot et al., 2004). More 
recently John et al attributed chronic colonization of bacteria in CF airways to decreased 
expression of TLR4 in CF airway epithelial cells (John et al., 2010). TLR2, which is expressed 
on the apical surface of polarized airway cells is mobilized into an apical lipid raft receptor 
complex following P. aeruginosa infection and initiate signalling (Soong et al., 2004). TLR5 
recgonizes flagella of P. aeruginosa and Burkholderia cenocepacia and activate NF-κB (Adamo 
et al., 2004; Urban et al., 2004; Zhang et al., 2005). Haemophilus infIuenzae traverses polarized 
airway epithelial cells by interacting with TLR2, which then activates p38 mitogen activated 
protein (MAP) kinase and TGF-┚ Signalling(Beisswenger et al., 2007). TLR3 recognizes 
double stranded (ds)-RNA, an intermediate generated during RNA virus replication and 
elicits chemokine and type I IFN responses by MyD88- independent signaling mechanism 
(Gern et al., 2003; Wang et al., 2009). Upon ligation of ds-RNA, TRIF and TRAM (TRIF-
related adaptor molecule) are recruited to TIR domain of TLR3 and TRAM acts as a bridge 
between TLR and TRIF and this allows activation of TRIF-dependent signaling leading to 
activation of IRF3 via IKKε/TBK-1 to stimulate IFN production or activation of NF-κB via 
IKK┙/IKK┚ to stimulate CXCL-8 expression (Kawai and Akira, 2008). The recognition of 
double-stranded RNA by TLR3 also increases expression of hBD2 (Duits et al., 2003). Viral 
or bacterial infection transcriptionally upregulates TLR3 expression (Liu et al., 2007; Sajjan et 
al., 2006; Wang et al., 2009; Xing et al., 2011), thereby increasing viral induced cytokine and 
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chemokine responses further. Stimulation of TLR2 or TLR3 also induces mucin expression 
by activating MAP kinases and inducing EGF receptor signaling (Chen et al., 2004; Kohri et 
al., 2002; Li et al., 1997; Zhu et al., 2009). MUC1, a transmembrane mucin is a negative 
regulator of TLRs and therefore may play an important role in limiting TLR- induced 
inflammatory responses (Ueno et al., 2008).  

There are conflicting reports with regards to expression of TLRs and their role in innate 

immune responses in patients with COPD. Airway epithelial cells from patients with severe 

COPD showed decreased expression of TLR4, but not TLR2 (MacRedmond et al., 2007). In 

contrast, recently Pace et al observed increased neutrophils and decreased apoptosis of 

neutrophils in the bronchoalveolar lavage and increased expression of TLR4 in airway 

epithelium of COPD patients providing evidence that increased TLR4 may contribute to 

airway neutrophilia in COPD (Pace et al., 2011). Pace et al also demonstrated increased 

TLR4 expression and concurrent increased CXCL-8 in response to LPS challenge in cigarette 

smoke exposed airway epithelial cells(Pace et al., 2008), while other investigators showed 

decreased TLR4 expression which was associated with reduced CXCL-8 and hBD2 

production (Kulkarni et al., 2010; MacRedmond et al., 2007). Our preliminary studies 

involving primary airway epithelial cells from COPD patients suggested heightened 

expression of CXCL-8 in responses to P. aeruginosa infection compared to normal airway 

epithelial cells (Ganesan and Sajjan, unpublished results). However, role of TLR in this 

context is yet to be established. Whether TLR4 expression is decreased or increased it has 

important implications in COPD airway inflammation and obstruction (Figure 2). The 

decreased expression of TLR4 may lead to decreased innate immune responses and 

increased persistence of infecting organism. On the other hand increased expression of TLR4 

increases neutrophil recruitment and mucus production in response to bacterial or viral 

infection, thereby leading to increased airways inflammation and obstruction.  

