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Nicola Bianchi, Massimo Barcaro and Silverio Bolognani
Department of Electrical Engineering, University of Padova

Italy

1. Introduction

The increasing interest to permanent magnet (PM) synchronous machines is due to the

high torque density and high efficiency that they may exhibit exploiting modern PMs. The

three–phase winding is supplied by a current–controlled voltage source inverter, which

imposes sinewave currents synchronous with the PM rotor. Such machines are more and

more used in several applications, with power rating ranging from fractions of Watts to some

Megawatts.

After a brief introduction on the PM characteristics, this Chapter illustrates the finite element

(FE) analysis of the synchronous PM machines. It summarizes the basic concepts dealing with

the electromagnetic analysis, and it describes proper analysis strategies in order to predict the

PM machine performance.

2. The permanent magnet machines

In synchronous PM machines, the stator is the same of the induction machines. The rotor

can assume different topologies, according to how the PM is placed in it. The machines

are distinguished in three classes: surface–mounted PM (SPM) machines, inset PM machine,

and interior PM (IPM) machine. Fig. 1(a) shows a cross–section of a four–pole 24–slot SPM

machine. There are four PMs mounted with alternate polarity on the surface of the rotor.

Fig. 1(b) shows a four–pole inset PM machine, characterized by an iron tooth between each

couple of adjacent PMs. Fig. 1(c) shows a four–pole IPM machine, whose rotor is characterized

by three flux–barriers per pole. The high number of flux–barriers per pole yield a high rotor

anisotropy (Honsinger, 1982).

When the IPM machine is characterized by high anisotropy and moderate PM flux, it is often

referred to as PM assisted synchronous reluctance (PMASR) machine. The machine exhibits

two torque components: the PM torque and the reluctance torque (Levi, 1984) .

Fig. 2 shows the pictures of a rotor with surface–mounted PMs (a), the lamination of an IPM

machine with three flux–barriers per pole (b) and an IPM rotor with two flux–barriers per pole

(c).
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(a) SPM machine (b) inset PM machine (c) IPM machine

Fig. 1. PM synchronous machines with (a) SPM, (b) inset PM, and (c) IPM rotor.

(a) (b) (c)

Fig. 2. PM machine prototypes: (a) an SPM rotor, (b) and (c) IPM machine laminations.

2.1 Hard magnetic material (permanent magnet)

The permanent magnets are hard magnetic materials (Bozorth, 1993) . They exhibit a very

wide magnetic hysteresis loop, as shown in Fig. 3(a). Once they are magnetized and required

to sustain a magnetic field, the PMs operate in quadrant II. Both the intrinsic (dashed line) and

normal (solid line) hysteresis loops are drawn in Fig. 3(a), as reported in most PM data sheets.

The intrinsic curve represents the added magnetic flux density that the PM material produces.

The normal curve represents the total magnetic flux density which is carried in combination

by the air and by the PM (Coey, 1996) . The recoil line of the demagnetization curve is usually

approximated by

Bm = Brem + µrecµ0Hm (1)

where the residual flux density (or remanence) is Brem and the coercive force is Hc (see

Fig. 3(a)). The differential relative magnetic permeability of the recoil line is µrec and is slightly

higher than unity.

When the flux density becomes lower than Bknee, where the hysteresis curve exhibits a knee in

quadrant II, the PM is irreversibly demagnetized and its next operating points move on a locus

with lower flux density versus field strength. The minimum flux density in the PMs has to be

verified during the magnetic analysis of the machine. Since Bknee depends on the temperature,

the worst operating condition has to be considered. Bknee increases with the temperature, see

Fig. 3(b).
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Fig. 3. (a) Characteristic B–H curve of hard magnetic material, (b) example of
Neodymium-Iron-Boron PM including the variation of characteristic with the temperature.

Brem Hc Curie T Tmax density ∆Brem/∆T ∆Hci/∆T
(T) (kA/m) (oC) (oC) (kg/m3) (%/oC) (%/oC)

Ferrite 0.38 250 450 300 4800 -0.20 0.40
SmCo 0.85 570 775 250 8300 -0.04 -0.20
NdFeB 1.15 880 310 180 7450 -0.12 -0.70

Table 1. Main properties of hard magnetic material

In order to avoid the irreversible demagnetization of the PM, it is imperative to verify that the

minimum flux density in the PM be always higher than the flux density of the knee Bknee.

The key properties of some common PM materials are listed in Table 1. Since the operating

temperature has a great impact on the PM characteristic, the rate of change of Brem and of Hc

versus temperature is also reported.

3. FE analysis pre–processing

In the most of cases, the the magnetic FE analysis is a two–dimensional (2D) analysis 1. The

three dimensional effects (e.g., leakage inductance of stator end winding, effect of the rotor

skewing, etc.) are not considered here. They have to be computed separately, and added to

the 2D field solution.

The simulations are carried out by assuming a planar symmetry: the magnetic field is the

same in each section of the machine for a z–axis length equal to the machine stack length Lstk.

The current density J and the vector magnetic potential A have only the component normal

to the x–y plane, that is, J = (0, 0, Jz) and A = (0, 0, Az). Therefore the magnetic field strength

1 Let us invite the interested reader to download FEMM (Finite Element Method Magnetics) freeware
software by David Meeker. Although FEMM exhibits some limitations (i.e., this means that not
all field solution problems can be analysed), it allows the most of electrical machine magnetic field
computations to be satisfactorily analyzed. It is very easy to be used, it is organized so as to easily
understand how the FE method works. For details about the software, please refer to "FEMM User’s
Manual"
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H and flux density B vectors have components only in the x–y plane, that is, H = (Hx, Hy, 0)
and B = (Bx, By, 0). Fig. 4(a) shows a cross section of a PM machine in the x–y plane.
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(b) Reference frame

Fig. 4. Electrical machine section in the plane (x, y) and reference frame.

3.1 Reference conventions

Fig. 4(b) shows the two reference frames. The stator reference frame is characterized by the

a–, b–, and c–axis, which refer to the axis of the coils of the three phases. The rotor reference

frame is characterized by the d– and q–axis, with d–axis aligned with the PM axis.

