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1. Introduction  

Tin-lead (Sn-Pb) alloys for metal interconnections were first used about 2000 years ago. 
Recently, the use of alloys has become essential for the interconnection and packaging of 
virtually all electronic products and circuits. Sn-Pb solder alloys have been widely used in 
the modern electronics industry because of their low melting points, good wettability, good 
corrosion resistance, low cost, reasonable electrical conductivity, and satisfactory 
mechanical properties. However, due to health concerns, recent legislation, and market 
pressures [1], the electronic industry is moving toward green manufacturing as a global 
trend. In the area of packaging, mainly driven by European RoHS (Reduction of Hazardous 
Substances), lead was banned effective July 1, 2006, except in some exempt items. In 
addition, Pb and Pb-containing compounds, as cited by the Environmental Protection 
Agency (EPA) of the US, are listed among the top 17 chemicals posing the greatest threat to 
human life and the environment [2] because of lead's toxicity [3]. In the electronics industry, 
the lead generated by the disposal of electronic assemblies is considered hazardous to the 
environment. Therefore, developing viable alternative Pb-free solders for electronic 
assemblies is of principal importance.  

2. Lead-free solder systems 

Although several commercial and experimental Pb-free solder alloys are available as 

replacements for Sn-Pb solders, the following families of solders are of particular interest 

and are the prevailing choices of industry [4]: eutectic Sn-Ag, eutectic Sn-Cu, eutectic Sn-Zn, 

eutectic Bi-Sn, and Sn–In, as shown in Table 1. Since the properties of the binary Pb-free 

solders cannot fully meet the requirements for applications in electronic packaging, 

additional alloying elements are added to improve the performance of these alloys. Thus, 

ternary and even quaternary Pb-free solders have been developed [5-7], such as Sn-Ag-Cu, 

Sn-Ag-Bi, and Sn-Zn-Bi solder. However, the knowledge base on Sn-Pb solders gained by 

experience is not directly applicable to lead-free solders. In other words, the reliability of Pb-

free solder joints in consumer products is attracting more interest and concern from both 

academia and technologists[8-10].  
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All system Eutectic composition ( wt.%) Melting point or range (˚C) 

Sn-In Sn52In 118(e) 

Sn-Bi Sn58Bi 138(e) 

Sn-Zn Sn9Zn 198.5(e) 

Sn-Ag Sn3.5Ag 221(e) 

Sn-Cu Sn0.7Cu 227(e) 

Sn-Ag-Bi Sn3.5Ag3Bi 206-213 

Sn-Ag-Cu Sn3.8Ag0.7Cu 217(e) 

 Sn3.50.5Cu 218 

Sn-Zn-Bi Sn8Zn3Bi 189-199 

Table 1. Data showing the enhancement of the mechanical properties of Pb-free solders[9, 10]. 

3. Nano-composite solders 

As electronic devices continue to become lighter and thinner, they require much smaller 

solder joints and fine-pitch interconnections for microelectronic packaging. For example, 

portable electronic devices, such as portable computers and mobile phones, have become 

thinner and smaller while adding more complicated functions. The miniaturization of these 

electronic devices demands better solder-joint reliability. Hence, in all chip connection and 

ball grid array (BGA) technologies, solder interconnection through flip-chip assembly has 

been proven to offer the highest density of input/output (I/O) connections in a limited 

space. To meet the insatiable appetite for ever-finer I/O pitches and ever-higher I/O 

densities, C4 (controlled collapse chip connection) technology was developed by IBM in the 

mid 1960s, and this technology was applied to future microelectronic packaging. According 

to the International Technology Roadmap for Semiconductors (ITRS), the pad pitch may fall 

below 20 μm by the year 2016 [11]. In some flip chip packages, solder balls of 20μm in size 

are used to connect the pads on the chip and the print circuit board (Fig. 1). Furthermore, 

Thru-Silicon-Via (TSV) technologies are also lurking on the horizon as the next-generation 

higher-density chip connection technology, and they also require fine-pitch Pb-free solder 

interconnections. 

