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1. Introduction

Real-time 3D computer graphics systems usually handle surface description models (i.e.
B-Rep representations) and use surface rendering techniques for visualization. Common
3D model formats such as VRML, X3D, COLLADA, U3D (some intended for the Web) are
based entirely on polygonal meshes or higher order surfaces. Real-time rendering of polygon
models is straightforward and raster render algorithms are implemented in most graphics
accelerating hardware. For many years several rendering engines, often via installable
browser plug-ins, have been available to support 3D mesh visualization in Web applications.

Fig. 1. Medical data rendered with volume ray-casting

However, some scientific fields (e.g. medicine, geo-sciences, meteorology, engineering) work
with 3D volumetric datasets. Volumetric datasets are regular or irregular samples of either
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2 Computer Graphics

scalar ( f : R
3
→ R) or vector ( f : R

3
→ R

3) fields. For the purpose of this chapter, we will use
the term volumetric data sets to refer to scalar fields and will ignore for the time being vector
fields. Surface-based raster rendering techniques are obviously not suitable for visualizing
such datasets and specific Direct Volume Rendering algorithms are needed, which are not
available for the Web. Ray Casting is a common technique for volume visualization which
displays the saliend characteristics of the volume set, although it is not photo-realistic.

Therefore, our work uses Volume Ray-Casting, which is a common technique in Computer
Graphics for volume visualization. Originally presented by Kajiya Kajiya & Von Herzen
(1984) as an extension of Ray-tracing algorithm, then Levoy Levoy (1988) defines the volume
rendering. This has been further studied in Hadwiger et al. (2009). The aforementioned
rendering is not photo-realistic, however it shows important characteristics of the dataset.

In medical imaging, diagnostic techniques, such as computer tomography (CT), magnetic
resonance imaging (MRI) and positron emission tomography (PET), produce sets of parallel
slices that form a volumetric dataset. Volume rendering is a common technique for visualizing
volumetric datasets along with multi-planar reconstructions (MPR). Storage and distribution
of these 3D images usually requires a Picture Archiving and Communication Systems (PACS),
which normally uses specialized workstation software (Meyer-Spradow et al. (2009), Fogal &
Kruger (2010)) for interactive visualization (Mahmoudi et al. (2009)). Reference Kabongo et al.
(2009) presents on some of the few implementations of volumetric data displays.

WebGL is a new standard for accelerated 3D graphics rendering on the Web that complements
other technologies in the future HTML5 standard (Marrin (2011)). Some of the major Web
browsers, including Google Chrome, Mozilla Firefox, WebKit, Safari and Opera have already
implemented WebGL in their latest releases or release candidates. WebGL is basically a
JavaScript binding of the OpenGL ES API and enables low level imperative graphics rendering
based on programmable shaders.

We present in this chapter an implementation of a volume rendering system for the Web, based
on the Volume Ray-casting algorithm and implemented on WebGL. The system is capable
of obtaining interactive visualization with diverse volume datasets (Figure 1). The original
Volume Ray-casting algorithm was slightly modified to work with the input structures needed
for the Web environment. Special care was taken to avoid the use of dynamic server content.
This avoidance allows for the algorithm to be used without increasing the demands on the
server and shifts, as much as possible, the processing to the client.

This work was tested in bioinformatic scenarios with volumetric datasets such as medical
imaging. Also, a metereological prototype was developed to visualize doppler radar datasets.

This chapter is organized as follows. Section 2 presents a brief status of the different
technologies present in this work: Volume Rendering, Web rendering, medical and confocal
visualization. Section 3 presents our methodology for volume rendering with special attention
to the modifications of the algorithm for the Web environment. Section 4 shows the
implementation of volume rendering for doppler wheather radars. Section 5 presents the
output obtained by the implemented algorithm and the performance values in different
conditions. Section 7 presents the conclusions of our work and future directions.
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2. Related work

2.1 Direct volume rendering techniques

In 3D scalar field interactive visualization, two solutions prevail: Surface Rendering and
Direct Volume Rendering. Surface Rendering, which has the advantage of being easy to
compute due to its low geometric complexity. It’s main disadvantages are: i. A surface must
be synthesized first, which is not a trivial task as it depends on the quality of the sample; ii.
Since it must be precalculated, the result is static and cannot be easily adjusted in real time.