The relative position between the rotor and the stator reference frames is the mechanical angle

ϑm, which corresponds to the electrical angle ϑe
m = p · ϑm, where p is the number of pole pairs.

3.2 Boundary conditions

In a magnetic field problem, there are four main boundary conditions:

Dirichlet: this condition prescribes a given value of the magnetic vector potential Az along a

line, typically Az = 0. Thus, the flux lines are tangential to this line. This condition is used to

confine the field lines into the domain.

As an example, the Dirichlet boundary condition Az = 0 is assigned to the outer periphery of

the stator as shown in Fig. 5(a).

Neumann: this condition imposes the flux density lines to be normal to a line. This condition

is a default condition in the field problem.

Periodic: this condition is assigned to two lines and imposes that the magnetic vector potential

behavior is the same along the two lines, i.e. Az,line1 = Az,line2.

Anti–periodic: this condition is assigned to two lines and imposes that the magnetic vector

potential behavior along one line is opposite to that along the other line, i.e. Az,line1 =
−Az,line2.

3.3 Current sources

In addition to the PMs in the rotor, further sources of magnetic field are the stator currents.

They are defined by ideal current generators, connected to stator slot surface. In order to

impose a prefixed current to each slot, it is convenient to define one generator per each slot
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(a) Boundary condition (b) Current assignment

Fig. 5. Assignment of boundary condition and current sources.

and to assign such a generator to the corresponding slot, as shown in Fig. 5(b).

Each current is defined by its amplitude and sign. Positive sign means that it is along the

direction of z–axis (from the sheet towards reader) and negative sign means that it is opposite

to the direction of z–axis (from reader towards the sheet). In magnetostatic analysis, only

real part of the current is necessary, while in time harmonic analysis (where symbolic phasor

notation is adopted) both real and imaginary components have to be assigned.

Alternatively, a current density can be assigned to the various stator slots. Each slot will

be characterized by a different current density, according to the total current flowing in the

corresponding slot. The peak value of current density in the slot is defined as

Ĵslot = k f ill

√
2 · Jc (2)

where k f ill is the slot fill factor and Jc is the rms value of the current density in the conductor.

For instance, with k f ill = 0.4, the actual current density Jc = 6 A/mm2 corresponds to an

equivalent current density Ĵslot = 3.4 A/mm2 assigned to the stator slot.

3.4 Winding definition

The definition of the winding of the electrical machine is extremely important. Fig. 6(a) shows

a two–pole three–phase single–layer winding, characterized by two slots per pole per phase.

The arrangement of the coil sides within the slots is described by means of the slot matrix,

whose dimension is m × Q, where m is the number of phases (i.e. m=3 in a three–phase

machine) and Q is the number of stator slots. The generic element k jq indicates how much the

q–th slot is filled by conductors of the j–th phase, where unity means a complete slot fill.

For instance, k jq = 1 means that the q–th slot is completely filled by conductors of the j–th

phase; k jq = 0.5 means that only 50% of the q–th slot is filled by conductors of the j–th phase;

and k jq = 0 means that no conductor of the j–th phase is in the q–th slot. The element kjq can

be either positive or negative sign. The sign refers to the orientation of the coil side.

According to the winding shown in Fig. 6(a), the slot matrix is where the first slot (i.e., q = 1) is

the slot in the first quadrant closer to the x–axis, and the other slots follow counterclockwise.

In order to meet the current Kirchhoff law, the element row sum to zero.

411Electromagnetic and Thermal Analysis of Permanent Magnet Synchronous Machines
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(a) Winding drawing (b) Labels of stator slots

Fig. 6. Classical representation of the stator winding, and definition of the labels of the stator
slots.

q 1 2 3 4 5 6 7 8 9 10 11 12

ka 0 0 1 1 0 0 0 0 -1 -1 0 0
kb -1 -1 0 0 0 0 1 1 0 0 0 0
kc 0 0 0 0 -1 -1 0 0 0 0 1 1

In order to assign the proper current density in each slot, each of them has been defined by a

different label, as sketched in Fig. 6(b). The current in the q–th slot can be expressed as

Islot,q = ncs

(

ka,q Ia + kb,q Ib + kc,q Ic

)

(3)

where ncs is the number of series conductors per slot, Ia, Ib, and Ic are the currents of the phase

a, b, and c, respectively.

4. Post–processing

After the field solution is achieved, various quantities can be computed from the solved

structure.

4.1 Flux line plot

The flux lines of the solved structure, shown in Fig. 7(a), give an indication of the flux density

that is reached in the various parts of the structure, highlighting the iron saturation.

Similarly, flux density map gives a prompt view of the field solution, allowing to detect gross

and striking mistakes in the field problem setting.

4.2 Point quantities

In each point of the structure, it is possible to get the value of various electric and magnetic

quantities. Fig. 7(b) shows some quantities that can be detected in a generic point P of the

structure: magnetic vector potential Az, magnitude and components of flux density vector,
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(a) Flux lines
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(b) Point quantities

Fig. 7. Flux lines and and magnetic quantities detected in the point P of the solved structure.

|B|, Bx and By, magnitude and components of field strength vector, |H|, Hx and Hy, current

density Jz.

4.3 Magnetic flux

The magnetic flux crossing the air gap is computed by integrating along a line in the middle

of the air gap the radial flux density (i.e., the normal component to the line) and multiplying

by the z-axis length, that is,

Φ = Lstk

∫

line
B · ndl (4)

The integration line is shown in Fig. 8(a), starting from point S (start) and ending to point E

(end).

As an alternative to the line integration, the magnetic flux can be achieved from the magnetic

vector potential 2. In this case, it is necessary to compute Az only in the two ends of the line,

i.e., in points S and E. The flux results as

Φ = Lstk(Az,S − Az,E) (5)

4.4 Flux linkages

The flux linkage of the phase a is computed referring to the coils arrangement reported in

Fig. 6(a). The positive coil sides of the phase a are in the slots 3 and 4, while the negative coil

sides are within the slots 9 and 10, as highlighted in Fig. 8(b).