The conventional solder technology may not guarantee the required performance at such 

pitches due to characteristics such as higher diffusivity and softening [12]. In order to solve 

these problems, efforts have been made to develop new Pb-free solders with a low melting 

point, good mechanical properties, better microstructure properties, and high creep 

resistance. Recently, Pb-free solders doped with nano-sized, nonreacting, noncoarsening 

oxide dispersoids have been identified as potential materials that could provide higher 

microstructure stability and better mechanical properties than the conventional solders [13-

24]. Tsao et al. [14-16] studied the influence of reinforcing TiO2 and Al2O3 nanoparticles on 

microstructural development and hardness of eutectic Sn-Ag-Cu solders. In their work, 

microhardness measurements revealed that the addition of TiO2 and Al2O3 nanoparticles is 

helpful in enhancing the overall strength of the eutectic solder. Shen et al. [17] controlled the 

formation of bulk Ag3Sn plate in Sn-Ag-Cu solder by adding ZrO2 nanoparticles to reduce 

the amount of undercooling during solidification and thereby suppress the growth of bulk 

Ag3Sn plates. Zhong and Gupta [18] successfully prepared a nano-Al2O3 reinforced nano-
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composite solder by mechanically intermixing nano-Al2O3 particles into Sn0.7Cu Pb-free 

solder, and this composite solder shows improved mechanical properties. The best tensile 

strength realized for the composite, which contains 1.5 wt.% alumina, far exceeds the 

strength of the eutectic Sn–Pb solder. Many authors have studied the effect of adding single-

walled carbon nanotubes [19] or multi-walled carbon nanotubes [20, 21] on the mechanical 

properties of nano-composite solders. The data on the enhancement of the mechanical 

properties of nano-composite solders collected from some of the literature are listed in Table 

2 [13, 14, 16, 22, 23]. Here, it should be stressed that although the addition of nanoparticles 

into solder matrices can improve the creep behavior[24], the effects on the corrosion 

resistance and mechanical properties of the nano-composite solders cannot be ignored. 

 

 

Fig. 1. Micro bump and pillar bump structures for highly reliable chip-to-substrate inter-
connects: (a) SnAg microbump (20 μm diameter), and (b) Cu pillarbump (height: 80 μm) [11]  
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Solder matrix Reinforcement 
nanoparticles 

Mechanical properties 

0.2%YS 
(MPa) 

UTS 
(MPa) 

Elongation 
(%) 

References 

Sn4In4.1Ag0.5Cu Nil 56±6 60±8 37±7 [22] 

 1.0 vol.% Al2O3 72±6 75±6 21±3  

 3.0 vol.% Al2O3 73±3 77±6 11±3  

 5.0 vol.% Al2O3 74±3 76±2 10±0  

Sn3.5Ag0.7Cu Nil 31±2 35±1 41±8 [23] 

 0.01wt.% MWCNTs 36±2 47±1 36±2  

 0.04wt.% MWCNTs 36±4 46±6 37±2  

 0.07wt.% MWCNTs 33±3 43±5 35±4  

Sn3.5Ag0.5Cu Nil 45.96±1.14 54.34±1.42 49.2±1.3 [16] 

 0.25 wt.% Al2O3 48.81±1.23 60.20±1.84 47.3±0.8  

 0.5 wt.% Al2O3 52.56±1.56 62.44±1.76 44.0±1.2  

 1.0 wt.% Al2O3 57.22±1.8 68.05±1.63 43.5±2.1  

 1.5 wt.% Al2O3 61.45±2.3 70.05±2.06 32.5±3.2  

Sn3.5Ag0.25Cu Nil 53.2 55.7 48.6 [14] 

 0.25 wt.% TiO2 59.5 61.5 40.5  

 0.5 wt.% TiO2 67.6 69.1 32.1  

 1.0 wt.% TiO2 69.3 70.1 25.2  

Table 2. The data showing the enhancement of the mechanical properties of nano-composite 
solders[13, 14, 16, 22, 23]. 

4. The interfacial intermetallic compound (IMC) layers 

In connected metals, all the common base materials, coatings, and metallizations, such as 

Cu, Ni, Ag, and Au, form intermetallic compounds (IMC) with Sn, which is the major 

element in Sn solders. Cu is the material most frequently used for leads and pads on flip 

chip substrates and printed wiring boards. It is now known that in the solder/Cu interfacial 

reaction, Sn reacts rapidly with Cu to form Cu3Sn (ε-phase) and Cu6Sn5 (η-phase) [25]. Other 

metal substrate/solder interfacial reactions form IMCs, such as Ag3Sn[26] (Sn solder/Ag ), 

Sn-Ni [27] (Sn solder/Ni), Ag-In[28] (In solder/Ag) and Cu-In IMC[29] (In solder/Cu). 