Recent advances in Direct Volume Rendering and graphic card capabilities allow the
representation of volumes with good quality by projecting volumetric data into a 2D image,
depending on the position of a virtual camera. The main advantage of this technique is the
visualization of all inner characteristics at once.

Preprocessing of images does not intervene in the images since there is no part of the DVR
of the computations even when the camera is displaced. In order to project the volumetric
data, several methods exist (Meißner et al. (2000)). Westover Westover (1991) discusses
Volume Splatting and represents each scalar value by a simple geometrical shape that will
face the camera, allowing fast rendering. It’s main disadvantage is the loss of quality. A
technique called Shear Warping (Lacroute & Levoy (1994)), consists of applying shear warp
transformations to the volume slices to imitate the real orientation of the camera. Since the
technique is based on simple transformations, the method is quite fast, but it’s main drawback
is a low sampling power. With the constant improvement in graphic card capabilities, the
Texture Mapping method has been popularized in video-games. It consists of re-slicing the
volume depending on the orientation of the camera viewpoint, and representing all of the
slices at once taking advantage of eventual occlusion optimizations (Hibbard & Santek (1989)),
, but the lack of specialized visualization methods in this algorithm has made it unussable for profesional
appliactions such as medical imaging.

Volume Ray-casting was initially presented by Kajiya Kajiya & Von Herzen (1984) as an
extension of the Ray-Tracing algorithm for volumetric shapes. Later the methodology was
formalized by Levoy Levoy (1988). Since then, Volume Ray-casting has become one of the
most common methods for volume rendering. The set of rays from the camera reach the
3D scene and hit the objects, generating parametric (scalar) landmark values. By defining a
blending function it is possible to give priorities to the different values encountered along the
ray, allowing the visualization of different internal structures. Additional modifications to the
algorithm, such as transfer functions, and Phong illumination (Phong (1975)) were developed in
order to improve the perception and make the volume look realistic. Compared to the other
techniques, this one is older and more accurate in sampling. However, the computational
power required makes it’s usage initially difficult in real-time interactive representations,
allowing other approximations to establish. Nowadays, the increasing computational power
of graphic cards allows fast calculations (Kruger & Westermann (2003)) which give new
interest to Volume Ray-casting. Reference Hadwiger et al. (2009) presents a tutorial with all
the basic explanation on volume ray-casting. We used this tutorial as a starting point for
the theoretical foundations in our implementation and for technical details. Open Source
implementations such as Meyer-Spradow et al. (2009) and Fogal & Kruger (2010) were also
used.
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2.2 Web 3D rendering

The fact that the Web and 3D graphics are currently ubiquitous in desktop and handheld
devices makes their integration urgent and important. Several standards and proprietary
solutions for embedding 3D in the Web have been devised, such as VRML, X3D or
vendor-specific Web browser plug-ins, and implementations on general purpose plug-ins, etc.
A review of these techniques can be found in Behr et al. (2009).

In the case of Medical Imaging and other computing-intensive visualization scenarios, a
partial solution has been the use of on-server rendering (Blazona & Mihajlovic (2007)). In
this approach, the rendering process is performed in the server and its resulting image is sent
to the client. This solution increases the load on the server when many clients are present.
In addition, the high latency times make the system unresponsive and unsuitable for smooth
interactive visualization.

Unresolved issues among solutions for Web 3D graphics are: dedicated languages, plug-in
requirements for interpretation, portability across browsers, devices and operating systems,
and advanced rendering support. While writing this chapter, the Khronos Group released
the WebGL 1.0 specification, which has been under development and testing. In practice,
the WebGL 1.0 is a Javascript binding of the OpenGL ES 2.0 API. Calls to the API are
relatively simple and serve to set up vertex and index buffers, to change rendering engine
state such as active texture units, or transform matrices, and to invoke drawing primitives.
Most of the computation is performed in vertex and fragment shaders written in the GLSL
language, which run natively on the GPU hardware. Unlike previous Web 3D standards
which define declarative scene description languages, WebGL is a low-level imperative
graphic programming API. It’s imperative model enables great flexibility and exploits the
advanced features of modern graphics hardware.

The WebGL 1.0 standard takes advantage of already existing OpenGL-based graphics
applications, such as accurate iso-surface computation (Congote et al. (2010)) or optimized
shader programming (Marques et al. (2009)). The usage of an interpreted language to manage
the behavior of scene elements and animations might be considered as a drawback, due
to their low speed. However, the performance of JavaScript interpreters are constantly
improving. Current optimized just-in-time compilation in the latest engines provides
performance not far from that of natively compiled languages.