3.2 RIG-I like receptors 

Another family of PRRs that play a role in innate defense mechanisms of airway epithelial 

cells is retinoic acid inducible (RIG)-I like receptors (RLR). This family of PRRs includes 

RIG-I, MDA-5 (melanoma differentiation associated protein 5) and LGP-2 (Laboratory of 

genetics and physiology 2). RLRs are the primary sensor molecules for detection of viral 

RNA in the cytoplasm (Meylan and Tschopp, 2006; Sun et al., 2006). Both RIG-I and MDA-5 

contain a caspase recruitment domain (CARD) and a RNA helicase domain (Kang et al., 

2002; Yoneyama et al., 2005; Yoneyama et al., 2004). On the other hand, LPG-2 has only RNA 

helicase domain but not CARD domain, which is required for recruiting adaptor protein 

MAVS (also known as VISA, Cardiff)(Yoneyama et al., 2005). Therefore recognition of viral 

RNA by RIG-I and MDA-5 leads to IFN or chemokine response, and LPG-2 suppresses this 

response (Yoneyama et al., 2005). RIG-I and MDA-5 recognize different RNA species. RIG-I 

recognizes single stranded (ss)RNA viruses, such as influenza virus, paramyxoviruses and 

deficiency in RIG-I increases the susceptibility of mice to RNA viruses (Kato et al., 2005). 

RIG-I specifically binds to the 5’-triphosphate moiety, the signature of which is exposed in 

the process of viral entry or replication. The host RNA which loses 5’triphosphate moiety 

during processing is therefore not recognized by RIG-I preventing cytokine and chemokine 

response due to self-recognition. RIG-I also recognizes short dsRNA (<1 kb) in 5’triphosphate-
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independent manner and induces IFN responses (Kato et al., 2008). On the other hand, MDA-5 

recognizes long dsRNA that is >1 kb. Since viruses from picornaviridea family including 

rhinovirus generate long dsRNA in infected cells, innate immune responses to these viruses 

depends on recognition of viral RNA by MDA-5 (Kato et al., 2006; Wang et al., 2009). Mice 

deficient in MDA-5 show increased inflammatory response, delayed IFN response and 

significantly increased viral load up to 48 h after rhinovirus infection (Wang et al., 2011) . Both 

RIG-I and MDA-5 uses a common adaptor protein called interferon beta promoter stimulator-1 

(IPS-1, also known as MAVS, VISA, CARDIF)(Kawai et al., 2005; Meylan et al., 2005; Seth et al., 

2005; Xu et al., 2005). IPS-1 has a CARD domain which is homologous to RIG-I and MDA-5 

and has a transmembrane domain at its C-terminal end that spans the mitochondrial 

membrane (Seth et al., 2005). IPS-1 after binding to RIG-I or MDA-5 through CARD-CARD 

interaction, activates IRF3 and NF-κB via TBK1/IKKε and RIP-1/IKK┙/IKK┚ respectively. 

IPS-1 also interacts with receptor-interacting protein-1 (RIP-1), which is a death domain and is 

implicated in virus infection-induced IFN expression (Balachandran et al., 2004). However IPS-

1 interaction with RIP-1 via the non-CARD region facilitates NF-κB activation, rather than IRF3 

activation. Therefore IPS-1 regulates both IRF3 and NF-κB activation upon binding to RIG-I or 

MDA-5. IPS-1-deficient mice fail to activate IRF3 and NF-κB, with concomitant loss of type I 

IFN and inflammatory cytokine induction after viral infection and show increased persistence 

of virus (Kawai and Akira, 2008). Recently, cigarette smoke extract was demonstrated to 

inhibit RIG-I-stimulated innate immune responses to influenza infection in bronchial organ 

culture model (Wu et al., 2011). Exposure to cigarette smoke extract also interfered with STAT1 

activation by IFN-┛, a type II interferon which stimulates expression of various antiviral 

proteins (Modestou et al., 2010). Further, cigarette smoke also attenuated the inhibitor effect of 

IFN-┛ on RSV mRNA and protein expression. Eddleston et al demonstrated that exposure of 

airway epithelial cells to cigarette smoke extract suppressed mRNA induction of CXCL-10 and 

IFN-┚ by human rhinovirus and also viral dsRNA mimic polyinosinic:polycytidylic acid (poly 

I:C) (Eddleston et al., 2011). This was found to be due to decrease in activation of the IFN-

STAT-1 and SAP-JNK pathways. Inhibition of antiviral responses, in particular IFN and 

CXCL-10 responses appear to be due to acute exposure to cigarette smoke that occurs in vitro, 

because the airway epithelial cells obtained from COPD patients showed antiviral responses to 

rhinovirus infection which was in fact significantly higher than the cells obtained from non-

smokers (Schneider et al., 2010). Similar to our observations, mice exposed to cigarette smoke 

and poly I:C or influenza virus showed increased IFN responses and this was attributed to 

pathogenesis of COPD (Kang et al., 2008).  