These intermetallic compounds are generally more brittle than the base metal, which can 

have an adverse impact on the solder joint reliability. Excessive thickness may also decrease 

solder joint ductility and strength [30-34]. Recently, we found that a great number of nano-

Ag3Sn particles form on the Cu6Sn5 IMC when the solders contain Ag3Sn precipitate phase 

after a Pb-free Sn3.5Ag0.5Cu (SAC) nano-composite solder/Cu substrate interface 

reaction[30, 31]. These nanoparticles apparently decrease the surface energy and hinder the 

growth of the Cu6Sn5 IMC layer during soldering and aging. All these results indicate that 

Gibbs absorption theory can be used to explain the formation of these nanoparticles and 

their effects on the surface energy of the IMC. Many studies have reported that nano-sized, 

nonreacting, noncoarsening oxide dispersoid particles, such as TiO2 [30-32], Al2O3 [33], 

Y2O3[34], CNTs [35], and ZrO2[36] can affect the growth rate of interfacial IMC. 
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Fig. 2. Top view of the IMC at the interfaces of the nano-composite solder joints on Cu 
substrate after aging for 7 days at 175oC: (a) SAC and SAC- TiO2 [31].  

5. Corrosion behavior of Pb-free solder joints  

The diversity of materials, drive toward miniaturization, and globalization have 
significantly contributed to the corrosion of microelectronic devices [37]. However, the key 
point is that solder joints are often exposed to corrosive environments that can accelerate the 
corrosion process. Although corrosion resistance is an important parameter in choosing 
solder alloys, the corrosion behavior of Sn-Pb solder joints was rarely of interest because the 
oxide that forms on the tin-lead alloy is relatively stable. Mori et al. showed that both Pb-
rich and Sn-rich phases dissolve when the Sn-Pb solder alloy is immersed in corrosive 
solution, and the corrosion rate is slower than that of the Sn-Ag solder [38, 39]. Compared to 
traditional Sn-Pb solders, Sn-Ag-Cu solders are easily corroded in corrosive environments 
due to their special structures (as shown in Fig. 3). The presence of Ag3Sn in Sn-Ag-Cu 
solders accelerates the dissolution of tin from the solder matrix into a corrosive medium  
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Fig. 3. Surface morphology changes of solder balls after the salt spray test for 96 hrs: (a) Sn-
Pb solder, and (b) SAC solder[39]. 

because of the galvanic corrosion mechanism [39]. When corrosion occurs in the solder 

joints, it may change the microstructure of corroded regions and provide crack initiation 

sites, thereby decreasing the mechanical properties of the joints. Lin and Lee have 

investigated both Sn-Pb and Sn-Ag-Cu solder alloy wafer-level packages, with and without 

pretreatment by 5% NaCl salt spray, with thermal cycling to failure. The salt spray test did 

not reduce the characteristic lifetime of the Sn-Pb solder joints, but it did reduce the lifetime 

of the Sn-Ag-Cu solder joints by over 43% (Fig.4). The characteristic lifetime cycle number 

was 1384 for the as-assembled and non-salt spray treated components, but it was only 786 

for the components which were treated in 5 wt.% NaCl salt spray for 96 h. In addition, the 

presence of multiple corrosion sites per solder joint poses an additional risk factor to  

the structural stability of the joint, for corrosion sites are all potential crack initiation sites.  

www.intechopen.com



Corrosion Resistance of Pb-Free and  
Novel Nano-Composite Solders in Electronic Packaging 

 

113 

 

 

Fig. 4. Weibull plot for the thermal cycling results on 5 wt.% NaCl aqueous solution (salt spray) 
treated WLCSP: (a) Sn-Pb solder alloy samples and (b) SAC305 solder alloy samples [40]. 
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Unlike Sn-Pb joints, which have a dual phase structure and block the path of corrosion due to 
the existence of phase boundaries, the SAC305 joint is basically pure Sn with coarse islands of 
Ag3Sn and Cu6Sn5 intermetallic precipitate (Fig. 5). A corrosion crack can propagate and lead 
to additional corrosion along the way, without interruption from the Sn phase structure. 
Although both materials show strong resistance to corrosion, the localized nature of the 
corroded area at critical locations causes significant degradation in Sn-Ag-Cu solder joints[40].  

