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1. Introduction 

In many industries, nickel-base alloys represent an important segment of structural 
materials. Critical components made of these alloys are relied upon to function satisfactorily 
in corrosive services. The demand for safe, reliable and cost-effective performance requires 
that these nickel-base alloys provide the anticipated corrosion resistance. Corrosion-resistant 
high alloy castings are often the subject of major concern because failures of cast 
components have led to significant downtime costs and operating problems [1]. Over the 
years, the nickel- chromium-molybdenum / tungsten alloys have proven to be among the 
most reliable and cost effective materials for aggressive seawater application and excellent 
resistance to localized corrosive attack (pitting, crevice corrosion).  

Among these alloys, Hestelloy C-types (C, C-4, C-276, and C-22) are used to serve the above 
mentioned purposes. As these alloys are commonly subject to further machining after 
casting, it becomes very vital to have an idea about the change in properties imparted to the 
machined surfaces after such cutting operations as end milling. For this reason, finite 
element methodology is used in this study to determine the machined surface stress 
characteristics. 

In the past decade, finite element method based on the updated-Lagrangian formulation has 
been developed to analyze metal cutting processes [1-7]. Several special finite element 
techniques, such as the element separation [1-7], modeling of worn cutting tool geometry [1, 
2, 4, 5, 6], mesh rezoning [3, 5], friction modeling [1-7], etc. have been implemented to 
improve the accuracy and efficiency of the finite element modeling. Detailed work-material 
modeling, which includes the coupling of temperature, strain-rate, and strain hardening 
effects, has been applied to model material deformation [3, 5, 6]. An early analytical model 
for predicting residual stresses was proposed by Okushima and Kakino [8], in which 
residual stresses were related to the cutting force and temperature distribution during 
machining. In another analytical model [9] a connection was made between residual stresses 
and the hardness of the workpiece. Shih and Yang [10] conducted a combined 
experimental/computational study of the distribution of residual stresses in a machined 
workpiece. More recently, Liu and Guo [11] used the finite element method to evaluate 
residual stresses in a workpiece. They also observed that the magnitude of residual stress 
reduces when a second cut is made on the cut surface. Liu and Barash [12] measured the 
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residual stress on the workpiece subsurface with consideration of tool flank wear. Their 
findings indicated that under the condition of a lower cutting speed, the mechanical load 
had a greater impact on residual stress, while the thermal effect become the major factor 
effecting residual stress at higher cutting speed. Lee and Shaffer [13] proposed a shear-angle 
model based on the slip-line field theory, which assumes a rigid-perfectly plastic material 
behavior and a straight shear plane. Kudo [14] modified the slip-line model by introducing a 
curved shear plane to account for the controlled contact between the curved chip and 
straight tool face. Henriksen [15] conducted a series of tests to understand residual stresses 
in the machined surface of steel and cast iron parts under various cutting conditions. Kono 
et al. [16] and Tonsoff et al. [17] revealed that residual stresses are dependent on the cutting 
speed. Matsumoto et al. [18] and Wu and Matsumoto [19] observed that the hardness of the 
workpiece material has a significant influence on the residual stress field. Konig et al. [20] 
showed that friction in metal cutting also contributes to the formation of residual stresses.  

2. Finite element model 

The finite element model is composed of a deformable workpiece and a rigid tool. The tool 
penetrates through the workpiece at a constant speed and constant feed rate. The model 
assumes plane-strain condition since generally depth of cut is much greater than feed rate. 
The finite model used in this study is based on the commercial finite element software. The 
software, called “Thirdwave AdvantEdge” uses six-noded quadratic triangular elements by 
default.  

 

Fig. 1. Thirdwave Advantedge model for milling. 
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AdvantEdge is an automated program and it is enough to input process parameters to make 
a two-dimensional simulation of orthogonal cutting operation. The boundary conditions are 
hidden to the user. Figure 1 shows the Thirdwave AdvantEdge model for milling operation 
and Figure 2 shows an example of visual simulation of residual stresses induced after 
milling. 