2 It is a direct consequence of the Stoke’s theorem. Considering the line lS bordering the surface S, since
B = curlA, it is

∫

S
B · n dS =

∮

lS

A · t dl

413Electromagnetic and Thermal Analysis of Permanent Magnet Synchronous Machines

www.intechopen.com



8 Will-be-set-by-IN-TECH

 

!

(a) Line integral

 !" !#

 !$  !%&

' '

((

(b) Surface integral

Fig. 8. Magnetic flux computation from a line integration, and by means of surface integral in
the slots containing the coil sides of phase a.

Using the slot matrix defined in section 3.4, the flux linkage with the phase a results in

Λa = ncsLstk
1

Sslot

Q

∑
q=1

ka,q

∫

Sslot,q

AzdS (6)

where ka,q is the element of the matrix that describes the distribution of the coil sides of the

phase a within the q–th slot (see Section 3.4), Sslot is the cross–area of the slot.

4.5 Magnetic energy

There are three energy quantities that can be computed over the whole structure. The integral

of the product of current density by magnetic vector potential

WAJ = Lstk

∫

Sall

Az JzdS (7)

Of course, the last integral can be limited in the conductive parts Sc of the structure where the

current density is not zero. The magnetic energy is

Wm = Lstk

∫

Sall

(

∫

HdB

)

dS (8)

The magnetic coenergy is

Wmc = Lstk

∫

Sall

(

∫

BdH

)

dS (9)

Even if the magnetic coenergy has not an immediate physical meaning, it is very useful in

the magnetic analysis of the machine. Particular care is to define a proper magnetic coenergy

density in the PMs which can be defined as

wmc =
∫ Hm

0
Bm dHm (10)
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that results in a negative value. Alternatively, the magnetic coenergy density in the PMs can

be also defined as

wmc =
∫ Hm

H∗
c

Bm dHm (11)

that is a positive coenergy. Since the lower limit of integration does not affect the computation

of the exchange of magnetic coenergy, the "ideal" magnet characteristic is considered and

H∗
c = Brem/(µrecµ0) is used as the lower limit. Anyway, the rate of change of the magnetic

coenergy is the same regardless to the two definitions above, because the difference between

the two coenergy densities is the constant quantity 1
2 H∗

c Brem.

If the linear recoil line (1) is adopted for the PM, the magnetic coenergy density results in

wmc =
1

2
µrecµ0(Hm − H∗

c )
2

=
1

2µrecµ0
B2

m

(12)

The second form is particularly advantageous since it could be extended to any material type

of the system: hard and soft magnetic material as well as non magnetic material.

5. Magnetic analysis example

The magnetic finite element (FE) analysis is applied to a synchronous PM machine with Q=24

slots and p=2 pole pairs (Slemon & Straughen, 1980) . Thanks to the machine symmetry, only

one pole of the machine is analyzed.

5.0.1 Alignment of the rotor with the stator

The rotor angle is fixed to ϑe
m = 0 when the d–axis (i.e., the rotor reference axis) is coincident

with the a–phase axis (i.e., the stator reference axis). This is represented in Fig. 4(b).

Before starting the analysis under load, it is mandatory to adopt the correct reference, that is,

to know the correct position of the rotor with respect the stator reference frame.

From the space vector of the PM flux linkage (that is, at no load) the vector angle αe
λ is

computed, as shown in Fig. 9. If αe
λ=0 the rotor is in phase with the stator, otherwise the

rotor has to be rotated of a mechanical angle corresponding to the electrical angle of the flux

linkage vector, that is:

ϑm = − αe
λ

p
(13)

5.1 No load operation

Fig. 10(a) shows one pole of a 24–slot four–pole IPM machine. Fig. 10(b) shows the flux lines

at no load, that is, due to the PM only. The flux lines remain in the iron paths of rotor and

stator. Some flux lines cross the iron bridges so as to saturate them.

415Electromagnetic and Thermal Analysis of Permanent Magnet Synchronous Machines
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Fig. 9. Flux linkage space vector and its components.

The flux due to the PM is linked by stator winding. It varies according to the position of the

rotor. The flux linkage of the phase a is computed, as in (6). Similarly the flux linkages of the

phases b and c are computed.

(a) geometry (b) no–load

Fig. 10. Flux lines in an IPM machine at no load.

Then, the d– and q–axis flux linkages are computed adopting the Park transformation. For

convention, at no–load there is only d–axis flux linkage, while the q–axis flux linkage is equal

to zero. Therefore, at no load, the PM flux linkage is Λm = Λd.

The instant in which the d–axis is aligned to the a–axis represents a particular case. The phase

a links the maximum flux due to the PM, and thus Λm = Λa. Therefore the PM flux linkage

corresponds to the maximum flux linkage of each phase.

The computation can be repeated varying the rotor position.

5.1.1 Computation of the voltage under load

From the flux linkage waveform, it is possible to compute the induced voltage (also called

back EMF) waveform, assuming a constant mechanical speed ωm (i.e. electrical speed ω =
pωm). According with the machine convection, it is

e(t) =
dλ(t)

dt
=

dλ(ϑe
m)

dϑe
m

ω (14)
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Fig. 11. No load phase and phase-to-phase EMF versus rotor position (at fixed speed).

The flux linkage waveform is expressed by means of its Fourier series expansion. Then, each

harmonic of the series is derived, and all harmonics of EMF are summed together. The final

EMF waveform is achieved. An example is reported in Fig. 11. A high distortion in the back

EMF waveform is evident in this case.

5.1.2 Flux density in the iron

From the field solution, it is important to verify the maximum flux density in the stator teeth

and the maximum flux density in the stator back iron. There are two alternative methods.

The first consists in drawing two circle lines centered in the origin of the axis, one crossing

the teeth and the other in the middle of the back iron. The maximum flux density is checked

along these two circles.

The second method is based on the hypothesis that the flux density in the stator teeth

has essentially radial direction, and the flux density in the stator back iron has essentially

azimuthal direction. Therefore, the average flux density in each teeth or in each portion of the

back iron can be achieved from the vector magnetic potential in the slots.