 

Fig. 5. Cross-section SEM microstructure after salt spray treatment and then thermal cycling: 
(a) Sn-Pb, and (b) SAC305 solder joint [40]. 

6. Galvanic corrosion of soldering 

Corrosion of solder alloys, in the presence of a suitable electrolyte can occur either due to 
the potential difference between the major phases in the alloy or galvanic coupling between 
one or more phases of the alloy and other parts of the microelectronics device. Some metals 
that are frequently used in microelectronics are Cu, Au, Ag, Ni and Pd. The standard emf 
for these metals and metals used in solder alloys are listed in Table 3[4]. Especially, 
advanced packaging technologies make the solder alloy susceptible to corrosion problems 
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[41]. Thus, in the electronics industry, corrosion has become a significant factor in recent 
years because of the extremely complex systems that have been developed and the 
increasing demand on their reliability [42, 43]. For example, using Cu and Sn metals allows 
fine-pitch interconnections to be fabricated at relatively low cost. These features make Cu-Sn 
based SLID bonding very appealing for 3D stacked applications (Fig. 6) [44].  

Metals used in solder Metals used in microelectronics 

 Au Ag Cu Ni Pd 

Sn 1.636 0.935 0.473 -0.114 1.123 

Pb 1.626 0.925 0.463 -0.124 1.113 

In 1.842 1.141 0.679 0.092 1.329 

Zn 2.263 1.562 1.10 0.513 1.75 

Table 3. Δemf values for metals commonly used in microelectronics[4]. 

 

 

Fig. 6. Electroplated pads of 5 μm Cu and 200 nm Sn: (a) and (b) SEM image with different 

magnification; (c) Cross-section view under optical microscope; and (d) Cross-section view 

of a fluxless bonded Cu/Sn Interconnect [44]. 
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The joining of materials with solders generally results in a multi-layer structure in which 
IMC are formed between substrate and solders. Such a structure in a flip chip package is a 
galvanic couple. The galvanic corrosion behavior of the solder bump structures have a great 
effect upon reliability[45]. For instance, the galvanic current densities of the Sn solder with 
respect to the IMC Cu6Sn5 and Cu3Sn, and base Cu have been investigated (Fig. 7). It 
appears that Sn solder has a greater galvanic current density and thus is very subject to 
corrosion, and it is especially so in coupling with the formation of Cu3Sn layers than with 
Cu6Sn5 layers. The galvanic current densities of the Sn37Pb solders of Cu3Sn, Cu, and Cu6Sn5 
are about 38, 16, and 5 (μA/cm2), respectively.  

 

Fig. 7. The galvanic current densities of the solder with respect to intermetallic compounds 

Cu6Sn5 and Cu3Sn, and Cu substrate, in a 3.5 wt.% solution [45]. 

Increasing the copper content, which reacts with Sn to form IMC, significantly improves the 
corrosion resistance of solders and increases the corrosion current density (Icorr), as shown in 
Fig. 8, 9 and Table 4. At above 460 mVSCE, the passivation current densities of all specimens 
are around 10-1A/cm2, with the declining sequence of Sn37Pb ≥ Cu6Sn5 > Cu3Sn > Cu. 

Specimens 
Φcorr 

(mVSCE) 
Φb 

(mVSCE) 
ΔΦ 

(mV) 
Icorr 

(μA/cm2) 
Ip 

(mA/cm2) 

Sn37Pb -584.4 -303.0 281 6.48 67.7 
Cu6Sn5 -457.7 -45.0 412 2.61 56.9 
Cu3Sn -309.0 -8.9 300 48.17 18.3 

Cu -192.1 236 428 391.6 6.5 

Φcorr. : corrosion potential; Icorr. : corrosion current density; Φb : breakdown potential; 
ΔΦ = Φcorr. - Φb, Φp: passivation range of solder alloy;  
Ip: passivation current density at above 460 mVSCE. 

Table 4. Corrosion properties in a 3.5 wt.% NaCl solution for the Sn37Pb solder, Cu6Sn5 
IMC, Cu3Sn IMC and pure Cu samples [45]. 
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It can be seen that the galvanic corrosion behavior of Cu3Sn is generally greater than that of 

Cu6Sn5 for the flip chip package in a 3.5 wt. % NaCl solution environment. This indicates 

that the formation of IMC Cu3Sn and Cu6Sn5 layers causes many problems with corrosion 

behavior and reliability.  