 

Fig. 2. Thirdwave Advantedge model for residual stress 

3. Workpiece and tool material modeling 

The workpiece material used for simulation is HASTELLOY C-22HS and the cutting tool is 
carbide coated with TiALN and 20o rake angle. Every one pass (80mm), the simulation was 
stopped. AdvantEdge uses an analytical formulation for material modeling. In a typical 
machining event, in the primary and secondary shear zones very high strain rates are 
achieved, while the remainder of the workpiece deforms at moderate or low strain rates. In 
order to account for this, Thirdwave AdvantEdge incorporates a stepwise variation of the 
rate sensitivity exponent: 
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p m

p
f p

o

 
        
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, if  p
t     (1) 

where  is the effective von Mises stress, f  is the flow stress, p is the accumulated plastic 

strain, p
o is a reference plastic strain rate, 1m  is the strain-rate sensitivity exponents, 

and t is the threshold strain rate which separates the two regimes. In calculations, a local 

Newton – Raphson iteration is used to compute p
o according to the low – rate equation, and 

switches to the high rate equation if the result lies above t . 
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f , which is used in Equation (1) is given as: 

  
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0
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 (2) 

where T is the current temperature, 0 is the initial yield stress at the reference temperature 

T0, 0
p  is the reference plastic strain, n is the hardening exponent and  T  is the thermal 

softening factor. In the present study, it is assumed that the tool is not plastifying. Hence, it 

is considered as an absolutely rigid body. 

4. Results and discussion 

Finite Elements simulations were carried out according Table 2. In all simulations, it is made 
sure that steady- state has been reached and some more data are collected after that time. 
Therefore, all the results presented in this work were gathered under steady-state condition. 
From the simulations, variables like stresses, strains, strain rates and temperatures 
distribution can be obtained. However, all these are very difficult to measure 
experimentally. 

Cutting speed 
(m/min) 

Feedrate  
(mm/rev) 

Axial depth 
(mm) 

Avg. Von Mises stress 
(Mpa) 

140 0.1 2 2100 

140 0.2 1 2548 

100 0.15 1 1345 

100 0.15 2 1548 

140 0.15 1.5 2254 

100 0.1 1.5 1245 

180 0.1 1.5 3987 

180 0.15 2 4100 

180 0.2 1.5 4488 

140 0.2 2 2814 

180 0.15 1 4257 

140 0.15 1.5 2157 

140 0.1 1 1987 

100 0.2 1.5 1721 

140 0.15 1.5 2347 

Table 2: Average value Von mises stress at cutting tool edge 

5. Maximum shear stress, stress tensor, Von Mises stress and residual stress 

Von Mises stress, V , is used to estimate yield criteria for ductile materials. It is calculated 

by combining stresses in two or three dimensions, with the result compared to the tensile 
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strength of the material loaded in one dimension. Von Mises stress is also useful for 

calculating the fatigue strength [21]. 

Von Mises stress in three dimensions is expressed as[21]: 

 
     2 22

1 2 2 3 3 1

2
V

          
   (3) 

where 1 2 3, ,    are the principal stresses. In the case of plane stress, 3 is zero. 

Figure 3 shows the Von mises stress for simulation no.9 (Cutting speed 180 m/min, feedrate 

0.15 mm and axial depth 2.0 mm) after 80 mm. Most of the tensile V  appear at the cutting 

tool edge. Based on Von Mises criterion, it states that failure occurs when the energy of 

distortion reaches the same energy for yield/failure in uniaxial tension. Mathematically, this 

is expressed as [21], 

      2 22 2
1 2 2 3 3 1

1

2
y

               
 (4) 

 

Fig. 3. Von mises stress for simulation no.9. 