As an example, the average flux density in the tooth between slot 1 and 2 is

Bt =
(Az,slot1 − Az,slot2)

wt
(15)

The average flux density in the back iron portion above the slot 1 is

Bbi =
(Az,slot1)

hbi
(16)
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2p 2 2 2 2 4 4 4 8 8 8
Q 3 6 9 12 6 9 12 6 9 15

GCD 1 2 1 2 2 1 4 2 1 1
Np 2 1 2 1 2 4 1 4 8 8

Table 2. Number Np of cogging torque periods per slot pitch rotation

since Az = 0 along the external circumference of the stator, where wt is the tooth width and

hbi is the back iron height. In order to evaluate the maximum flux density, the computations

above have to be repeated for each slots.

5.1.3 Cogging torque

Fig. 12 shows the no–load torque versus the rotor position. This torque is due to the interaction

between the rotor PM flux and the stator anisotropy due to the teeth, and it is commonly called

cogging torque.
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Fig. 12. Cogging torque versus rotor position.

In a rotor with identical PM poles equally spaced the number of Np periods during a slot pitch

rotation is given by

Np =
2p

GCD{Q, 2p} (17)

where GCD means Greater Common Divisor. Thus, the mechanical angle corresponding to

each period is ατc = 2π/(NpQ). Higher number of Np periods lower the amplitude of the

cogging torque (Bianchi & Bolognani, 2002). Table 2 reports the values of Np for some common

combinations of Q and 2p.

5.1.4 Skewing

Skewing rotor PMs, or alternatively stator slots, is a classical method to reduce the cogging

torque. In PM machines, the skewing is approximated by placing the PM axially skewed by

Ns discrete steps (stepped skewing), as illustrated in Fig. 13. When the stepped skewing

is adopted, the FE analysis has to be repeated for each of the Ns section of the machine,

considering the correct angle between the stator and the rotor.

Adopting a stepped skewing, there is also a reduction of the back EMF harmonics and the

torque ripple.
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(a) (b)

Fig. 13. Stepped rotor skewing with three modules

5.2 Operation with stator currents

The analysis is carried out referring to d–q axis component of each electrical and magnetic

quantity.

5.2.1 Operation with q–axis stator current

The q–axis current produces a flux in quadrature to the flux due to the PM. When the IPM

machine is supplied by q–axis current only, the flux lines go through the rotor and the

flux–barrier does not obstruct the q–axis flux, as shown in Fig. 14(a) for a rotor without PM.

The q–axis inductance Lq exhibits a high value.

(a) only Iq (b) only Id

Fig. 14. Flux lines in an IPM machine with (a) Iq only and (b) Id only.

5.2.2 Operation with d–axis stator current

The d–axis current produces a flux along the d–axis, and thus the flux lines cross the

flux–barrier. A positive d–axis current is magnetizing, increasing the flux produced by the

PM. Conversely, a negative d–axis current is demagnetizing, since it weakens the PM flux.

Fig. 14(b) shows the flux plot due to the d–axis current Id only (is case of a rotor without

PMs). The flux lines are similar to the flux lines due to PMs, shown in Fig. 10(b). The d–axis

inductance Ld results lower than Lq. The analytical estimation of Ld is tightly dependent

on the geometry of the flux–barriers (Bianchi & Jahns, 2004) . The ratio between the two

inductances, i.e. ξ = Lq/Ld is the saliency ratio (Miller, 1989) .

419Electromagnetic and Thermal Analysis of Permanent Magnet Synchronous Machines
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5.2.3 Magnetic model of the PM synchronous machine

The magnetic model is commonly expressed in the synchronous d–q reference frame. The

relationship between the d– and the q–axis flux linkages and currents is non linear, as shown

in Fig. 15. It is given by

λd = λd(id, iq)

λq = λq(id, iq)
(18)

They are single–valued functions, because it is assumed that energy stored in the

electromagnetic fields can be described by state functions (White & Woodson, 1959) . Such a

model is used for an accurate estimation of the machine performance: to precisely predict the

average torque, the torque ripple, the capability to sensorless detect the rotor position.
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Fig. 15. d–q axis flux linkages versus currents.

From the d– and q–axis flux linkages, the d– and q–axis voltages are

vd = Rid +
dλd

dt
− ωλq

vq = Riq +
dλq

dt
+ ωλd

(19)

Assuming a linear characteristic of all iron parts, the d– and q–axis flux linkages simplify as

λd = Λm + Ldid

λq = Lqiq

(20)
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and the voltage components result in

vd = Rid + Ld
did
dt

− ωLqiq

vq = Riq + Lq
diq

dt
+ ω(Λm + Ldid)

(21)

Fig. 16 shows the steady–state 3 vector diagram of the PM synchronous machine in d–q

reference frame (Boldea & Nasar, 1999) .

6. The electromechanical torque

Adopting the FE model of the machine, the torque T can be computed by integrating the

Maxwell stress tensor along the rotor periphery:

T =
D2Lstk

4

∫ 2π

0

Bg,nBg,θ

µ0
dθm (22)

where Bg,n and Bg,θ are the normal and tangential component of the air gap flux density, and

ϑm is the rotor position (Ida & Bastos, 1992; Jin, 1992; Salon, 1995) . However, assuming the

rotor position ϑm and d– and q–axis currents id and iq as state variables, the machine torque is

also given by

T =
3

2
p
(

λdiq − λqid
)

+
∂Wmc

∂ϑm
(23)

where p is the number of pole pairs. Wmc is the magnetic coenergy, which is a state function

of ϑm, id and iq, i.e. Wmc = Wmc(ϑm, id, iq) (White & Woodson, 1959) . The first term of the

second member of (23) is labeled as Tdq, that is

Tdq =
3

2
p(λdiq − λqid). (24)

This torque term Tdq is slightly affected by the harmonics of the flux linkages and it results to

be suitable for the computation of the average torque. The torque ripple is mainly described

by the coenergy variation, that is the second term of (23).