3.3 NOD-like receptors 

Nod-like receptors (NLR) are a family of proteins and sense microbial signatures in the 

cytosol. There are at least 22 identified NLRs in humans, although only few of them have 

been functionally characterized. All of them have a central nucleotide binding domain and 

C-terminal leucin-rich repeat domain, which possibly mediate ligand binding. In addition, 

they also contain different N-terminal effector domains such as CARD domain, pyrin 

domains or baculovirus inhibitor repeats and thus activate diverse downstream signaling 

pathways (Chen et al., 2009; Fritz et al., 2006). The most widely studied among the CARD 

containing NLRs are NOD1 and NOD2. NOD1 primarily recognizes peptidoglycan (PGN) 
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derivative, ┛-D-glutamyl-mesodiaminopimelic acid from gram-negative bacteria 

(Chamaillard et al., 2003; Girardin et al., 2003a), whereas, NOD2 is considered as a general 

sensor of PGN through muramyl dipeptide (Girardin et al., 2003b). Upon recognizing PGN, 

both NOD1 and NOD2 activate NF-κB-mediated proinflammatory response via RIP-2 

(Hasegawa et al., 2008). Both NOD1 and NOD2 are highly expressed in immune and 

inflammatory cells (Fritz et al., 2005; Kanneganti et al., 2007). These two NODs are also 

expressed in airway epithelium and are induced by bacterial stimuli (Bogefors et al., 2010; 

Mayer et al., 2007; Opitz et al., 2004; Travassos et al., 2005). NOD1 and NOD2 contribute to 

innate immune responses to different bacteria including Pseudomonas aeruginosa, Chlamydia 

pneumonia, Haemophilus influenza and L. pneumophila both in vivo and in vitro (Clarke et al., 

2010; Frutuoso et al., 2010; Shimada et al., 2009; Zola et al., 2008).  

NOD2 not only recognizes bacterial peptidoglycan, but also viral ssRNA. NOD2 deficiency 

results in impaired type I IFN expression in vitro upon stimulation with viral ssRNA (Sabbah 

et al., 2009). This was dependent on NOD2 interaction with IPS-1 and activation of IRF3, but 

not on activation of RIP-2. NOD2 deficient mice were also found to be more susceptible to 

infection with respiratory syncytial virus and influenza virus than the wild-type mice. 

Pyrin domain containing NLRs are normally called as NLRP. There are 14 members in this 

NLR subfamily. At least NLRP1-3 form multiprotein complex named “inflammasomes” which 

consists one or two NLRs, an adaptor molecule ASC (apoptosis-associated speck-like protein 

containing a CARD), and caspase-1(Martinon et al., 2002). Inflammasomes respond to several 

PAMPS or DAMPS and regulate caspase-1 mediated cell death called pyroptosis and 

production of IL-1┚ and IL-18 at post-transcriptional level. Therefore, unlike other cytokines, 

IL-1┚ production requires two signals. Signal I is often provided by TLRs which activates NF-

κB dependent pro-IL-1┚, and signal II comes from inflammasomes, which mediate caspase 1-

dependent cleavage of pro-IL-1┚ to its mature form. The activators of NLRP3 are microbial 

RNA, bacterial pore forming toxins, certain types of DNA and MDP (Kanneganti et al., 2006; 

Mariathasan et al., 2006; Martinon et al., 2004; Meixenberger et al., 2010; Muruve et al., 2008). 

Accordingly, NLRP3 null mice were shown to be susceptible to influenza virus, Streptococcus 

pneumoniae and K. pneumonia infection (Kanneganti, 2010; Allen et al., 2009; Ichinohe et al., 

2010; Thomas et al., 2009). In addition NLRP3 is also activated by necrotic cells, uric acid 

metabolites, ATP, biglycan, hyaluronan that might be released after tissue injury (Babelova et 

al., 2009; Iyer et al., 2009; Mariathasan et al., 2006; Martinon et al., 2006; Yamasaki et al., 2009).  

In addition to NLRP, NLRC4 (NLR family CARD domain containing) and NAIP5 (NLR 

family, BIRdomain conaining) also form inflammasomes. While NAIP is expressed in both 

lung macrophages and epithelial cells, NLRC4 is expressed only in macrophages (Diez et al., 

2000; Vinzing et al., 2008). NLRC4 inflammasome recognizes L. pneumophila and P. 

aeruginosa flagellin present in the host cytosol, independently of TLR5 (Franchi et al., 2006; 

Miao et al., 2006). NAIP controls intracellular replication of L. pneumophila depending on the 

recognition of flagellin (Vinzing et al., 2008). 