The yield strength and ultimate tensile strength for the coated carbide cutting tool used in 
this simulation are 600 MPa and 800 MPa respectively. Then Von Mises stress at at region 9 
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is 4488 MPa, which is higher than the yield strength and ultimate tensile strength of the 
coated cutting tool. This strees can cause permanent damage to the cutting tool since this 
stress is beyond the ultimate tensile strength and yield strength. Cutting speed, feedrate, 
and axial depth for this simulation is very high and this cause the high stress at the cutting 
edge, since high cutting speed, feedrate, and axial depth can cause high force in milling [22, 
23]. The radial depth for every simulation is 3.5 mm. This factor also contributes to higher 
stress. At region 1, at the cutting tool and chip contact, the Von mises stress is 501 MPa, 
where the yield strength and ultimate strength of the workpiece are 359 MPa and 759 MPa. 
The workpiece start to deform since the stress is above its yield strength.   

Figure 4 shows Von Mises stress for simulation no. 3 (Cutting speed 100 m/min, feedrate 0.2 
mm/rev, axial depth 1.5 mm). The stress at cutting tool edge (region 5) is 1345 MPa. The 
Von mises stress is lower compared to that in simulation run no. 9. Even though the stress 
still higher than yield strength and ultimate tensile strength, but the damage should be not 
severe compared to that of simulation no.9. At region 3, the stress for the contact point 
cutting tool and chip is 577 MPa. This value is almost the same as in simulation no.9.  

 

Fig. 4. Von Mises stress for simulation no. 3 

From the Von Mises stress distribution as shown in Figure 3 and 4, most of the tensile V  

locate at the edge of the cutting tool. The stress distribution also show the stress is lower at 

under the cut surface anFrom the Von Mises stress distribution as shown in Figure 3 and 4, 
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most of the tensile V  locate at the edge of the cutting tool. The stress distribution also 

show the stress is lower at under the cut surface and increases gradually near the cutting 

edge. High force is needed at the tool edge for workpiece penetration, and this is indirectly 

increase the stress at the tool edge. This distribution of the stress is same for both cases. The 

velocity vectors for simulation no.9 as shown in Figure 5 around the tool tip, clearly show 

the plastic flow of the material araound the cutting edge. The same trend of flow also was 

observed by M.S.Gadala et. al. [24]. Figure 6 shows the 3D picture for Von misses stress 

distribution for simulation no.9.  

d increases gradually near the cutting edge. High force is needed at the tool edge for 

workpiece penetration, and this is indirectly increase the stress at the tool edge. This 

distribution of the stress is same for both cases. The velocity vectors for simulation no.9 as 

shown in Figure 5 around the tool tip, clearly show the plastic flow of the material araound 

the cutting edge. The same trend of flow also was observed by M.S.Gadala et. al. [24].  

Figure 6 shows the 3D picture for Von misses stress distribution for simulation no.9.  

Table 2 show the average value Von mises stress at cutting tool edge for every simulation 
that already run. This value will be investigate through statistical method to find the 
relationship between  variables (cutting speed, feedrate and axial depth) with response (Von 
mises Stress). 

 

 

 
Fig. 5. The velocity vectors for simulation no.9. 

The deformation direction 
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Fig. 6. 3D picture for Von Misses stress distribution for simulation no.9.  

6. Conclusion 

In the milling operation, cutting speed, feedrate and axial depth play the major role in 
producing high stresses. The Von Mises stress distribution also show the stress is lower at 
under the cut surface  and increase gradually  when come at cutting edge. The highest 
compressive xx  appear at the cutting edge. Most of the tensile V  appear at the cutting 
tool edge. The stress distribution also show the stress is lower at under the cut surface and 
increases gradually near the cutting edge. High force is needed at the tool edge for 
workpiece penetration, and this is indirectly increase the stress at the tool edge. This 
distribution of the stress is same for both cases. From the first order model, one can easily 
notice that the response y (Von Mises stress) is affected significantly by the feed rate 
followed by axial depth of cut and then by cutting speed.  Generally, the increase in feed 
rate, axial depth and cutting speed will cause Von Mises stress to become larger. The 
increase in feed rate, axial depth and decrease in cutting speed will cause residual stress to 
become larger .Response surface method is very useful since with few simulations, a lot of 
information can be derived such as the relationship between the variables (cutting speed, 
feedrate and axial depth) with response (Von Mises stress and Residual stress). The 
combination of numerical analysis and statistical method are very useful to analysis the 
distribution of stresses in milling.  
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