 

Fig. 8. The potentiodynamic polarization curves of Sn37Pb solder, Cu6Sn5 IMC, Cu3Sn IMC, 
and pure Cu samples in a 3.5 wt.% NaCl solution [45].  

 

Fig. 9. Effect of Cu content on both Φcorr and Icorr during polarization of the Sn37Pb solder, 
Cu6Sn5, Cu3Sn, and Cu substrate in 3.5 wt.% NaCl solution[45]. 

www.intechopen.com



 
Corrosion Resistance 

 

118 

7. Corrosion behavior of Pb-free solder 

Both the particular design of the electronic system, and the manner in which it is mounted 

in a substrate or printed wiring board, the solder connection can be exposed to the 

atmosphere. The solder is thus not only exposed to air, but also moisture and other 

corrosives such as chlorine and sulfur compounds. The ability of the solder to be able to 

withstand corrosion property is therefore relevant to the long-term reliability of solder 

joints [4]. In addition, solder alloys are electrically connected with other metallic 

components in the electronic device. Some metals that are frequently used in 

microelectronics are Cu, Au, Ag, Ni and Pd. Therefore, there is also the potential for 

galvanically induced corrosion of the solder, which could exacerbate any atmospheric 

corrosion that might be occurring. However, the properties of these lead free alloys in 

corrosive environments has not been widely reported, though it is of importance in many 

automotive, aerospace, maritime and defence applications [46]. Some researchers have 

studied the corrosion behaviour of Sn–Zn–X solders [47, 48] and Sn–Zn–Ag–Al–XGa [49], 

but few [50, 51] have studied the corrosion properties of Sn–Ag, Sn–Cu and Sn–Ag–Cu 

solders. Zinc is both metallurgically and chemically active. The presence of Zn in the 

solder alloy results in poor corrosion resistance, which is an important problem to address 

before practical application of this material [49]. Hence, the electrochemical corrosion 

behaviour of Pb-free Sn-Zn binary solder and Sn-Zn-X (X=Bi, Ag and Al) solder alloys 

have been investigated in NaCl solution by potentiodynamic polarization techniques[ 52-

55]. Lin et al. [47-49] have investigated the corrosion behaviour of Sn–Zn–Al, Sn–Zn–Al–In 

and Sn–Zn–Ag–Al–XGa solders in 3.5% NaCl solution. They found that Sn–Zn–Al alloy 

[47] undergoes more active corrosion than Sn–37Pb alloy. Furthermore, they found that 

5In–9(5Al–Zn)–YSn and 10In–9(5Al–Zn)–Sn alloys exhibit electrochemical passivation 

behaviour, and the polarization behaviours of these two alloys are similar to that of 

9(5Al–Zn)–Sn alloy. Sn-Ag-M (M=In, Bi) solders exhibit poor corrosion behaviour as 

compared to that of Sn-Pb eutectic solder (0.1M NaCl solution)[56]. In contrast, increasing 

the copper content (from 0.8 to 6.7 at.%) enhances the corrosion resistance of Sn-Ag solder 

alloys, which exhibit improved passivity behaviour as compared to Sn-Pb eutectic solder. 

EPMA results indicate that the Ag3Sn IMC is retained after the polarization test. Hence, 

the Ag3Sn is more noble than the β-Sn phase. The pit formation on the surface of Sn–Ag–

M alloys is due to the dissolution of the tin-rich phase. Wu et al. [51] has studied the 

corrosion behaviors of five solders in salt and acid solutions by means of polarization and 

EIS measurements. The Sn3.5Ag0.5Cu solder has the best corrosion resistivity due to the 

high content of noble or immune elements (Ag and Cu) and theorized stable structure, 

whereas the Sn9Zn and Sn8Zn3Bi solder have the worst corrosion behavior. Nevertheless, 

the four Pb-free solders exhibit acceptable corrosion properties, since there is not much 

difference in key corrosion parameters between them and the Sn37Pb solder. The 

corrosion data of the solders in 3.5 wt.% NaCl solutions are listed in Tables 5 [46, 51]. Lin 

and Mohanty et al. [46-49] studied the corrosion properties of Sn–Zn–X and Sn–Zn–Ag–

Al–XGa in NaCl solution, and their results showed that the corrosion product on the 

surface could be SnO, SnO2, SnCl2 and ZnO, etc., depending on the applied potential. Li et 

al. [46] confirms that the corrosion product on the Sn–Pb and lead free solders is tin oxide 

chloride hydroxide (Sn3O(OH)2Cl2).  
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Solder Scanning rate Ecorr

