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1. Introduction

Visual tracking is an important component of many video surveillance systems. Specifically,

visual tracking refers to the inference of physical object properties (e.g., spatial position or

velocity) from video data. This is a well-established problem that has received a great deal of

attention from the research community (see, e.g., the survey (Yilmaz et al., 2006)). Classical

techniques often involve performing object segmentation, feature extraction, and sequential

estimation for the quantities of interest.

Recently, a new challenge has emerged in this field. Tracking has become increasingly difficult

due to the growing availability of cheap, high-quality visual sensors. The issue is data deluge

(Baraniuk, 2011), i.e., the quantity of data prohibits its usefulness due to the inability of the

system to efficiently process it. For example, a video surveillance system consisting of many

high-definition cameras may be able to gather data at a high rate (perhaps gigabytes per

second), but may not be able to process, store, or transmit the acquired video data under

real-time and bandwidth constraints.

The emerging theory of compressive sensing (CS) has the potential to address this problem.

Under certain conditions related to sparse representations, it effectively reduces the amount

of data collected by the system while retaining the ability to faithfully reconstruct the

information of interest. Using novel sensors based on this theory, there is hope to accomplish

tracking tasks while collecting significantly less data than traditional systems.

This chapter will first present classical components of and approaches to visual tracking,

including background subtraction, the Kalman and particle filters, and the mean shift tracker.

This will be followed by an overview of CS, especially as it relates to imaging. The rest of the

chapter will focus on several recent works that demonstrate the use and benefit of CS in visual

tracking.

2. Classical visual tracking

The purpose of this section is to give an overview of classical visual tracking. As a popular

component present in many methods, an overview of techniques used for background

subtraction will be provided. Next, the focus will shift to the probabilistic tracking

frameworks that define the Kalman and particle filters. This will be followed by a presentation

of an effective application-specific method: the mean shift tracker.
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2 Will-be-set-by-IN-TECH

2.1 Background subtraction

An important first step in many visual tracking systems is the extraction of regions of interest

(e.g, those containing objects) from the rest of the scene. These regions are collectively

termed the foreground, and the technique of background subtraction aims to segment it from

the background (i.e., the rest of the frame). Once the foreground has been identified, the task

of feature extraction becomes much easier due to the resulting decrease in data.

2.1.1 Hypothesis testing formulation

When dealing with digital images, one can pose the problem of background subtraction as a

hypothesis test (Poor, 1994; Sankaranarayanan et al., 2008) for each pixel in the image. The null

hypothesis (H0) is that a pixel belongs to the background, while the alternate hypothesis (H1)

is that it belongs to the foreground. Let p denote the measurement observed at an arbitrary

pixel. The form of p varies with the sensing modality, however its most common forms are

that of a scalar (e.g., light intensity in a gray scale image) or a three-vector (e.g., a color triple in

a color image). Whatever they physically represent, let FB denote the probability distribution

over the possible values of p when the pixel belongs to the background, and FT the distribution

for pixels in the foreground. The hypothesis test formulation of background subtraction can

then be written as:
H0 : p ∼FB

H1 : p ∼FT

(2.1)

The optimal Bayes decision rule for (2.1) is given by:

fB(p)

fT(p)

H0

≷
H1

τ (2.2)

where fB(p) and fT(p) denote the densities corresponding to FB and FT respectively, and τ

is a threshold determined by the Bayes risk. It is often the case, however, that very little is

known about the foreground, and thus the form of FT . One way of handling this is to assume

FT to be the uniform distribution over the possible values of p. In this case, the above reduces

to:

fB(p)
H0

≷
H1

θ (2.3)

where θ is dependent on τ the range of p.

In practice, the optimum value of θ is typically unknown. Therefore, θ is often chosen in an

ad-hoc fashion such that the decision rule gives pleasing results for the data of interest.

2.1.2 A simple background model

It will now be useful to introduce some notation to handle the temporal and spatial

dimensions intrinsic to video data. Let pt
i denote the value of the ith pixel in the tth frame.

Further, let Bt
i parametrize the corresponding background distribution, denoted FB,i,t, which

may vary with respect to both time and space. In order to select a good hypothesis test, the

focus of the background subtraction problem is on how to determine Bt
i from the available

data.

2 Recent Developments in Video Surveillance
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An intuitive, albeit naive, approach to this problem is to presume a static background model

with respect to time. A common form of this assumption is that FB,i,t is Gaussian with the same

covariance for all i. Such a distribution is parametrized only by its mean, and let μi specify

this value. Substituting the Gaussian density function for fB(p) in (2.3) yields the following

decision rule:

‖pt
i − μi‖2

H0

≶
H1

η (2.4)

for some threshold η dependent on θ and the covariance. In essence, the above rule amounts

to a simple thresholding of the background likelihood function evaluated at the pixel value of

interest. This is an intuitive way to perform background subtraction in that if the difference

between the background μi and the observation pt
i is high enough, the pixel is classified as

belonging to the foreground. Further, this method is computationally advantageous in that

it simply requires storing a background image, μi for all i, and thresholding the difference

between it and a test image. An example of this method is shown in Figure 1.