The widely expressed NLRX1 (NLR family member X1) is the only NLR receptor that is 

localized to mitochondria and it negatively regulates RIG-I and MDA-5 receptors. NLRX-1 

mediates production of reactive oxygen species upon bacterial infection (Moore et al., 2008; 

Tattoli et al., 2008) and decreased dsRNA-stimulated IFN response.  
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Although, there is no evidence that NLRs play a role in innate immune responses to 

bacterial or viral infection in COPD so far, the emerging literature indicate inflammasome 

forming NLRs may contribute to COPD pathogenesis. Inhaled cigarette smoke, oxidative 

stress, necrotic cell death, hypoxia, hypercapnia may cause tissue injury and release of 

DAMPs (uric acid, ATP) and this in turn activates NLRP3 inflammasome (Wanderer, 2008). 

Consistent with this notion, uric acid concentration was increased in the bronchoalveolar 

lavage of COPD patients (Wanderer, 2008). COPD patients also had significantly increased 

amounts of IL-1┚ and this correlated with severity of the disease(Sapey et al., 2009). Mice 

exposed to cigarette smoke also showed increased IL-1┚ in their lungs (Doz et al., 2008) and 

finally mice overexpressing mature IL-1┚ in epithelial cells showed typical feature of COPD 

including emphysema, lung inflammation with increased neutrophils and macrophages and 

airway fibrosis (Lappalainen et al., 2005). ASC (inflammasome adaptor protein) null mice 

showed attenuated inflammation after exposing to elastase and less uric acid. Elastase-

induced inflammation was significantly reduced in wild-type mice treated with uricase or 

treated with IL-1R antagonist (Couillin et al., 2009). All these evidences suggest contribution 

of inflammasome forming NLRP3 to COPD pathogenesis.  

4. Innate immunity and co-infections  

Nontypeable H. influenzae (NTHi), S. Pneumoniae and P. aeruginosa are detectable in lower 

airways of appproximatley 25 to 50% of clinically stable COPD patients (Sethi and Murphy, 

2008). Chronic colonization can alter the responses of airway epithelial cells and other innate 

and adaptive immune cells to subsequent viral or bacterial infections leading to increased 

severity of disease. Exacerbations due to concurrent or sequential infections was shown to 

be associated with increased severity of disease at least in one-quarter of COPD patient 

population (Papi et al., 2006; Sethi et al., 2006; Wilkinson et al., 2006). Risk of secondary 

bacterial infection following a viral infection dates back to 19th century, when cases of 

pneumonia correlated with influenza (flu) epidemic (McCullers, 2006). Influenza infection 

increases risk of secondary bacterial infection by increasing binding or invasion of bacterial 

pathogen to airway epithelial cells, desensitizing innate immune receptors such as TLRs, 

and causing immunosuppression by increasing glucocorticosteriod expression (Beadling 

and Slifka, 2004; Hament et al., 1999; Jamieson et al., 2010; McCullers, 2006; Seki et al., 2004; 

Sun and Metzger, 2008). Respiratory syncytial virus infection increased persistence of P. 

aeruginosa in mice and increased P. aeruginosa and NTHi binding to airway epithelial cells 

(de Vrankrijker et al., 2009; Jiang et al., 1999; Van Ewijk et al., 2007). Respiratory syncytial 

virus also increased persistence of NTHi by dysregulating the expression of ┚-defensin in 

chinchilla model of respiratory infection (McGillivary et al., 2009). Rhinovirus which causes 

common cold, in combination with S. pnuemoniae was associated with severe cases of 

community-acquired pneumonia in children (Honkinen et al., 2011). Various in vitro studies 

showed that rhinoviruses also increase bacterial binding to airway epithelial cells by 

increasing the expression of bacterial receptors on airway epithelial cells or by facilitating 

invasion of cells by bacteria (Ishizuka et al., 2003; Passariello et al., 2006). We demonstrated 

that rhinovirus infection also increases paracellular permeability and promote bacterial 

traversal across mucociliary- differentiated airway epithelium (Sajjan et al., 2008). 

Rhinovirus infection also decreases bacterial PAMPS-induced proinflammatory response by 

desensitizing TLRs (Oliver et al., 2008).  
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Fig. 3. COPD airway epithelial cells are impaired in clearing infecting bacteria. This leads to 
colonization of bacteria on the apical surface of airway epithelium. Subsequent rhinovirus 
infection disrupts barrier function and promotes traversal and interaction of bacteria with 
basolateral receptors leading to exaggerated chemokine response. At the same time COPD 
airway epithelial cells also show increased generation of reactive oxygen species and 
attenuated expression of antioxidant enzymes resulting in increased oxidative stress. This in 
turn suppresses interferon (antiviral) response stimulated by secondary rhinovirus infection. 
Together this may lead to persistence of bacteria and virus, and increased inflammation.  