6.0.4 Cogging torque

Cogging torque is the ripple torque due to the interaction between the PM flux and the stator

teeth. Since the stator currents are zero, it is Tdq=0 and, from (23), the cogging torque results

to be equal to

Tcog =
∂Wmc

∂ϑm
(25)

Fig. 12 shows the cogging torque versus rotor position of an SPM machine. Solid line refers

to the torque computation by means of the Maxwell stress tensor while the circles refer to the

3 Time derivatives are equal to zero and thus the currents are constant, id = Id and iq = Iq.
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Fig. 16. Steady–state vector diagram for PM synchronous machine in d − q reference frame
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Fig. 17. Torque behavior under load of the SPM machine. Solid line refers to the computation
using Maxwell stress tensor, dashed line refers to (24), circles refer to (23).

torque computation (25). A further comparison between predictions and measurements of

cogging torque is reported in (Bianchi & Bolognani, 2002) .

6.0.5 Computation under load

Fig. 17 shows the torque behavior versus rotor position of the SPM machine fed by q–axis

current only, while d–axis current is zero. Solid line refers to the Maxwell stress tensor

computation. The circles refer to the torque computation (23). The dashed line refers to the

torque computation Tdq, given by (24). As said above, the behaviour of Tdq is smooth and

close to the average torque. Similar results are found when an IPM machine is considered,

as the IPM machine shown in Fig. 1(c). Some torque behaviors and experimental results are

reported in (Barcaro et al., 2010A;C) .

6.1 Optimizing the torque behaviour

One of the purposes of the FE analysis is to optimize the torque of the machine: high average

torque and limited torque ripple (Fratta et al., 1993) . Many strategies exist so as to reduce the
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torque ripple, and FE analysis is a proper tool to optimize the machine geometry (Bianchi &

Bolognani, 2000; Sanada et al., 2004) .

Unusual geometries can be analyzed in order to improve the machine performance. As an

example, Fig. 18(a) shows an SPM rotor in which the PMs have been shifted with respect their

symmetrical position, so as to reduce the PM flux linkage and the torque harmonics (Bianchi

& Bolognani, 2000; 2002) . Fig. 18(b) shows the “Machaon” 4 rotor, proposed to reduce the

torque ripple in IPM machines (Bianchi et al., 2008; 2009) . It is formed by laminations with

flux–barriers of different geometry, large and small alternatively under the adjacent poles.

(a) PM shifting (b) Machaon rotor

Fig. 18. Photos of proper solutions to optimize the torque behavior.

6.2 Searching the MTPA trajectory

A proper control strategy is mandatory to achieve high performance of the PM synchronous

motors. Fig. 19 shows the key characteristics of the machine as a function of the current vector

angle αe
i , defined in Fig. 16, for given torque and speed. Normalized parameters are used, that

is, unity torque τpu = 1 and unity speed ωpu = 1 are fixed.
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Fig. 19. Stator current, flux–linkage, losses and efficiency as a function of current vector angle
αe

i under constant torque (τpu = 1) and constant speed (ωpu = 1) condition.

4 The name comes from a butterfly with two large and two small wings.
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For a given torque, there is an optimal operating point in which the current is minimum, as

shown in Fig. 19(a). Therefore, a maximum torque to current ratio exists. When such a ratio is

maximized with respect the current vector angle αe
i for any operating condition, the maximum

torque–per–Ampere (MTPA) control is achieved (Jahns et al., 1986) .
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Fig. 20. Procedure of changing the current vector angle αe
i , searching the MTPA trajectory

and defining the flux–weakening capability.

The FE procedure to search the maximum torque per Ampere is illustrated in Fig. 20(a):

• the current amplitude is fixed,

• the current vector angle αe
i varies from 90 to 180 electrical degrees5,

• the torque is computed for each current vector.

The flux linkage corresponding to the point of maximum torque is the base flux linkage ΛB.

6.3 The flux–weakening operating region

Similarly, the flux–weakening capability of the machine can be investigated starting from the

MTPA trajectory, as shown in Fig. 20(b). For each current vector the torque and the d– and

q–axis flux linkage components are computed. According to the flux linkage amplitude, Λ,

imposing the voltage limit, Vn, the maximum electrical speed is computed as ω = Vn/Λ.

Then, the corresponding mechanical speed ωm = ω/p is related to the electromagnetic torque.

Repeating the computation for different current vector angle αe
i , the whole characteristic

torque versus speed is achieved. Fig. 21(a) shows the current trajectory, and Fig. 21(b) shows

the corresponding torque versus speed curve and power versus speed curve.

7. Prediction of sensorless capability of PM motors

The technique based on the high–frequency voltage signal injection is used for sensorless rotor

position detection of PM synchronous machines at zero and low speed (Ogaswara & Akagi,

1998) . It is strictly bound to the rotor geometry, requiring a synchronous PM machine with

anisotropic rotor, e.g. an IPM machine as in Fig. 1(c) or an inset machine as in Fig. 1(b).

A high–frequency stator (pulsating or rotating) voltage is added to the fundamental voltage,

then the corresponding high–frequency stator current is affected by the rotor saliency (Harke

et al., 2003; Linke et al., 2003) and information of the rotor position is extracted from current

measurement (Consoli et al., 2000; Jang et al., 2003) .

5 Actually, the search ends when the torque starts to decrease.
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Fig. 21. Current trajectory (a) and torque and power versus speed (b).

Fig. 22. Phasor diagram with steady–state and high frequency components

An accurate magnetic model of the machine is mandatory to predict the capability of

the machine for the sensorless rotor position detection considering both saturation and

cross–saturation effect.

The magnetic model to predict the error signal ε(ϑe
err) is achieved by a set of finite element

simulations carried out so as to compute the d– and q–axis flux linkages as functions of the d–

and q–axis currents (Bianchi, 2005) .

Then, for a given operating point (defined by the fundamental d– and q–axis currents), a

small–signal model is built, defined by the incremental inductances

Ldd =
∂λd

∂id
Ldq =

∂λd

∂iq
Lqd =

∂λq

∂id
Lqq =

∂λq

∂iq

When a high frequency voltage vector is injected along the direction αe
v (i.e. the d– and

q–axis voltage components are Vh cos αe
v and Vh sin αe

v respectively), the small–signal model

(26) allows to compute the amplitude and the angle of current vector.

The phasor diagram is shown in Fig. 22, including both fundamental components (V0 and I0)

and high frequency components (Vh and Ih).