Fig. 1. Background subtraction results for the static unimodal Gaussian model. Left: static
background image. Middle: image with human. Right: background subtraction results using
the method in (2.4)

2.1.3 Dynamic background modeling

The static approach outlined above is simple, but suffers from the inability to cope with a

dynamic background. Such a background is common in video due to illumination shifts,

camera and object motion, and other changes in the environment. For example, a tree in the

background may sway in the breeze, causing pixel measurements to change significantly from

one frame to the next (e.g. tree to sky). However, each shift should not cause the pixel to be

classified as foreground, which will occur under the unimodal Gaussian model. A solution

to this problem is to use kernel density estimation (KDE) (Elgammal et al., 2002; Stauffer &

Grimson, 1999) to estimate fB,i,t from past data, i.e.

fB,i,t(p) =
1

N

t−1

∑
j=t−N

Kj(p) (2.5)

where Kj is a kernel density function dependent on the observation p
j
i . For example, Kj may

be defined as a Gaussian with fixed covariance and mean p
j
i . Using this definition, Bt

i can

be thought of as the pixel history {p
j
i}t−1

j=t−N , and FB,i,t becomes a mixture of Gaussians. This

3Compressive Sensing in Visual Tracking
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method is also adaptive to temporally recent changes in the background, as only the previous

N observations are used in the density estimate.

2.2 Tracking

In general, tracking is the sequential estimation of a random variable based on observations

over which it exerts influence. In the field of video surveillance, this random variable

represents certain physical qualities belonging to objects of interest. For example, Broida

and Chellappa (Broida & Chellappa, 1986) characterize a two-dimensional object in the image

plane via its center of mass and translational velocity. They also incorporate other quantities

to capture shape, global scale, and rotational motion. The time sequential estimates of such

quantities are referred to as tracks.

To facilitate subsequent discussion, it is useful to consider the discrete time state space

representation of the overall system that encompasses object motion and observation. The

state of the system represents the unknown values of interest (e.g., object position), and in

this section it will be denoted by a state vector, xt, whose components correspond to these

quantities. Observations of the system will be denoted by yt, and are obtained via a mapping

from the image to the observation space. This process is referred to as feature extraction, which

will not be the focus of this chapter. Instead, it is assumed that observations are provided

to the tracker with some specified probabilistic relationship between observation and state.

Given the complicated nature of feature extraction, it is often the case that this relationship is

heuristically selected based on some intuition regarding the feature extraction process.

In the context of the above discussion, the goal of a tracker is to provide sequential estimates

of xt using the observations (y0, . . . , yt). In the following sections, a few prominent methods

by which this is done will be considered.

2.2.1 Kalman filtering

The Kalman filter is a recursive tracking technique that is widely popular due to its

computational efficiency and ease of implementation. Under specific system assumptions,

it is able to provide a state estimate that is optimal according to a few popular metrics. This

section will outline these assumptions and detail the Kalman filtering method that is used to

compute the sequential state estimates.

Specifically, the assumptions that yield optimality are that the physical process governing the

behavior of the state should be linear and affected by additive white Gaussian process noise,

wt, i.e. (Anderson & Moore, 1979),

xt+1 = Ftxt + wt (2.6)

wt ∼ N (0, Qt), E

[

wkwT
l

]

= Qkδkl ,

where δkl is equal to one when k = l, and is zero otherwise. The process noise allows for

the model to remain valid even when the relationship between xt+1 and xt is not completely

captured by Ft.

4 Recent Developments in Video Surveillance
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The required relationship between yt and xt is specified by:

yt = HT
t xt + vt (2.7)

vt ∼ N (0, Rt), E

[

vkvT
l

]

= Rkδkl .

Notice that, just as in the state model, the relationship between the observation and the

state is assumed to be linear and affected by white Gaussian noise vt. This is referred to

as measurement noise, and is assumed to be independent of {wt}∞
t=0.

With the above assumptions, the goal of the Kalman filter is to compute the best estimate of

xk from the observations (y0, . . . , yt). What is meant by "best" can vary from application to

application, but common criterion yield the maximum a posteriori (MAP) and minimum mean

squared error (MMSE) estimators. Regardless of the estimator chosen, the value it yields can

be computed using the posterior density p(xt|y0, . . . , yt). For example, the MMSE estimate is

the mean of this density and the MAP estimate is the value of xt that maximizes it.

Under the assumptions made when specifying the state and observation equations, the MMSE

and MAP estimates are identical. Since successive estimates can be calculated recursively, the

Kalman filter provides this estimate without having to re-compute p(xt|y0, . . . , yt) each time

a new observation is received. This benefit requires the additional assumption that x0 ∼
N (x̄0, P0), which is equivalent to assuming x0 and y0 to be jointly Gaussian, i.e.,

[

x0

y0

]

∼ N
([

x̄0

HT
0 x̄0

]

,

[

P0 P0H0

HT
0 P0 HT

0 P0H0 + R0

])

, (2.8)

which yields

x0|y0 ∼ N
(

x̂0|0, Σ0|0
)

(2.9)

x̂0|0 = x̄0 + P0H0(H
T
0 P0H0 + R0)

−1(y0 − HT
0 x̄0)

Σ0|0 = P0 − P0H0(H
T
0 P0H0 + R0)

−1HT
0 P0 . (2.10)

Since x0|y0 is Gaussian, both its MMSE and MAP estimates are given by the mean of this

distribution, i.e., x̂0|0. The subscript indicates that this is the estimate of x0 given observations

up to time 0.

From this starting point, the Kalman filter calculates subsequent estimates (x̂t|t in general)

using a two step procedure. First, it can be seen that xt+1|y0:t is also Gaussian, with mean and

covariance given by

x̂t+1|t = Ft x̂t|t (2.11)

Σt+1|t = FtΣt|tF
T
t + Qt .

The above are known as the time update equations. Once yt+1 is observed, the second step of

the Kalman filter is to adjust the prediction x̂t+1|t to one that incorporates the information

provided by the new observation. This is done via the measurement update equations:

5Compressive Sensing in Visual Tracking
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x̂t+1|t+1 = x̂t+1|t + Σt+1|tHt+1(H
T
t+1Σt+1|tHt+1 + Rt+1)

−1(yt+1 − HT
t+1x̂t+1|t) (2.12)

Σt+1|t+1 = Σt+1|t − Σt+1|tHt+1(H
T
t+1Σt+1|tHt+1 + Rt+1)

−1HT
t+1Σt+1|t . (2.13)

Using the above steps at each time instant, the Kalman filter provides optimal tracks {x̂t|t}∞
t=0

that are calculated in a recursive and efficient manner. The optimality of the estimates

comes at the cost of requiring the assumptions of linearity and Gaussianity in the state space

formulation of the system. Even without the Gaussian assumptions, the filter is optimal

among the class of linear filters.