Impact of secondary viral or bacterial infection in patients colonized with bacteria is being 
increasingly recognized in recent years. For instance, despite chronic colonization with P. 
aeruginosa, cystic fibrosis patients show exacerbations periodically and some incidences are 
associated with acquiring secondary viral or bacterial infections (Ong et al., 1989; Ramsey et 
al., 1989; Wat et al., 2008). Similarly, in COPD patients who are chronically colonized with 
NTHi, exacerbations were associated with acquisition of new strain of NTHi, other species 
of bacteria or respiratory virus (Murphy, 2000; Murphy et al., 2008; Murphy et al., 2007; Papi 
et al., 2006; Sykes et al., 2007; Wilson, 2000). Recently, we showed that secondary bacterial 
infection in primary cystic fibrosis airway epithelial cells preinfected with P. aeruginosa 
increases C-X-C chemokine responses by increasing the load of planktonic bacteria which 
are more pro-inflammatory than their counterpart biofilm bacteria and also increased 
paracellular invasion of bacteria in differentiated airway epithelial cells (Chattoraj et al., 
2011b). We also demonstrated that cystic fibrosis, but not normal airway epithelial cells 
infected with bacteria show suppressed type I IFN response to subsequent rhinovirus 
infection (Chattoraj et al., 2011a). This was due to increased oxidative stress in cystic fibrosis 
airway epithelial cells. Airway epithelial cells from COPD patients show increased oxidative 
stress similar to cystic fibrosis patients. Therefore we expect that bacterial preinfection may 
suppress innate immune responses to subsequent virus infection in COPD cells. Consistent 
with this notion, our preliminary studies indicate that infection with P. aeruginosa or NTHi 
infection increases oxidative stress further and decreases expression of antioxidant genes in 
COPD airway epithelial cells. In addition, we also observed suppression of IFN response in 
COPD airway epithelial cells infected with bacteria to subsequent rhinovirus infection 
(unpublished observations). Similar to our observations, LPS treatment was demonstrated 
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to suppress IFN-┚ production in response to dsRNA in mice as well as in monocytes and 
macrophages (Piao et al., 2009; Sly et al., 2009). This was due to increased expression of 
SHIP, a MPA kinase phosphatase in LPS treated monocytes. In airway epithelial cells 
however, P. aeruginosa infection induced suppression of IFN response to rhinovirus infection 
was not due to increased expression of SHIP, but rather due to decreased Akt 
phosphorylation (Chattoraj et al 2011) which is required for maximal activation of IRF3 
(Dong et al., 2008; Sarkar et al., 2004). Previously, we have shown that expression of IFN 
response to rhinovirus infection requires activation of IRF3 in airway epithelial cells (Wang 
et al., 2009). Based on these experimental evidences, it is possible that 30% of COPD patients 
who are chronically colonized with NTHi or P. aeruginosa in their lower airways may show 
suppressed antiviral responses and increased chemokine expression (Figure 3). This may 
lead to increased lung inflammation and progression of lung disease in COPD patients 
following exacerbation due to co-infections. 

5. Conclusion 

The airway epithelium contributes significantly to innate immune system in the lungs. It 
acts as a physical barrier that protects against inhaled substances and pathogens. Airway 
epithelial cells also express plethora of innate immune receptors which recognizes both 
PAMPS and DAMPS and stimulate appropriate responses to either clear the infecting 
organism and to repair of injured epithelium. However in COPD, chronic exposure to 
cigarette smoke or environmental hazards causes airway remodeling and also modulate 
innate immune responses of airway epithelial cells to infection (Figure 4). This results in 
impaired clearance of infecting organisms and aberrant cytokine and growth factor 
expression and increased lung inflammation leading to progression of lung disease. 

Normal airway epithelia

Repeated exposure 

to cigarette smoke 

or environmental 

hazards

Decreased barrier function

Decreased antimicrobial factors

Altered expression of PRRsIncreased mucus 

production

Increased levels of 

pro-inflammatory

factors

Infection with 

bacteria /virus

Persistence of bacteria or virus

Aberrant cytokine and growth 

factor expression

Progression of 

lung disease

 

Fig. 4. A schematic representation depecting the combined effects of cigarette smoke or other 
environmental hazards and bacterial infection on the progression of lung disease in COPD 
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