(mV)

Icorr 

(A/cm2) 

Ep 

(mV)

Ip

(mA/cm2)

References 

Sn37Pb 1 mV/s -588 1.905 × 10-6 -201 4.989 [51] 

Sn9Zn  -940 2.691 × 10-5 -326 2.938  

Sn8Zn3Bi  -1291 1.380 × 10-5 9 8.035  

Sn3.5Ag0.5Cu  -605 5.370× 10-7 -236 4.083  

Sn3.5Ag0.5Cu9In  -578 7.413 × 10-6 -158 1.524  

Sn0.7Cu 30 mV/s -688 1.78× 10-7 - 0.74 [46] 

Sn3.5Ag  -705 4.9× 10-7 - 0.49  

Sn3.8Ag0.7Cu  -727 0.89× 10-7 - 1.07  

Ecorr – corrosion potential, Ip – passivation current density, Icorr – corrosion current density,  

Ep – passive potential. 

Table 5. Experimental data of the testing solders under polarization in 3.5 wt.% NaCl 

solution. 

8. Corrosion behavior of Pb-free nano-composite solder joints  

This author has recently worked on the development of nano-composite solders in 

microelectronic packaging by applying two methods of fabrication: mechanical mixing of 

inert nano-particles (Fig. 10) and precipitation of nano-IMC in the solder matrix (Fig. 11) 

[57]. The average size of the nominally spherical nano-Al2O3 particles was 100 nm in 

diameter. 

Notably, the addition of nano-particles decreased the size of dendrite β-Sn grains, the 

needle-like Ag3Sn grains, and Ag3Sn phase located between the average spacing. When 1 

wt% was added, the superfine spherical nano-Ag3Sn grains were about 0.16 ± 0.06μm in 

length and 0.15 ± 0.05 μm in diameter, and the average spacing between them was a 

significant improvement (0.14 ± 0.05μm), significantly smaller than the sizes found in the 

SAC composite solder. However, large Ag3Sn IMCs were not observed in the Pb-free SAC 

solder. Another, author reported that the effects of nano-TiO2 particles on the interfacial 

microstructures and bonding strength of Sn3.5Ag0.5Cu nano-composite solder joints in 

ball grid array (BGA) packages with immersion Sn surface finishes [58]. It is clearly shown 

in Fig. 12a, b that the discontinuous Cu6Sn5 IMC layer grows with a rough scallop shape 

(Mark A), and wicker-Cu6Sn5 IMC forms on the rough scallop-shaped Cu6Sn5 IMC layer 

(Mark B) and grows into the SAC solder matrix. However, the addition of a small 

percentage of nano-TiO2 particles alters the Pb-free Sn3.5Ag0.5Cu composite solder/pad 

interface morphology after reflowing, as shown in the SEM micrographs in Fig. 12c, d. 

Only the continuous scallop-shaped Cu6Sn5 IMC layer was detected at the interface. 

However, the wicker-Cu6Sn5 IMC disappeared at the interface with the Cu pads. In 

addition, the number of Ag3Sn IMC forms increased in the eutectic area when the content 

of nano- TiO2 particles was increased to 0.25–1 wt%. It is interesting that the smallest 
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thickness of the IMC layer was achieved with the addition of 1 wt% of nano-TiO2 

particles. The thickness of the Cu6Sn5 IMC layer was reduced by 51%. The results indicate 

that the growth of the Cu6Sn5 IMC layer at the solder/pad interfaces of Sn3.5Ag0.5Cu is 

depressed through the small addition of nano-TiO2 particles[58]. With the addition of 0.5–

1 wt% nano-TiO2 particles, fracture occurred in all of the solder joints as cracks 

propagated through the Sn3.5Ag0.5Cu composite solder balls, which ruptured mostly 

along the submicro Ag3Sn IMC and solder matrix, as shown in Fig. 13a, b. This 

phenomenon is similar to that occurring in Pb-free Sn0.7Cu composite solder BGA 

packages[59].  