2.2.2 Particle filtering

Since it is able to operate in an unconstrained setting, the particle filter (Doucet et al., 2001; Isard

& Blake, 1996) is a more general approach to sequential estimation. However, this expanded

utility comes at the cost of high computational complexity. The particle filter is a sequential

Monte Carlo method, using samples of the conditional distribution in order to approximate it

and thus the desired estimates. There are many variations of the particle filter, but the focus

of this section shall be on the so-called bootstrap filter.

Assume the system of interest behaves according to the following known densities:

p(x0) , (2.14)

p(xt|xt−1), t ≥ 1 , and (2.15)

p(yt|xt), t ≥ 1 . (2.16)

Note that the more general specifications p(xt|xt−1) and p(yt|xt) replace the linear, Gaussian

descriptions of the system and observation behaviors necessary for the Kalman filter. In order

to achieve the goal of tracking, it is necessary to have some information regarding p(x0:t|y1:t)
(from which p(xt|y1:t) is apparent), where x0:t = (x0, . . . , xt), and similarly for y1:t. Here, we

depart from the previous notation and assume that the first observation is available at t = 1.

In a purely Bayesian sense, one could compute the conditional density as

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)

∫

p(y1:t|x0:t)p(x0:t)dx0:t
, (2.17)

which leads to a recursive formula

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|yt−1)
. (2.18)

A similar type of recursion can be shown to exist for the marginal density p(xt|y1:t). While the

above expressions seem simple, for general distributions in (2.14) (2.15) and (2.16), they often

become prohibitively difficult to evaluate due to analytic and computational complexity.

The particle filter avoids the analytic difficulties above using Monte Carlo sampling. If N i.i.d.

particles (samples), {x
(i)
0:t}N

i=1, drawn from p(x0:t|y1:t) were available, one could approximate

6 Recent Developments in Video Surveillance
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the density by placing a Dirac delta mass at the location of each sample, i.e.,

p(x0:t|y1:t) ≈ PN(x0:t|y1:t) =
1

N

N

∑
i=1

δ(x0:t − x
(i)
0:t) . (2.19)

It would then be straightforward to use PN to calculate an estimate of the random variable

(i.e. a track). However, this method presents its own difficulty in that it is usually impractical

to obtain the samples {x
(i)
0:t}N

i=1.

The bootstrap filter is based on a technique called sequential importance sampling, which is used

to overcome the issue above. Samples are initially drawn from the known prior distribution

p(x0), from which it is straightforward to generate samples {x
(i)
0 }N

i=1. Next, importance

sampling occurs. First, a prediction step takes place, generating candidate samples {x̃
(i)
1 }N

i=1

by drawing x̃
(i)
1 from p(x1|x(i)0 ) for each i. From here, importance weights w̃

(i)
1 = p(y1|x̃(i)1 )

are calculated based on the observation y1 and adjusted such that they are normalized (i.e.

such that ∑i w̃
(i)
1 = 1). The filter then enters the selection step, where samples {x

(i)
1 }N

i=1 are

generated via draws from a discrete distribution over {x̃
(i)
1 }N

i=1 with the probability for the ith

element given by w̃
(i)
1 . This process is then repeated to obtain {x

(i)
2 }N

i=1 from {x
(i)
1 }N

i=1 and y2,

and so forth.

Due to the selection step, those candidate particles x̃
(i)
t for which p(yt|x̃i

t) is low will not

propagate to the next stage. The samples that survive are those that explain the data well, and

are thus concentrated in the most dense areas of p(xt|y1:t). Therefore, the computed value for

common estimators such as the mean and mode will be good approximations of their actual

values. Further, note that the candidate particles are drawn from p(xt|xt−1), which introduces

process noise to prevent the particles from becoming too short-sighted.

Using the estimate calculated from the density approximation yielded by the particles

{x
(i)
t }N

i=1, the particle filter is able provide tracks that are optimal for a wide variety of criteria

in a more general setting than that required by the Kalman filter. However, the validity of the

track depends on the ability of the particles to sufficiently characterize the underlying density.

Often, this may require a large number of particles, which can lead to a high computational

cost.

2.2.3 Mean shift tracking

Unlike the Kalman and particle filters, the mean shift tracker (Comaniciu et al., 2003) is a

procedure designed specifically for visual data. The feature employed, a spatially weighted

color histogram, is computed directly from the input images. The estimate for the object

position in the image plane is defined as the mode of a density over spatial locations, where

this density is defined using a similarity measure between the histogram for an object model

(i.e. a “template") and the histogram at a location of interest. The mean shift procedure

(Comaniciu & Meer, 2002) is then used to find this mode.