2.3 Medical visualization

Across different scientific fields, Medical Visualization is one of the most challenging since
the user interpretation directly translates into clinical intervention. Quality is one of the most
important factors, but fast interactive response is also important in this domain. Medical
Visualization has already produced several implementations of volumetric visualization
on the Web, mainly for educational purposes (John et al. (2008)John (2007)). These
approximations require third party systems for the correct visualization, or the presence of
a rendering server (Poliakov et al. (2005), Yoo et al. (2005)), which limits the scalability of
the application. Using standards such as VRML and Texture Mapping (Behr & Alexa (2001)),
visualization of volumes in the Web has been achieved.
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3. Methodology

Direct Volume Rendering is a set of Computer Graphics algorithms to generate
representations of a 3D volumetric dataset. The produced image is a 2-dimensional matrix
I : [1, h]× [1, w] → R

4 (w: width and h: height in pixels). A pixel has a color representation
expressed by four-tuple (R, G, B, A) of red, green, blue and alpha real-valued components,
(R, G, B, A ∈ [0, 1]).

(a) Front Faces (b) Back Faces

Fig. 2. Color cube map coordinates

The volume is a 3-dimensional array of real values V : [1, H] × [1, W] × [1, D] → [0, 1] (H:
Height, W: Width, D: Depth of the represented volume, in positive integer coordinates).
Therefore, V(x, y, z) ∈ [0, 1]. The volume-rendering algorithm is a projection of a 3D model
into a 2D image. The projection model used in this work is known as a pin-hole camera (
Hartley & Zisserman (2003) ). The pin-hole camera model uses an intrinsic K ∈ M3×4 and an
extrinsic R ∈ M4×4 real-valued matrices. These matrices project a 3D point p ∈ P

3 onto a 2D
point p′ ∈ P

2.

A volume is normally represented as a set of images. Each image represents a slice of the
volume. Usually slices are parallel and evenly-spaced, but this is not always the case. For
example, volumes can also be sampled in spherical coordinates with the angular interval
being variable. Both cases (cartesian and spherical samples) are handled by our algorithm.

Volume ray-casting is an algorithm which defines the color for each pixel (i, j) in the image
or projection screen I, calculated in function of the values of a scale field V(x, y, z) associated
with the points (x, y, z) visited by a ray originated in such a pixel. The ray is casted into the
cuboid that contains the data to display (i.e the scalar field V). The ray is equi- parametrically
sampled. For each sampled point ps on the ray an approximation of the scalar field V(ps)
is calculated, usually by calculating a tri-linear interpolation. In addition, a shade might be
associated to ps, according to the illumination conditions prevailing in the cuboid. The color
associated to ps might be determined by axis distances as shown in figure 2. As the last step,
the pixel in the image which originated the ray is given the color determined by the sampled
point ps nearest to the screen in such a ray.

Alternatively, the samples on the ray may also cast a vote regarding the color that
their originating pixel will assume by using a composition function (Eq:1-4), where the
accumulated color Argb is the color of the pixel (i, j), and Aa is the alpha component of the
pixel which is set to 1 at the end of the render process. Given an (x, y, z) coordinate in the
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Fig. 3. Aorta dataset in mosaic form to be read by the shader

volume and a step k of the ray, Va is the scalar value of the volume V, Vrgb is the color defined
by the transfer function given Va, S are the sampled values of the ray and O f , L f are the
general Opacity and Light factors.

Sa = Va ∗ O f ∗

(

1
s

)

(1)

Srgb = Vrgb ∗ Sa ∗ L f (2)

Ak
rgb = Ak−1

rgb +
(

1 − Ak−1
a

)

∗ Srgb (3)

Ak
a = Ak−1

a + Sa (4)

3.1 Data processing and volume interpolation

The images for one volume are composed into a single image containing all slices that will be
stored in a texture as shown in Figure 3. This texture is generated by tilling each slice beside
the other in a matrix configuration, this step was implemented as a preprocessing step in our
algorithm. The size of the texture in GPU memory could change from 4096×4096 in PC to
1024×1024 for handheld devices. The reduction in the quality in the image is explained in
Figure 9. The number of images per row, the number of rows, and the total number of slices,
must be given to the shader.