Such a study is repeated, varying the voltage vector angle αe
v, so as to estimate the rotor

position error signal ε. Let Imax and Imin the maximum and minimum of the high frequency

current (computed with the various voltage vector angles αe
v), and αe

Imax the angle where Imax

is found (defined with respect to the d–axis). Then, the rotor position estimation error signal
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is computed as

ε(αe
v) = kst

Imax − Imin

2
sin 2(αe

v − αe
Imax) (26)

where αe
v can be considered as the injection angle and (αe

v − αe
Imax) can be considered as the

error signal angle ϑe
err. Then, αe

Imax corresponds to the angular displacement due to the d–q

axis cross–saturation.

Fig. 23 compares experimental and predicted results, referring to the inset machine shown in

Fig. 1(b), whose rated current is Î = 2.5 A. The pulsating voltage vector technique has been

used, adopting a high–frequency voltage with amplitude Vh = 50 V, frequency fc = 500 Hz,

and a machine speed n = 0 rpm (Bianchi et al., 2007) . The satisfactory match between

predictions and measurements, confirms that a PM machine model can be profitably used to

predict the sensorless capability of the machine.
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Fig. 23. Rotor position error ϑe
err and estimation error signal ε with pulsating voltage injection

and inset PM machine (experimental test and prediction).

8. Losses in electrical machines

The computation of the losses in an electrical machine is a complex task, sometimes requiring

an involved model of the machine even though some uncertainties (e.g. about the material

used) prevent a precise estimation. Therefore, in many cases, simpler loss estimations are

quite adequate to predict the machine capabilities.

8.1 Stator winding losses

Stator resistance is a three–dimensional parameter of the electrical machine. It is generally

computed analytically on the basis of the wire diameter and the total length of the winding,

including stack length and end–winding length.

The copper conductivity is decreased according to the temperature. Such a temperature is

obtained and adjusted after the thermal computation. Sometime an analysis loop is necessary.
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Joule losses are computed multiplying the resistance by the square of the rms value of the

stator current: Pjs = 3Rs I2
s . When the current includes time harmonics, the equivalent

root–mean–square (rms) current is calculated as:

Irms =

√

I2
0 +

Î2
1 + Î2

2 + · · ·+ Î2
n

2
(27)

where I0 is the constant value (if any), and Î1 . . . În are the Fourier series coefficients (peak

value) of the current waveform.

8.2 Stator iron losses

The iron losses of a generic motor consist of the sum of the hysteresis loss, classical eddy

current loss and excess loss. Considering a magnetic flux density B̂ varying sinusoidally at

the frequency f , the iron loss density is commonly expressed in the following form (Boglietti

et al., 2003) as

piron = khy B̂β f + kec B̂2 f 2 + kex B̂
3
2 f

3
2 (28)

where khy and kec are the hysteresis and the classical eddy current constant, and β is the

Steinmetz constant, often approximated as β ≃ 2. The kex is the eddy current excess losses

constant. These losses are due to the dynamic losses of the Weiss domains when a variable

magnetic field is applied to the magnetic material. The block walls discontinuous movements

produce fast Barkhausen jumps and then eddy currents.

These constants should be obtained from material data sheet, but the Epstein frame test does

not allow to segregate between the eddy currents due to the classical losses from the eddy

currents due to the excess losses. Even if the excess current loss component could be very

significant in many lamination materials (Bertotti, 1998) , in (Boglietti et al., 2003) the

difficulty to separate the excess losses contribution from the classical eddy current losses has

been highlighted. A single eddy current losses coefficient is defined, i.e. an increased kec, and

then applied neglecting the third addendum of (28).

Since the stator iron teeth and the stator back iron operate at different flux density values, the

iron loss density has to be computed separately referring to the two parts of the stator.

8.3 Tooth iron losses computation with distorted flux density

The equations above hold for sinusoidal flux density variations. When the flux density varies

in the iron paths with different waveforms, the computation of the stator iron losses is more

complex.

The flux distortions are mainly located in the stator teeth. Let Bt the tooth flux density

computed as a function of the time (or of the rotor position, when the speed is considered

to be constant). An example of the Bt waveform is shown in Fig. 24, referring to a four–pole

24–slot machine. Since the machine has two slots per pole per phase, therefore two teeth

are considered. It is worth noticing that the waveforms are quite different from sinusoidal

waveforms. The behavior of the tooth flux density is expressed by means of Fourier series

expansion:

Bt(θ) = ∑ B̂h sin(hθ + αh) (29)
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where h is the order of the harmonic of the tooth flux density.

Fig. 24. Tooth flux density versus rotor position.

Only eddy current losses are considered since they are the greatest part of total iron losses due

to the flux density harmonics, being proportional to f 2, see (28).

These losses are due to fluctuation of the tooth flux density. Then the tooth eddy current iron

loss density is given by:

pec =
kec

2 π2

ω2

2 π

∫ 2 π

0

(

∂Bt

∂θ

)2

dθ (30)

And after some manipulations, it is

pec = kec f 2 ∑ B̂2
h h2 (31)

In (Barcaro et al., 2010B) the effect of the IPM rotor structure on the tooth eddy current iron

loss density has been analyzed.

8.4 Rotor losses due to MMF harmonics

The discrete location of the coils within the stator slots causes space harmonics of the magneto

motive force (MMF) traveling in the air gap. These MMF harmonics move asynchronously

with respect to the rotor inducing currents in any conductive rotor parts (Atallah et al., 2000;

Shah & Lee, 2006) . The losses in the rotor volume due to the induced currents are given by:

Prl =
∫

vol

J2
r

σ
dVol =

∫

vol
σ

∂Az

∂t
(32)

where Jr is the current density induced in the rotor, Az is the magnetic vector potential, σ is

the material conductivity and t is the time.

These losses increase rapidly with the machine size. When the scaling law is apply the

flux density B results to be proportionally to the linear quantity l, the curl of B and the

induced current density Jr to l2. Since the volume increases as l3, the rotor losses result

to be proportionally to l7. Although these equations above do not consider skin effects

or iron saturation, they highlight how the rotor losses might increase with the size of the

machine. The rotor losses phenomenon can be neglected in small size PM machine, it has to

be considered compulsorily in large size PM machines.