In general, the mean shift procedure provides a way to perform gradient ascent on an

unknown density using only samples generated by this density. It achieves this via selecting a

7Compressive Sensing in Visual Tracking
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specific method of density estimation and analytically deriving a data-dependent term that

corresponds to the gradient of the estimate. This term is known as the mean shift, and

it can be used as the step term in a mode-seeking gradient ascent procedure. Specifically,

non-parametric KDE is employed, i.e.,

f̂ (x) =
1

nhd

n

∑
i=1

K

(

x − xi

h

)

, (2.20)

where the d-dimensional vector x represents the feature, f̂ (·) the estimated density, and K(·)
a kernel function. The kernel function is assumed to be radially symmetric, i.e., K(x) =
ck,dk(‖x‖2) for some function k(·) and normalizing constant ck,d. Using this in (2.20), f̂ (x)
becomes

f̂h,K(x) =
ck,d

nhd

n

∑
i=1

k(‖ x − xi

h
‖2) . (2.21)

Ultimately, it is the gradient of this approximation, ∇ f̂h,K , that is of interest. Letting g(·) =
−k′(·), it is given by

∇ f̂h,K(x) =
2ck,d

nhd+2

[

n

∑
i=1

g

(

‖ x − xi

h
‖2

)

] [

∑
n
i=1 xig

(

‖ x−xi
h ‖2

)

∑
n
i=1 g

(

‖ x−xi
h ‖2

) − x

]

. (2.22)

Using g(·) to define a new kernel G(x) = cg,dg(‖x‖2), (2.22) can be rewritten as

∇ f̂h,K(x) =
2ck,d

n2cg,d
f̂h,G(x)mh,G(x) , (2.23)

where mh,G(x) denotes the mean shift:

mh,G(x) =

[

∑
n
i=1 xig

(

‖ x−xi
h ‖2

)

∑
n
i=1 g

(

‖ x−xi
h ‖2

) − x

]

. (2.24)

It can be seen from (2.23) that mh,G(x) is proportional to ∇ f̂h,K(x), and thus may be used as a

step direction in a gradient ascent procedure to find a maximum of f̂h,K(x) (i.e., a mode).

(Comaniciu et al., 2003) utilize the above procedure when tracking objects in the image plane.

The selected feature is a spatially weighted color histogram computed over a normalized

window of finite spatial support. The spatial weighting is defined by an isotropic kernel k(·),
and the object model is given by an m-bin histogram q̂ = {q̂u}m

u=1, where

q̂u = C
n

∑
i=1

k(‖x∗i ‖2)δ [b(x∗i )− u] . (2.25)

x∗i denotes the spatial location of the ith pixel in the n pixel window containing the object

model, assuming the center of the window to be located at 0. δ
[

b(x∗i − u
]

is 1 when the pixel

8 Recent Developments in Video Surveillance
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value at x∗i falls into the uth bin of the histogram, and 0 otherwise. Finally, C is a normalizing

constant to ensure that q is a true histogram.

An object candidate feature located at position y is denoted by p̂(y), and is calculated in

a manner similar to q̂, except k(‖x∗i ‖2) is replaced by k(‖y − xi‖2) to account for the new

window location.

To capture a notion of similarity between p̂(y) and q̂, the Bhattacharyya coefficient is used,

i.e.,

d(y) =
√

1 − ρ̂(y) , (2.26)

where ρ̂(y) = ∑
m
u=1

√

p̂u(y)q̂u is the Bhattacharyya coefficient.

An approximation of ρ̂(y) is provided by

ρ̂(y) =
1

2

m

∑
u=1

√

p̂u(y0)q̂u +
Ch

2

n

∑
i=1

wik

(

‖y − xi

h
‖2

)

. (2.27)

Above, y0 represents an initial location provided by the track from the previous frame. The

weights {wi}n
i=1 are calculated as a function of q̂, p̂(y0), and b(xi). To minimize the distance

in (2.26), the second term of (2.27) should be maximized with respect to y. This term can be

interpreted as a nonparametric weighted KDE with kernel function k(·). Thus, the mean shift

procedure can be used to iterate over y and find that value which minimizes d(y). The result

is then taken to be the location estimate (track) for the current frame.

2.3 The data challenge

Given the above background, it can be seen how large amounts of data can be of detriment

to tracking. Background subtraction techniques may require complicated density estimates

for each pixel, which become burdensome in the presence of high-resolution imagery. The

filtering methods presented above are not specific to the amount of data, but more of it leads

to greater computational complexity when performing the estimation. Likewise, higher data

dimensionality is of detriment to mean shift tracking, specifically during the required density

estimation and mode search. This extra data could be due to higher sensor resolution or

perhaps the presence of multiple sensors (Sankaranarayanan et al., 2008)(Sankaranarayanan

& Chellappa, 2008). Therefore, new tracking strategies must be developed. The hope for

finding such strategies comes from the fact that there is a substantial difference in the amount

of data collected by these systems compared to the quantity of information that is ultimately

of use. Compressive sensing provides a new perspective that radically changes the sensing

process with the above observation in mind.

3. Compressive sensing

Compressive sensing is an emerging theory that allows for a certain class of discrete signals

to be adequately sensed using far fewer measurements than the dimension of the ambient

space in which they reside. By "adequately sensed," it is meant that the signal of interest

can be accurately inferred from the measurements collected during the sensing process. In

9Compressive Sensing in Visual Tracking
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the context of imaging, consider an unknown n × n grayscale image F, i.e., F ∈ Rn×n. A

traditional camera measures F using an n× n array of photodetectors, where the measurement

collected at each detector corresponds to a single pixel value in F. If F is vectorized as x ∈
RN (N = n2), then the imaging strategy described above amounts to (in the noiseless case)

x̂ = y = Ix (Romberg, 2008), where x̂ is the inferred value of x using the measurements y.

Each component of y (i.e., a measurement) corresponds to a single component of x, and this

relationship is captured by representing the sensing process as the identity matrix I. Since x

is the quantity of interest, estimating it from y also amounts to a simple identity mapping, i.e.

x̂(y) = y. However, both the measurement and estimation process can change, giving rise to

interesting and useful signal acquisition methodologies.