In medical images the sample bit depth is commonly greater than 8 bits per pixel. This is
dificult to handle in Web applications where commonly supported formats are limited to 8
bits per sample. In this chapter, medical data sets were reduced to 8 bits.

Higher depths could be supported using more than one color component to store the lower
and higher bits of each pixel, but this representation is not currently implemented in our
shader.

For the correct extraction of the value of the volume, two equations were implemented. The
equations 5-17 show how to obtain the value of a pixel in coordinates x, y, z from images
presented in an cartesian grid. s is the total number of images in the mosaic and Mx, My are
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the number of images in the mosaic in each row and column as the medical dataset shows in
Figure 3.

The functions presented in the equations are defined by the GLSL specification. This allow us
to manipulate the images as continuous values because the functions of data extraction from
the texture utilize interpolation.

s1 = floor(z ∗ S) (5)

s2 = s1 + 1 (6)

dx1 = fract(
s1

Mx
) (7)

dy1 =
fract

(

s1
My

)

My
(8)

dx2 = floor(
s2

Mx
) (9)

dy2 =
fract

(

s2
My

)

My
(10)

tx1 = dx1 +
x

Mx
(11)

ty1 = dy1 +
y

My
(12)

tx2 = dx2 +
x

Mx
(13)

ty2 = dy2 +
y

My
(14)

v1 = tex2D (tx1, ty1) (15)

v2 = tex2D (tx2, ty2) (16)

Va(x, y, z) = mix (v1, v2, (x × S)− s1) (17)

3.1.1 Identification of ray coordinates

The geometry of a cube is generated with coordinates from (0, 0, 0) to (1, 1, 1). This cube
represents the boundary of the volumetric dataset and is painted with colors representing the
coordinates at each point x, y, z. Coordinates (Figure 2)are stored in the r, g, b color component
of each pixel. The cube is then rendered in the scene from the desired view point. The
rendering process has several steps. The first two steps are the rendering of the color cube
with the depth function change. Then, one of the passes presents the closest region of the
cube to the camera (Figure 2(a)), and the second pass presents the far region (Figure 2(b)).

With these two renders a ray is calculated from each point in the cube for the render with the
faces closest to the eye, and the end of the ray with the point of the back region. The colors

163Volume Ray Casting in WebGL

www.intechopen.com



8 Computer Graphics

in the cube represent the exact coordinates of the ray for each pixel in the image. We store the
color information of the cube as 24 bit RGB values. This range of values seems to be small and
not precise enough for big images, but color interpolation gives enough precision for the ray
coordinates.

Most voxel-based volume datasets are arranged in a cartesian uniform grid. A medical CT or
MRI scanner, computes parallel slices of the specimen at different positions with a normally
constant spacing. Each image contains a matrix of samples of relative to the specific signal
measured by the equipment. By stacking all slices aligned together, a discretely sampled
volume is defined. Each sample can be addressed by cartesian x, y, z coordinates, one being a
slice selector and the other two coordinates of a point in that slice image.

3.1.2 Ray generation

The ray is generated for each pixel in the image I, geometrically the start and end positions of
the ray are extracted from the previous render passes with the information of the color cube.
The ray is divided by S steps, which indicates the number of samples of the volume. For each
sample the x, y, z inside the volume is calculated and the value of that position is interpolated
from the texture.

3.1.3 Transfer function

Transfer functions (TF) assign optical properties (color and opacity) to the original volume
data values i, Frgbα (i) = (r, g, b, α), in order to improve the visualization of the internal parts
of the volume data. In volume ray-casting, when the ray traverses the data, TF are used
to obtain the optical properties of the volume data resulting representation at each ray step.
These are then blended using the composition function. In general, two transfer functions
are defined, the color transfer function, which obtains an RGB value and the opacity transfer
function, which obtains an Alpha value. For a recent review on transfer functions, the reader
is referred to Arens & Domik (2010); Pfister et al. (2001).