A practical finite element computation of rotor losses is based on the superposition of the

effects: the total rotor losses Prl result as the sum of the rotor losses computed for each

harmonic order ν, that is Prl = ∑ν Prl,ν. To this aim, linear iron is considered assuming

an equivalent permeability or freezing the magnetic permeability after a magnetostatic field
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solution (Bianchi & Bolognani, 1998) . For each ν-th MMF harmonic, the following procedure

is adopted:

(1) The stator is substituted by an infinitesimal sheet placed at the stator inner diameter D, as

shown in Fig. 25. A linear current density Ksν(ϑ), sinusoidally distributed in space, is imposed

in such a stator sheet:

Ks,ν(θ) = K̂s,ν · sin(νθ + ωνrt) (33)

where ν is the harmonic order, ωνr/ν is the speed of such harmonic with respect to the rotor,

and K̂sν is the peak value of linear current density, achieved from the corresponding MMF

harmonic Ûsν. They are:

ωνr =

(

ω

sgn · ν
− ω

p

)

(34)

K̂sν = 2ν
Ûsν

D
(35)

where sgn is equal to +1 or −1 according to whether the harmonic speed is forward or

backward the rotor speed (Bianchi & Fornasiero, 2009) .

(2) The circumference is split in a high number of points, e.g. Np. In each point a prefixed

point current Ipν is assigned, as shown in Fig. 25(b), which is the integral of the distribution

of the linear current density over an arc length πD/Np. According to the ν-th harmonic, the

maximum current value is computed from the electric loading K̂sν, as Îpν = K̂sνπD/Np.

The linear current density waveform rotates along the air-gap at the speed ωνr in the rotor

reference frame. The points currents are alternating. Using the symbolic notation, in the

generic angular position ϑ, the point current is

İpν(ϑ) = Îpνejνϑ (36)

where the phase of the current (i.e. νϑ) is a function of the geometrical position ϑ of the point.

(3) The frequency of the simulation is computed as

fνr = f

(

sgn · ν

p
− 1

)

(37)

In each simulation step, the rotor losses due to a single MMF harmonic are computed (Shah

& Lee, 2009) . The simulation needs a particular care adopting a two–dimensional analysis.

In each object, electrically insulated by the others, a total current equal to zero is imposed

as a further constraint. In addition, when laminations are insulated, a conductivity equal

to zero is fixed. The iron conductivity is σFe = 3MS/m, and the magnet conductivity is

σPM = 1.16MS/m. Mesh size is chosen according to the penetration thickness.

According to the 12–slot 10–pole PM machine, with a single–layer winding, Fig. 26(a) shows

the amplitudes of the MMF harmonics, as percentage of the main harmonic highlighting the

presence of a subharmonic of order ν = 1. Fig. 26(b) shows their frequency. Fig. 27 shows

the flux lines in the rotor of the 12–slot 10–poles PM machine due to the MMF subharmonic

(ν = 1) and other two MMF harmonics of higher order (ν = 7 and ν = 11).
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(a) Motor model
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(b) FE model

Fig. 25. Model used for FE computations.
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Fig. 26. Stator current MMF harmonic amplitudes and corresponding rotor frequency versus
harmonic order, according to a 12–slot 10–poles single–layer PM machine.

(a) ν = 1 (b) ν = 7 (c) ν = 11

Fig. 27. Flux lines due to MMF harmonics of order ν = 1 (subharmonic), ν = 7 and ν = 11.

9. Temperature rises computation

Once the losses of the electrical machine are estimated, it is possible to compute the

temperature rise in various parts of the electrical machine. It requires the knowledge of

the thermal properties of the material used in the machine, as well as the heat dissipation

conditions with the external environment. A two–dimension analysis is considered hereafter.
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9.1 Model of the machine

The FE model of a PM machine is shown in Fig. 28. Each material is characterized by a proper

thermal conductivity, and a volume heat generation proportional to its losses. Due to the

symmetry of the machine, only a portion of the machine can be analyzed.
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Fig. 28. Detail of machine geometry and material properties adopted in the FE analysis.

When the higher losses are located in the stator, a portion formed by one slot and two

half–teeth is enough in the analysis. Fig. 28 shows one slot pitch of an interior PM machine.

On the stator external surface, there is an Aluminum frame. Between the external surface of

the stator lamination and the Aluminum frame, an air foil is added, so as to take into account

the roughness and the imperfect contact between the two surfaces. The thickness of such a

foil is in the range 0.02–0.05 mm.

Within the slot, between the stator lamination and the coil, a slot insulating lining is

considered. An insulating separator is added in the middle of these two coil layers to increase

the electrical insulation between different phases.

9.2 Material thermal properties

The thermal conductivity of the materials are reported in Table 3. As far as the thermal

conductivity of the air–gap is concerned, it refers to a fluido–dynamic calculations, using the

rotation speed of the machine, as will be described hereafter.

The quality of some materials is dependent on the temperature. Among the others, particular

attention is devoted to PMs. Both the residual flux density and the magnetic field of the knee

of the B − H curve are reduced, as reported in Fig. 3(b). As said previously the reduction of

the magnetic field increases the risk of an irreversible demagnetization of the PMs.

9.2.1 Air gap

The air flow in the air gap is turbulent. The heat transfer is described with an effective thermal

conductivity λgap that is defined as the thermal conductivity that the stationary air should

have in order to transfer the same amount of heat as the moving air (Mademlis et al., 2000) .
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Material Symbol Value (W/m · K)

Insulating lining λins 0.15

Insulating separator λsep 0.25

Copper+Varnish λwnd 0.70—1.0

Aluminum λAl 100

Iron λFe 50

Air λair 0.026

Air gap λgap 0.130

Magnet λmag 9

Shaft λsh 50

Table 3. Thermal conductivity of the main materials

Its value depends on the relative speed ωm between stator and rotor as well as the air gap

width. It is calculated as

λgap = 0.0019 η−2.9084 Re0.4614 ln(3.3361 η) (38)

where

η =
Di − 2 g

Di

Re =
ωm g

ν

(39)

and ν is the cinematic viscosity of air. Obliviously, if the rotor is at standstill, the air gap

conductivity is equal to the stationary value, i.e. λair.