For practical purposes, it is often the case that x is represented using far fewer measurements

than the N collected above. For example, using transform coding methods (e.g., JPEG 2000), x

can usually be closely approximated by specifying very few values compared to N (Bruckstein

et al., 2009). This is accomplished via obtaining b = Bx for some orthonormal basis B (e.g., the

wavelet basis), and setting all but the k largest components of b to zero. If this new vector is

denoted bk, then the transform coding approximation of x is given by x̂ = B−1bk. If ‖x − x̂‖2

is small, then this approximation is a good one. Since B is orthonormal, this condition also

requires that ‖b − bk‖2 be small as well. If such is the case, b is said to be k-sparse (and x

k-sparse in B), i.e., most of the energy in b is distributed among very few of its components.

Thus, if the value of x is known, and x is k-sparse in B, a good approximation of x can be

obtained from bk. Compression comes about since bk (and thus x) can be specified using just

2k quantities instead of N: the values and locations of the k largest coefficients in b. However,

extracting such information requires full knowledge of x, which necessitates N measurements

using the traditional imaging system above. Thus, N data points must be collected when in

essence all but 2k are thrown away. This is not completely unjustified, as one cannot hope to

form bk without knowing b. On the other hand, such a large disparity between the amount

of data collected and the amount that is truly useful seems wasteful.

This glaring disparity is what CS seeks to address. Instead of collecting N measurements of

x, the CS strategy is to collect M, where M << N and depends on k. As long as x is k-sparse

in some basis and an appropriate decoding procedure is employed, these M values yield a

good approximation of x. For example, let Φ ∈ RM×N be the measurement matrix by which

these values, y ∈ RM, are obtained as y = Φx. Further, assume x is k-sparse. It is possible

to recover x from y if Φ has the restricted isometry property (RIP) of order 2k (Candès & Wakin,

2008), i.e., the smallest δ for which

(1 − δ) ≤ ‖Φx‖2
2

‖x‖2
2

≤ (1 + δ) (3.1)

holds for all 2k-sparse vectors is not too close to 1. An intuitive interpretation of this property

is that it ensures that all 2k-sparse vectors do not lie in Null(Φ). This guarantees that a unique

measurement y is generated for each k-sparse x even though Φ is underdetermined.

An example Φ that satisfies the above conditions is one for which entries are drawn from the

Bernoulli distribution over the discrete set { −1√
N

, 1√
N
} and each realization is equally likely

(Baraniuk, 2007). If, in addition, M is selected such that M > Ck log N for a specific constant
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C, it is overwhelmingly likely that Φ will be 2k-RIP. There are other constructions that provide

similar guarantees given slightly different bounds on M, but the concept remains unchanged:

if M is "large enough," Φ will exhibit the RIP with overwhelming probability. Given such a

matrix, and considering that this implies a unique y for each k-sparse x, an estimate x̂ of x is

ideally calculated from y as

x̂ = min
z∈RN

‖z‖0 subject to Φz = y , (3.2)

where ‖·‖0, referred to as the ℓ0 "norm," counts the number of nonzero entries in z. Thus,

(3.2) seeks the sparsest vector that explains the observation y. In practice, (3.2) is not very

useful since the program it specifies has combinatorial complexity. However, this problem

is also mitigated due to the special construction of Φ and the fact that x is k-sparse. Under

these conditions, the solution of the following program yields the same results as (3.2) with

overwhelming probability:

x̂ = min
x∈RN

‖z‖1 subject to Φz = y . (3.3)

Thus, by modifying the sensor to use Φ and the decoder to use (3.3), M << N measurements

of a k-sparse x suffice to retain the ability to reconstruct it.

Sensors based on the above theory are beginning emerge (Willett et al., 2011). One of the most

notable is the single pixel camera (Duarte et al., 2008), where measurements specified by each

row of Φ are sequentially computed in the optical domain via a digital micromirror device and

a single photodiode. Many of the strategies discussed in the following section assume that the

tracking system is such that these compressive sensors replace more traditional cameras.

4. Compressive sensing in video surveillance

Compressive sensing can help alleviate some of the challenges associated with performing

classical tracking in the presence of overwhelming amounts of data. By replacing traditional

cameras with compressive sensors or by making use of CS techniques in other areas of the

process, the amount of data that the system must handle can be drastically reduced. However,

this capability should not come at the cost of a significant decrease in tracking performance.

This section will present a few methods for performing various tracking tasks that take

advantage of CS in order to reduce the quantity of data that must be processed. Specifically,

recent methods using CS to perform background subtraction, more general signal tracking,

multi-view visual tracking, and particle filtering will be discussed.

4.1 Compressive sensing for background subtraction

One of the most intuitive applications of compressive sensing in visual tracking is the

modification of background subtraction such that it is able to operate on compressive

measurements. As mentioned in Section 2.1, background subtraction aims to segment the

object-containing foreground from the uninteresting background. This process not only helps

to localize objects, but also reduces the amount of data that must be processed at later stages of

tracking. However, traditional background subtraction techniques require that the full image

be available before the process can begin. Such a scenario is reminiscent of the problem that

11Compressive Sensing in Visual Tracking
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CS aims to address. Noting that the foreground signal (image) is sparse in the spatial domain,

(Cevher et al., 2008) have presented a technique via which background subtraction can be

performed on compressive measurements of a scene, resulting in a reduced data rate while

simultaneously retaining the ability to reconstruct the foreground. More recently, (Warnell

et al., 2012) have proposed a modification to this technique which adaptively adjusts the

number of compressive measurements collected to the dynamic foreground sparsity typical

to surveillance data.

Denote the images comprising a video sequence as {xt}∞
t=0, where xt ∈ RN is the vectorized

image captured at time t. Cevher et al. model each image as the sum of foreground and

background components ft and bt, respectively. That is,

xt = ft + bt . (4.1)

Assume xt is sensed using Φ ∈ CM×N to obtain compressive measurements yt = Φxt. If

∆(Φ, y) represents a CS decoding procedure such as (3.3), then the proposed method for

estimating ft from yt is

f̂t = ∆(Φ, y − yb
t ) , (4.2)

where it is assumed that yb
t = Φbt is known via an estimation and update procedure.