 

 

Fig. 10. The nano-Al2O3 particles used in this study: (a) FE-SEM micrograph, and (b) X-ray 
diffraction spectrum[57]. 
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Fig. 11. SEM image of the (a) Sn3.5Ag0.5Cu solder and (b) Sn3.5Ag0.5Cu -1TiO2 nano-
composite solder[57]. 
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Fig. 12. Morphology of intermetallic compounds formed at the interfaces of the as-reflowed 
solder joints: (a) Sn3.5Ag0.5Cu, ( b) (a) magnifications ; (c) d Sn3.5Ag0.5Cu-0.75TiO2; (d) (c) 
magnifications [58]. 
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Fig. 13. Fractography of the Sn3.5Ag0.5Cu-1TiO2 nano-composite solder joints in BGA 

packages after ball shear tests [58]. 

To achieve high reliability, solder materials must have high resistance to corrosive 

conditions such as moisture, air pollutants from industry, and oceanic environments[54]. 

Although corrosion of solder alloys is not currently a major problem for electronic devices 

used in normal environments, it may be a problem when they are used in harsh 

environments, such as oceanic environments. However, there is a lack of information 

regarding the corrosion resistance of nano-composite solders in corrosive environments. 

Figure 14 shows the polarization curves of the Sn3.5Ag0.5Cu solder and the Sn3.5Ag0.5Cu 

nano-composite solder in 3.5 wt.% NaCl solution[60]. From the polarization curves, the 

corrosion potential (Φcorr), the breakdown potential (Φb), and the dynamic corrosion 

current density (Icorr) have been determined (Table 6). The width of the passive region on 

the anodic polarization curves (ΔΦ = Φb - Φcorr) in Table 6 indicates the pitting 
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resistibility or the stability of the passive film on the Sn3.5Ag0.5Cu composite alloy 

surface. The corrosion potential (Φcorr) of the Sn3.5Ag0.5Cu nano-composite solder is 

slightly more passive than that of the Sn3.5Ag0.5Cu solder. This implies that a finer grain 

size produces more grain boundaries, which act as corrosion barriers. On the other hand, 

the breakdown potential (Φb) of the Sn3.5Ag0.5Cu nano-composite solders becomes much 

more passive with the addition of oxide nanoparticles. As Table 6 also indicates, the 

Sn3.5Ag0.5Cu solders possess a higher pitting tendency (smaller ΔΦ value) than the 

Sn3.5Ag0.5Cu nano-composite solders. Rosalbino et al. reported that the pit formation at 

the surface of Sn–Ag–M alloys is due to the dissolution of the tin-rich phase [56]. In 

addition, the corrosion current densities were obtained by using the TAFEL extrapolation 

method. The corrosion current densities of the Sn3.5Ag0.5Cu solders and Sn3.5Ag0.5Cu 

nano-composite solders were very similar.  

Solder Φcorr 

(mVSCE) 

Φb 

(mVSCE) 

ΔΦ 

(mV) 

Icorr 

(μA/cm2) 

Sn3.5Ag0.5Cu -662.1 -284.1 378 0.36 

Sn3.5Ag0.5Cu-0.5TiO2 -651.4 -95.1 556 0.27 

Sn3.5Ag0.5Cu-0.5Al2O3 -642.1 -146.2 496 0.40 

Φcorr : corrosion potential; Icorr: corrosion current density; Φb : breakdown potential;  
ΔΦ = Φcorr - Φb. 

Table 6. Corrosion properties in a 3.5 wt.% NaCl solution for the nano-composite solder 
[60]. 

Many studies have reported that the corrosion behavior of alloys depends on the second 

phase distribution, shown to be Mg alloy[61, 62] and Al alloy[63]. In the Sn3.5Ag0.Cu nano-

composite solder alloys, the microstructure had finer β-Sn grains, a large amount of Ag3Sn 

particles, and a small amount of oxidize nanoparticles. This leads to improvement of the 

corrosion behavior of the Sn3.5Ag0.5Cu nano-composite solder, such as greater corrosion 

resistance, the lower pitting tendency, and the smaller corrosion current density, 

respectively. 