9.2.2 Slot

The actual slot contains many conductors, insulated each other by means of varnish. However,

the drawing of all conductors make no sense. Therefore, the coil winding is modeled as an

equivalent homogeneous material characterized by a proper thermal conductivity, as shown

in Fig. 29.

 !" # !"

 !"#$ %!&

'(&")*+
#  #!"#

Fig. 29. Thermal equivalent model of the slot

The equivalent thermal conductivity is computed as suggested in (Mellor et al., 1991;

Schuisky, 1967) . It depends on the ratio between the copper diameter dc and the

varnish–insulated diameter dins. It is

λCu−ins = F λins (40)
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where λins is the varnish–insulating conductivity, and the F is a multiplier factor (Schuisky,

1967) calculated as F = 37.5 x2 − 43.75 x + 14 (x = dc/dins). Typical value of such a

conductivity is 4 to 5 times that of the insulation, for the wire dimensions adopted in practice.

9.3 Assigning the loss sources

In each part of the electrical machine in which the losses are generated, a heat generation is

imposed as a heat source. Therefore, each region of the model is characterized by specific

losses per volume (in W/m3).

The specific losses for the region within the stator slots are computed dividing the Joule losses

of the stator winding by the volume of the stator slots. The length Lstk of the model has to be

considered.

The specific losses for the stator iron region correspond to the stator iron losses divided by the

stator iron volume. When the iron tooth losses are quite different from the back iron losses, it

is convenient to consider two different regions where to assign the specific losses. In the PM

and rotor iron regions, the specific rotor losses are assigned.

9.4 Assign the boundary conditions

The temperatures of the winding in the slots, the stator iron and the PMs are referred to the

environment temperature, which is fixed to be Tenv = 0◦C. Therefore, the field solution yields

the temperatures rise with respect to the environment temperature.

A natural air convection is considered externally. This yields a thermal convection coefficient

equal to 6 W/(m2K). However, in the two–dimensional FE model, a higher thermal

convection coefficient is set taking into account of the surface increase due to the external

length of the frame as respect to the stator stack length, and the presence of fins, which are not

detailed in the model of Fig. 28. Typically a factor 3 is used, yielding the thermal convection

coefficient to be 18 W/(m2K). This is the boundary conditions at the outer surface of the

machine frame.

9.5 Thermal computation

Fig. 30(b) shows the result of the thermal FE analysis. The steady–state temperature rises are

indicated in the slots, in the PMs and in the stator iron. The thermal analysis refers to rated

conditions, considering only the Joule losses (standstill operations).

The higher temperature is reached in the slots. The maximum temperature rise reached is

about 90 K with respect to the environment temperature. The experimental measurements

(Barcaro et al., 2011) confirm the simulated results. According to an external temperature of

20 ◦C, the winding temperature reaches 110 ◦C, and the frame temperature 91 ◦C.

9.6 Overload and faulty operating conditions

Overload operations are typically required in many applications, where the operating mode

is discontinuous and repetitive accelerations and decelerations are demanded to the electrical

433Electromagnetic and Thermal Analysis of Permanent Magnet Synchronous Machines

www.intechopen.com



28 Will-be-set-by-IN-TECH

(a) geometry
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(b) temperature rise map

Fig. 30. Machine geometry and simulated temperature rise distribution over environment
temperature in healthy mode.

machine. Therefore, the electrical machine has to be designed so as to allow temporary

overload operations, according to the given cooling system of the system.

(a) DL1 configuration (b) DL2 configuration (c) DL3 configuration
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% "

(d) DL1 temp. rise map
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(e) DL2 temp. rise map
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(f) DL3 temp. rise map

Fig. 31. Machine geometry and simulated temperature rise distribution over environment
temperature in faulty mode: (a) and (d) DL1 configuration, (b) and (e) DL2 configuration, (c)
and (f) DL3 configuration.

Particular analysis deals with the faulty operating conditions, in which only a portion of the

machine is operating, while the other is disconnected from the power supply.
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Hereafter, a dual–three–phase machine is considered in which only half a coils are supplied

and the others are open circuited. The machine is fed by a phase current higher than the

nominal value, still satisfying the thermal insulating class limit. Referring to the 12–slot

10–pole double–layer PM machine this post–fault strategy has been proposed in (Barcaro

et al., 2011) .

9.6.1 Torque under faulty condition

The thermal analysis allows to compute which is the maximum torque that a machine can

exhibit according to the limit temperature rise and the fixed cooling system. Some results

are presented hereafter referring to the dual–three–phase machine, during faulty operating

conditions. Three different coil connections are considered. They are labeled as DL1, DL2,

and DL3, according to how the two sets of three–phase windings are placed within the stator.

Fig. 31(d) shows the temperature map in case of one open–circuited phase according to

the DL1 configuration of Fig. 31(a). Since the temperature rise of the winding is 52 K

(in comparison with 90 K of healthy operating conditions) the operating current could be

increased by a factor of
√

90/52 = 1.32.

Therefore, according to the thermal analysis, when the dual–three–phase machine is operated

under faulty operating conditions, it is possible to reach a torque about 70% of the healthy

value overloading the machine and without exceeding the limit temperature.

Fig. 31(e) shows the temperature map in case of one open–circuited phase according to

the DL2 configuration of Fig. 31(b). Fig. 31(f) shows the temperature map in case of one

open–circuited phase according to the DL3 configuration of Fig. 31(c).

9.7 Impact of the rotor losses

The rotor losses can have a strong impact on the temperature rises of the machine. Fig. 32

shows the temperature map for a PM machine and neglecting and considering rotor losses.

Colors from light blue to dark red show the temperature rise in the machine. In this example,

the temperature rises in PMs and Copper increase from 80 K to 100 K, and from 90 K to 98 K,

respectively. It is worth noticing how the rotor losses influence the thermal behavior of the two

machines. There is an evident increasing of the temperature both in PMs and in the winding,

that can cause magnet demagnetization as shown in Fig. 3(b).

 !" #!"

(a) Without rotor losses

 !!" #$"

(b) With rotor losses

Fig. 32. Effect of the rotor losses in the machine temperature
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This means that the rotor losses can not be neglected, in order to avoid an underestimation of

the operating temperatures.
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