To begin, yb
0 is initialized using a sequence of N compressively sensed background-only

frames {yb
j }N

j=1 that appear before the sequence of interest begins. These measurements are

assumed to be realizations of a multivariate Gaussian random variable, and the maximum

likelihood (ML) procedure is used to estimate its mean as yb
0 = 1

N ∑
N
j=1 yb

j . This estimate is

used as the known background for t = 0 in (4.2). Since the background typically changes

over time, a method is proposed for updating the background estimate based on previous

observations. Specifically, the following is proposed:

yb
t+1 = α(yt − Φ∆(Φ, yma

t+1)) + (1 − α)yb
t (4.3)

yma
t+1 = γyt + (1 − γ)yma

t , (4.4)

where α, γ ∈ (0, 1) are learning rate parameters and yma
t+1 is a moving average term. This

method compensates for both gradual and sudden changes to the background. A block

diagram of the proposed system is shown in Figure 2.

The above procedure assumes a fixed Φ ∈ CM×N . Therefore, M compressive measurements

of xt are collected at time t regardless of its content. It is not hard to imagine that the number

of significant components of ft, kt, might vary widely with t. For example, consider a scenario

in which the foreground consists of a single object at t = t0, but many more at t = t1. Then

k1 > k0, and M > Ck1 log N implies that xt0 has been oversampled due to the fact that only

M > Ck0 log N measurements are necessary to obtain a good approximation of ft0 . Foregoing

the ability to update the background, (Warnell et al., 2012) propose a modification to the above

method for which the number of compressive measurements at each frame, Mt, can vary.

Such a scheme requires a different measurement matrix for each time instant, i.e. Φt ∈
CMt×N . To form Φt, one first constructs Φ ∈ CN×N via standard CS measurement matrix

12 Recent Developments in Video Surveillance
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Fig. 2. Block diagram of the compressive sensing for background subtraction technique.
Figure originally appears in (Cevher et al., 2008).

construction techniques. Φt is then formed by selecting only the first Mt rows of Φ and

column-normalizing the result. The fixed background estimate, yb, is estimated from a set

of measurements of the background only obtained via Φ. In order to use this estimate at each

time instant t, yb
t is formed by retaining only the first Mt components of yb.

In parallel to Φt, the method also requires an extra set of compressive measurements via

which the quality of the foreground estimate, f̂t = ∆(Φt, yt − yb
t ), is determined. These are

obtained via a cross validation matrix Ψ ∈ Cr×N , which is constructed in a manner similar to

Φ. r depends on the desired accuracy of the cross validation error estimate (given below),

is negligible compared to N, and constant for all t. In order to use the measurements zt =
Ψxt, it is necessary to perform background subtraction in this domain via an estimate of the

background, zb, which is obtained in a manner similar to yb above.

The quality of f̂t depends on the relationship between kt and Mt. Using a technique

operationally similar to cross validation, an estimate of ‖ft − f̂t‖2, i.e., the error between the

true foreground and the reconstruction provided by ∆ at time t, is provided by ‖(zt − zb)−
Ψf̂t‖2. Mt+1 is set to be greater or less than Mt depending on the hypothesis test

‖(zt − zb)− Ψf̂t‖2 ≶ τt . (4.5)

Here, τt is a quantity set based on the expected value of ‖ft − f̂t‖2 assuming Mt to be large

enough compared to kt. The overall algorithm is termed adaptive rate compressive sensing

(ARCS), and the performance of this method compared to a non-adaptive approach is shown

in Figure 3.

Both techniques assume that the tracking system can only collect compressive measurements

and provide a method by which foreground images can be reconstructed. These foreground

images can then be used just as in classical tracking applications. Thus, CS has provided a

means by which to reduce the up-front data costs associated with the system while retaining

the information necessary to track.

4.2 Kalman filtered compressive sensing

A more general problem regarding signal tracking using compressive observations is

considered in (Vaswani, 2008). The signal being tracked, {xt}∞
t=0, is assumed to be both sparse

13Compressive Sensing in Visual Tracking
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Fig. 3. Comparison between ARCS and a non-adaptive method for a dataset consisting of
vehicles moving in and out of the field of view. (a) Foreground sparsity estimates for each
frame, including ground truth. (b) ℓ2 foreground reconstruction error. (c) Number of
measurements required. Note the measurements savings provided by ARCS for most
frames, and its ability to track the dynamic foreground sparsity. Figure originally appears in
(Warnell et al., 2012).

and have a slowly-changing sparsity pattern. Given these assumptions, if the support set of

xt, Tt, is known, the relationship between xt and yt can be written as:

yt = ΦTt
(x)Tt

+ wt . (4.6)

Above, Φ is the CS measurement matrix, and ΦTt
retains only those columns of Φ whose

indices lie in Tt. Likewise, (xt)Tt
contains only those components corresponding to Tt. Finally,

wt is assumed to be zero mean Gaussian noise. If xt is assumed to also follow the state model

xt = xt−1 + vt with vt zero mean Gaussian noise, then the MMSE estimate of xt from yt can

be computed using a Kalman filter instead of a CS decoder.