The corrosion products of Sn3.5Ag0.5Cu and Sn3.5Ag0.5Cu nano-composite solder have 

similar microstructures (Fig. 15). The corrosion products of Sn3.5Ag0.5Cu solder after 

polarization have a larger flake-like shape (Mark a) and small mushroom-like shape, and 

are loosely distributed on the surface, with different orientations (Fig.15a). On the other 

hand, the corrosion products of Sn3.5Ag0.5Cu nano-composite solder after polarization 

tests have only a flake-like shape, as shown in Fig. 15b (Mark a). Table 7 shows the surface 

element concentrations of solder corrosion products from EDS. According to the EDS 

analysis, the corrosion products of Sn3.5Ag0.5Cu and Sn3.5Ag0.5Cu nano-composite 

solder contain mainly Sn, O, and Cl (Fig.16). It can be seen that the corrosion products of 

the Sn3.5Ag0.5Cu solders and Sn3.5Ag0.5Cu nano-composite solders have slightly 

different compositions.  
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Solder 

Surface element concentration (wt.%) 

Sn Ag Cu Cl O 

Sn3.5Ag0.5Cu All area 69.26 4.05 0.37 13.40 12.60 

 flake 72.97 0.43 - 15.71 9.58 

 mushroom 74.87 1.29 - 17.97 5.76 

Sn3.5Ag0.5Cu-

0.5TiO2 
All area 68.7 3.82 0.68 13.39 13.41 

 flake 64.22 0.50  15.03 20.25 

Table 7. Surface element concentration of different solders after potentiodynamic 

polarization tests[60].  

 

Fig. 14. The potentiodynamic polarization curves of the nano-composite solder in a 3.5wt.% 

NaCl solution: (a) Sn3.5Ag0.5Cu solder; (b) Sn3.5Ag0.5Cu-0.5TiO2; and (c) Sn3.5Ag0.5Cu-

0.5Al2O3 [60]. 
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Fig. 15. Microstructure of the corrosion products on different solders after polarization tests 

(a) Sn3.5Ag0.5Cu solder, (b) Sn3.5Ag0.5Cu nano-composite solder[60]. 

During polarization testing in NaCl solution, the only possible cathodic reaction is oxygen 

reduction [49, 64]: 

 O態 + ねe貸 + にH態 → ねOH貸  (1) 

When the current density reaches about 10 mA/cm2, many hydrogen bubbles evolve from 

the cathode due to the hydrogen evolution on the cathode: 

 にH態O + にe貸 → H態 + にOH貸  (2) 

The reactions on the anode are quite complicated. Some possible anodic reactions have been 

reported in the literature [46, 64-66], as displayed below: 

 Sn + にOH貸 − にe貸 = Sn岫OH岻態  (3) 
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 Sn + にOH貸 − にe貸 = SnO + H態O  (4) 

 Sn + ねH態O = Sn岫OH岻替 + ねe貸 + ねH袋  (5) 

The dehydration of Sn(OH)2 and Sn(OH)4 into SnO and SnO2, respectively, has also been 
reported [46, 64,65]: 

 Sn岫OH岻態 + にOH貸 + にe貸 = Sn岫OH岻替  (6) 

 Sn岫OH岻態 + にOH貸 = SnO + H態O  (7) 

 SnO + H態O + にOH貸 + にe貸 = Sn岫OH岻替  (8) 

However, Yu et al., after investigating the corrosion properties of Sn9Zn and Sn8Zn3Bi 
solder in NaCl solution, postulated the formation of a tin oxyhydroxychloride according to 
the following reaction[66]: 

 ぬSn + ねOH貸 + にCl貸 = Sn戴O岫OH岻態Cl態 + H態O  (9) 

In addition, Li et al.[46] studied the corrosion properties of Sn-Ag, Sn–Ag–Cu, Sn–Cu, and 
SnPb solder in 3.5wt.% NaCl solution with different scanning rates, and their results 
showed that the corrosion product on the surface was tin oxide chloride hydroxide 
(Sn3O(OH)2Cl2). In our case, the presence of such a surface layer, instead of a tin oxychloride 
layer, cannot be ruled out due to the detection limits of energy-dispersive spectroscopy. In 
order to understand the reaction during the corrosion products, XRD has been used to 
analyse the corrosion products on the surface after the polarization tests (Fig. 17). The 
results show that all the Sn3.5Ag0.5Cu and Sn3.5Ag0.5Cu solder materials have the same 
corrosion product, Sn3O(OH)2Cl2, which is a complex oxide chloride hydroxide of tin[67]. 
This further confirms that the corrosion product on the Sn3.5Ag0.5Cu composite solders is 
Sn3O(OH)2Cl2. 

 

Fig. 16. EDS analysis of corrosion product of the Sn3.5Ag0.5Cu nano-composite solder after 
polarization tests[60].  
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Fig. 17. XRD spectra of different solder materials after polarization tests[60]. 
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