Transfer functions can have many dimensions. One-dimensional transfer functions, like
the one presented in this section, make a direct mapping between the original voxel data
scalar values and the resulting optical values. On the other hand, multidimensional transfer
functions do not only use the volume data values, but also additional information such us
first and second derivatives Kniss et al. (2002) of the volume data, or even the position
(based on a segmentation mask). This additional information allows a better separation
between materials, and thus, better visualizations. The order of interpolation in the
discrete space and the application of the TF defines the difference between pre- and post-
classification. In pre-classification, TF values for the closest neighbors to the input raw data
are obtained and then an interpolation is performed on the different TF color and opacity
values. Using post-classification on the other hand, first the raw data is interpolated to
sample voxel data and then the TF is applied on it. Both approaches produce different
results, whenever the interpolation does not commute with the transfer functions. As the
interpolation is usually non-linear, it will only commute with the TF if the TF are constant or
the identity. Post-classification is the "right" approach in the sense of applying the transfer
functions to a continuous scalar field defined by a mesh together with an interpolation
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prescription. Nevertheless, some works try to achieve the correctness of post-classification
in pre-classification approaches with a lower computational burden, like in Engel et al. (2001).

Independently of the TF dimensions, creating a suitable TF in order to highlight the most
meaningful data for the user and an specific data set is a difficult, and usually an ad-hoc
task which requires experienced users, and where an a-priori knowledge about the specific
data-set is important too. The most common approach is to have a generic TF definition and
then adapting or tuning it manually in an iterative trial and error process, until the meaningful
data becomes visually salient. This is a time comsuming task completely dependant on the
user’s expertise and is why many contributions have been proposed in order to improve
this workflow Pfister et al. (2001). Some improve the GUI tools to perform this manual
tuning which simplify the procedure, like those present in the latest versions of the OsiriX
Imaging software for DICOM visualization, while others include some kind of semiautomatic
TF tunning based on the underlying data set, like in Wu & Qu (2007). Finally, some papers
even present automatic TF tunning approaches, like in Zhou & Takatsuka (2009), but they are
only valid for generic tasks since they are not specifically tailored to each particular need of
the user.

All these works stand on the assumption that there is a correspondence between the cells
formed by the TF input parameters and the different materials in the volume data. It is
important to take this fact into account when selecting the TF input parameters and for
a possible preliminary data processing step. Multidimensional functions permit a better
separation between materials, since they consider more input variables, at the expense of
being more difficult to tune and increased storage and computation requirements.

In practice, TF are usually precomputed and stored as lookup tables. This raises two issues:
dynamic range and dimensionality. Ideally, the TF should store one resulting value per
possible value in the input parameter space. Therefore, for one-dimensional 8-bit input data,
the TF should have 256 entries, and for 16-bit input data, the TF should have 65536 different
entries. In the same sense, a bidimensional TF with both parameters being in the range of
256 would require 2562 values. The current hardware limitations, especially in GPU based
implementations, require the reduction in size of the TF lookup tables, which in turn affects
to the accuracy of the TF or requires methods to compress the TF. Finally, as stated by Kniss
et al. (2003), it is not enough to sample the volume with the Nyquist frequency of the data
field, because undersampling artifacts would still become visible. This problem is exacerbated
if non-linear transfer functions are allowed. That is, the narrower the peak in the transfer
function, the more finely we must sample the volume to render it without artifacts. Similarly,
as more dimensions are added to the transfer function we must also increase the sampling
rate of the volume rendering.

In GPU based direct volume rendering, the color and opacity TF are stored in the GPU as one
or more textures tx,y,z. Then, the value of the texture tx,y,z is used to identify the color and
alpha to be used in the composition function (Eq:1), usually in a post-classification scheme,
such as the one presented in this section. When the composition function reaches the end of
the ray in the cube or the accumulated alpha Aa reaches its maximum, early termination, the
ray is interrupted and the resulting color Argb for the ray in the corresponding pixel is the
cumulated value.
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4. Meteorology

Doppler wheather radars are a type of remote sensing device used in meteorology. This use
case scenario is described in its own section due to the particular issues it raises and the
modifications required in the general volume rendering algorithm. A weather radar scans
the space around it measuring several physical variables useful for the study of the current
state of the local atmosphere (Segura et al. (2009)). A full scan of a Doppler radar produces
a discretely sampled volume in which each sample contains several scalar values, namely
reflectivity, differential reflectivity, radial velocity and spectral width. The distribution of
samples in space is not uniform which poses specific challenges for analysis and visualization.
Reflectivity in particular is linked to the amount of water present in the atmosphere and is
especially representative of hydrometeors. Volume rendering of this variable may provide
insight into the spatial shape of water masses in the air affecting different meteorological
phenomena.