The above is only valid if Tt is known, which is often not the case. This is handled by using

the Kalman filter output to detect changes in Tt and re-estimate it if necessary. ỹt, f = yt − Φx̂,

the filter error, is used to detect changes in the signal support via a likelihood ratio test given

by

ỹ′
t, f Σỹt, f ≷ τ (4.7)

where τ is a threshold and Σ is the filtering error covariance. If the term on the left hand

side exceeds the threshold, then changes to the support set are found by applying a procedure

based on the Dantzig selector. Once Tt has been re-estimated, x̂ is re-evaluated using this new

support set.
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The above algorithm is useful in surveillance scenarios when objects under observation are

stationary or slowly-moving. Under such assumptions, this method is able to perform signal

tracking with a low data rate and low computational complexity.

4.3 Joint compressive video coding and analysis

(Cossalter et al., 2010) consider a collection of methods via which systems utilizing

compressive imaging devices can perform visual tracking. Of particular note is a method

referred to as joint compressive video coding and analysis, via which the tracker output is used

to improve the overall effectiveness of the system. Instrumental to this method is work

from theoretical CS literature which proposes a weighted decoding procedure that iteratively

determines the locations and values of the (nonzero) sparse vector coefficients. Modifying this

decoder, the joint coding and analysis method utilizes the tracker estimate to directly influence

the weights. The result is a foreground estimate of higher quality compared to one obtained

via standard CS decoding techniques.

The weighted CS decoding procedure calculates the foreground estimate via

f̂ = min
θ

‖Wθ‖1 s.t. ‖y f − Φθ‖2 ≤ σ , (4.8)

where y f = y − yb, W is a diagonal matrix with weights [w(1) . . . w(N)], and σ captures

the expected measurement and quantization noise in y f . Ideally, the weights are selected

according to

w(i) =
1

| f (i)|+ ǫ
, (4.9)

where f (i) is the value of the ith coefficient in the true foreground image. Of course, these

values are not known in advance, but the closer the weights are to their actual value, the

more accurate f̂ becomes. The joint coding and analysis approach utilizes the tracker output

in selecting appropriate values for these weights.

The actual task of tracking is accomplished using a particle filter similar to that presented in

Section 2.2.2. The state vector for an object at time t is denoted by zt = [ct st ut], where st

represents the size of the bounding box defined by the object appearance, ct the centroid of

this box, and ut the object velocity in the image plane. A suitable kinematic motion model

is utilized to describe the expected behavior of these quantities with respect to time, and

foreground reconstructions are used to generate observations.

Assuming the foreground reconstruction f̂t obtained via decoding the compressive

observations from time t is accurate, a reliable tracker estimate can be computed. This

estimate, ẑt, can then be used to select values for the weights [w(1) . . . w(N)] at time t + 1.

If the weights are close to their ideal value (4.9), the value of f̂t+1 obtained from the weighted

decoding procedure will be of higher quality than that obtained from a more generic CS

decoder. (Cossalter et al., 2010) explore two methods via which the weights at time t + 1

can be selected using f̂t and ẑt. The best of these consists of three steps: 1) thresholding the

entries of f̂t, 2) translating the thresholded silhouettes for a single time step according to the

motion model and ẑt, and 3) dilating the translated silhouettes using a predefined dilation
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element. The final step accounts for uncertainty in the change of object appearance from one

frame to the next. The result is a modified foreground image, which can then be interpreted

as a prediction of ft+1. This prediction is used to define the weights according to (4.9), and the

weighted decoding procedure is used to obtain f̂t+1.

The above method is repeated at each new time instant. For a fixed compressive measurement

rate, it is shown to provide more accurate foreground reconstructions than decoders that do

not take advantage of the tracker output. Accordingly, it is also the case that such a method is

able to more successfully tolerate lower bit rates. These results reveal the benefit of using the

high level tracker information in compressive sensing systems.

4.4 Compressive sensing for multi-view tracking

Another direct application of CS to a data-rich tracking problem is presented by (Reddy

et al., 2008). Specifically, a method for using multiple sensors to perform multi-view tracking

employing a coding scheme based on compressive sensing is developed. Assuming that

the observed data contains no background component (this could be realized, e.g., by

preprocessing using any of the background subtraction techniques previously discussed), the

method uses known information regarding the sensor geometry to facilitate a common data

encoding scheme based on CS. After data from each camera is received at a central processing

station, it is fused via CS decoding and the resulting image or three dimensional grid can be

used for tracking.

The first case considered is one where all objects of interest exist in a known ground plane.

It is assumed that the geometric transformation between it and each sensor plane is known.

That is, if there are C cameras, then the homographies {Hj}C
j=1 are known. The relationship

between coordinates (u, v) in the jth image and the corresponding ground plane coordinates

(x, y) is determined by Hj as

⎡

⎣

u

v

1

⎤

⎦ ∼ Hj

⎡

⎣

x

y

1

⎤

⎦ , (4.10)

where the coordinates are written in accordance with their homogeneous representation.

Since Hj can vary widely across the set of cameras due to varying viewpoint, an encoding

scheme designed to achieve a common data representation is presented. First, the ground

plane is sampled, yielding a discrete set of coordinates {(xi, yi)}N
i=1. An occupancy vector, x,

is defined over these coordinates, where x(n) = 1 if foreground is present at the corresponding

coordinates and is 0 otherwise. For each camera’s observed foreground image in the set

{Ij}C
j=1, an occupancy vector y′

j is formed as y′
j(i) = Ij(ui, vi), where (ui, vi) are the

(rounded) image plane coordinates corresponding to (xi, yi) obtained via (4.10). Thus, y′
j =

x + ej, where ej represents any error due to the coordinate rounding and other noise. Figure

4 illustrates the physical configuration of the system.

Noting that x is often sparse, the camera data {y′
j}C

j=1 is encoded using compressive

sensing. First, C measurement matrices {Φj}C
j=1 of equal dimension are formed according

to a construction that affords them the RIP of appropriate order for x. Next, the camera
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Fig. 4. Physical diagram capturing the assumed setup of the multi-view tracking scenario.
Figure originally appears in (Reddy et al., 2008).

data is projected into the lower-dimensional space by computing yj = Φjy
′
j, j = 1, . . . , C.