4.1 Radar visualization challenges

Even if the dataset is volumetric radar data is usually visualized in 2D representations, such
as the plan position indicator (PPI) extracted at constant angular elevation, or the constant
altitude plan position indicators (CAPPI) extracted at a constant altitude above sea level. 3D
visualization is less common, but has even been presented in Web applications, for example
in Sundaram et al. (2008). In this case, all rendering was precomputed in the server using
OpenGL and Nvidia’s Cg shading language and remotely displayed in the client by a VNC
client applet. The authors mention a problem with scalability as a lot of processing is
centralised. Also obviously, depending on network performance animations and interaction
may not be smooth in such a setup.

Radar data visualization also poses new challenges as the data are acquired in a spherical
coordinate system (Riley et al. (2006)) producing non-uniform sampled grids in space unlike
the regular voxel volumes commonly found in medical datasets. This problem was Goenetxea
et al. (2010) by rendering textured conic surfaces corresponding to each elevation. That
method is only an approximation that does not fill the space between the cones. In order
to represent the entire space using a ray-casting algorithm, the data set can be previously
resampled in a uniform cartesian grid producing a voxel-based representation suitable for
the common rendering algorithm. But given that resolution is not uniform in the radar data,
resampling has its problems: if all detail is to be kept the resampled volume is huge, if memory
use is to be limited, detail is lost. The method described below does not require preprocessing
for resampling and does not suffer from said problems.

4.1.1 Spherical coordinates

A weather radar scans the surrounding sky in successive sweeps. Beginning at a low
angular elevation, the radar performs a 360◦ azimuth scan (Figure 4). At each one-degree
space direction a ray is emitted and a number of samples along the ray are measured
back from its echoes (here 400 samples called buckets). The radar then proceeds step by
step increasing elevation at each successive swept scan. Elevation angles are not normally
uniformly incremented because most data of interest is at the lower levels. Our datasets use
14 such elevations from which only 5 had relevan information.
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Fig. 4. Simplified geometry of a radar scan. Each scan can be approximated as a cone.
Therefore, a radar volume dataset is approximated as a set of co-axial conic slices with the
radar in the common apex.

The real process is more complicated because rays do not follow a straight line in the
atmosphere. Salonen et al. (2003) and Ernvik (2002) explain this double phenomenon. Due
to refraction, rays suffer changes in direction when crossing atmospheric layers with different
index of refraction. In a standard atmosphere this makes beams bend downwards. On the
other hand, as the Earth has a curved surface, a straight line leaving a radar has its altitude
increasing non-linearly. If our vertical coordinate axis represents altitude, then straight rays
in space appear to bend upwards in our coordinate system. Also, radar movement is slow so
that the time at which the first and last elevation are scanned differ in several minutes.

For the purposes of our visualization radar rays will be considered straight, which is not a bad
approximation for our limited range as both mentioned phenomena have an opposite effect.
But in more accurate, larger scale scenarios, or when integrating data from more than one
radar, they should be taken into account.

Such a scanning process results in a discrete sampling of the sky volume in which each sample
has elevation, azimuth and range coordinates. Thus, samples can be addressed by spherical
coordinates. In the conversion of raw radar data into input images suitable for the WebGL
implementation the sample values become pixel values. Each swept scan for a fixed elevation
angle forms one image in which columns correspond to azimuth directions (there are 360
columns spaced an angle of one degree), and rows correspond to distance along each ray (400
rows spaced 250 m in range). Each image maps to a conical surface in space as shown in figure
4. In order to store the entire volume as one image, the images from consecutive elevations
are stacked vertically as seen in figure 5 (the figure is rotated 90◦ for presentation).

r =
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 (18)

ϕ = arctan(y, x) + π (19)

θ = arccos(z/ϕ) (20)

For the spherical coordinates volume dataset from a radar the following Equations 18-20
where used. The interpolation process used for the identification of the volume value in an
arbitrary point is presented in Equations 5-17. We use a simple interpolation method because
the data is expected to be normalized from the capture source. The problems presented in this
topic were explained by Segura et al. (2009).
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Fig. 5. Original Doppler radar image. Each vertical band represents data along a cone from
figure 4 corresponding to an elevation angle

4.2 Weather radar volume rendering implementation

Our method extends the general volume ray casting algorithm previously presented in order
to take into account the specific spherical coordinate system of the samples, and the layout of
the dataset in memory. Thus, when traversing the volume, at each step the point’s cartesian
coordinates are transformed into spherical coordinates with 18. These coordinates are used
to look up the volume value in the dataset. The non-uniform separation of elevations adds
further complexity as it prevents a direct elevation to slice number conversion and imposes
the use of a search process. As in the general algorithm, after the two slices above and below
the sample are found, a value is interpolated from them.