This lower-dimensional data is transmitted to a central station, where it is ordered into the

following structure:

⎡

⎢

⎣

y1
...

yC

⎤



⎦
=

⎡

⎢

⎣

Φ1
...

ΦC

⎤



⎦
x +

⎡

⎢

⎣

e1
...

eC

⎤



⎦
(4.11)

which can be written as y = Φx + e. This is a noisy version of the standard CS problem

presented in Section 3, and an estimate of x can be found using a relaxed version of (3.3), i.e.,

x̂ = min
z∈RN

‖z‖1 subject to ‖Φz − y‖2 ≤ ‖e‖2 . (4.12)

The estimated occupancy grid (formed, e.g., by thresholding x̂) can then be used as input to

subsequent tracker components.

The above process is also extended to three dimensions, where x represents an occupancy

grid over 3D space, and the geometric relationship in (4.10) is modified to account for the

added dimension. The rest of the process is entirely similar to the two dimensional case. Of

particular note is the advantage in computational complexity: it is only on the order of the

dimension of x as opposed to the number of measurements received.

4.5 Compressive particle filtering

The final application of compressive sensing in tracking presented in this chapter is the

compressive particle filtering algorithm developed by (Wang et al., 2009). As in Section 4.1,

it is assumed that the system uses a sensor that is able to collect compressive measurements.

The goal is to obtain tracks without having to perform CS decoding. That is, the method solves

the sequential estimation problem using the compressive measurements directly, avoiding
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procedures such as (3.3). Specifically, the algorithm is a modification to the particle filter of

Section 2.2.2.

First, the system is formulated in state space, where the state vector at time t is given by

st = [sx
t s

y
t ṡx

t ṡ
y
t ψt]

T . (4.13)

(sx
t , s

y
t ) and (ṡx

t , ṡ
y
t ) represent the object position and velocity in the image plane, and ψt is

a parameter specifying the width of an appearance kernel. The appearance kernel is taken

to be a Gaussian function defined over the image plane and centered at (sx
t , s

y
t ) with i.i.d.

component variance proportional to ψt. That is, given st, the jth component of the vectorized

image, zt, is defined as

z
j
t(st) = Ct exp{−ψt(

[

sx
k

s
y
k

]

− rj)} , (4.14)

where rj specifies the two dimensional coordinate vector belonging to the jth component of zt.

The state equation is given by

st+1 = ft(st, vt) = Dst + vt , (4.15)

where

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤













⎦

(4.16)

and vt ∼ N (0, diag(α)) for a preselected noise variance vector α.

The observation equation specifies the mapping from the state to the observed compressive

measurements yt. If Φ is the CS measurement matrix used to sense zt, this is given by

yt = Φzt(st) + wt , (4.17)

where wt is zero-mean Gaussian measurement noise with covariance Σ.

With the above specified, the bootstrap particle filtering algorithm presented in Section 2.2.2

can be used to sequentially estimate st from the observations yt. Specifically, the importance

weights belonging to candidate samples {s̃
(i)
t }N

i=1 can be found via

w̃
(i)
t = p(yt|s̃(i)t ) = N (yt; Φzt(s̃

(i)
t ), Σ) (4.18)

and rescaling to normalize across all i. These importance weights can be calculated at each

time step without having to perform CS decoding on y. In some sense, the filter is acting

purely on compressive measurements, and hence the name "compressive particle filter."
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5. Summary

This chapter presented current applications of CS in visual tracking. In the presence of large

quantities of data, algorithms common to classical tracking can become cumbersome. To

provide context, a review of selected classical methods was given, including background

subtraction, Kalman and particle filtering, and mean shift tracking. As a means by which data

reduction can be accomplished, the emerging theory of compressive sensing was presented.

Compressive sensing measurements y = Φx necessitate a nonlinear decoding process, which

makes accomplishing high-level tracking tasks difficult. Recent research addressing this

problem was presented. Compressive background subtraction was discussed as a way to

incorporate compressive sensors into a tracking system and obtain foreground-only images

using a reduced amount of data. Kalman filtered CS was then discussed as a computationally

and data-efficient way to track slowly moving objects. As an example of using high-level

tracker information in a CS system, a method that uses it to improve the foreground estimate

was presented. In the realm of multi-view tracking, CS was used as part of an encoding

scheme that enabled computationally feasible occupancy map fusion in the presence of a large

number of cameras. Finally, a compressive particle filtering method was discussed, via which

tracks can be computed directly from compressive image measurements.

The above research represents significant progress in the field of performing high-level tasks

such as tracking in the presence of data reduction schemes such like CS. However, there is

certainly room for improvement. Just as CS was developed by considering the integration of

sensing and compression, future research in this field must jointly consider sensing and the

end-goal of the system, i.e., high-level information. Sensing strategies devised in accordance

with such considerations should be able to efficiently handle the massive quantities of data

present in modern surveillance systems by only sensing and processing that which will yield

the most relevant information.
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With surveillance cameras installed everywhere and continuously streaming thousands of hours of video, how

can that huge amount of data be analyzed or even be useful? Is it possible to search those countless hours of

videos for subjects or events of interest? Shouldn’t the presence of a car stopped at a railroad crossing trigger

an alarm system to prevent a potential accident? In the chapters selected for this book, experts in video

surveillance provide answers to these questions and other interesting problems, skillfully blending research

experience with practical real life applications. Academic researchers will find a reliable compilation of relevant

literature in addition to pointers to current advances in the field. Industry practitioners will find useful hints

about state-of-the-art applications. The book also provides directions for open problems where further

advances can be pursued.
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