It is important to note that each ray is traversed in tens to hundreds of steps, so this
method requires a very high number of non-trivial computations and loops for each pixel,
considerably more than in the general case. All of this conversion and search takes place in
the programmed shader and results in very complex compiled shaders. At the time of writing
only some WebGL implementations are capable of compiling and running them, specifically
Mozilla Firefox in native OpenGL mode and Opera, and relatively powerful hardware is needed
to achieve smooth rendering. Again, the technique would not be feasible for real-time use
without the advent of modern programmable GPUs.

4.2.1 HTML user interface

We implemented a simple HTML user interface using jQuery UI (Figure 6) to interact with the
volume rendering shader. It allows the tuning of parameters such as the window (zoom and
offset), the quality (number of steps) and the transfer function (adapted specifically for this
weather radar information), with immediate visual feedback.

The zoom and pan controls allow users to conveniently navigate the radar data, which is not
as regular as medical images. For instance, the useful information is found in the bottom of
the volume (i.e. near the ground). In addition, the resolution in outer areas is lower than near
the radar source. Due to their geometrical configuration, the large area directly over radars is
rarely scanned. Therefore, additional navigation controls for zooming and panning have been
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Fig. 6. Radar reflectivity visualization Web application with support for interactive definition
of transfer functions.

implemented in the sample Web page, allowing user interaction of zooming in and out, and
panning the view.

Additional controls have been added to the user interface to allow users to modify the number
of steps, a variable directly linked to the shader, and its modification triggers a recompilation.
This option has been added only for scientific purposes, since final users should not be aware
of such a concept.

A very simple HTML-based editor for transfer functions was implemented, which allows
the proper inspection of the radar data by changing the values and colors with the provided
sliders. Figure 7 shows different visualization of the same radar sample, obtained by changing
the transfer function (affecting colors and opacity for different reflectivity values). The figure
also shows the effect of variations in camera parameters (zoom, pan and view orientation).
The chosen number of steps was high enough to display a 800×800 canvas with high quality
images and yet to keep the visualization frame rate above 26 frames/second.

4.2.2 Animation support

The visualization of a single radar volume is useful for static analysis, but the nature of the
atmosphere is essentially dynamic. As the radar scans the atmosphere every 10 minutes, a
collection of continuous 3D information is available for visualization. Animated series of
CAPPI images are useful to visualize the evolution of a storm, or to analyze the generation
process.

The utilization of volume rendering in animated series is referred as 4D data visualization, as
it adds the time variable. In this case, the volumetric visualization of the radar data is used in
combination with specific values of the transfer function, chosen to highlight specific parts of
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the volume. It is quite common to use these techniques to filter the more intense zones of the
data, normally associated with the more dangerous rain or hail types.

In the Web GUI implemented, simple temporal navigational functionality has been added
to enable users to access the next or previous volume in the sequence. One of the possible
problems to allow a smooth visualization is the loading time, as the whole load and
visualization process has to be made for each individual volumetric dataset. Fortunately,
the loading time is rather short and the possibility to create fully interactive 4D animations is
open. Additional tests have shown that the limit is normally imposed by the size of the dataset
and the bandwidth of the network, since the data must be downloaded from the server.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Different weather radar volume renderings. Images (a) and (b) use typical color
mapping for reflectivity scans (measured in decibels, dBZ). Images (c), (d), (e), (f), (g), (h) and
(i) have been generated by varying the transfer function (color and transparency) and the
window zoom and pan.

5. Results

The proposed GPU implementation of the Volume Rendering technique presented in the
previous sections has been tested with different settings and with different datasets. As the
interactive and real-time results depend on both hardware and software, it is very important
to begin with the platform specification used for the testing. In the following sections, medical
volumetric datasets and weather radar volume samples are used to validate that WebGL is a
valid and promising technology for real-time and interactive applications.
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5.1 Hardware and software configuration

The tests for this chapter have been conducted using an Intel Quad Core Q8300 processor,
4GB of RAM and a GeForce GTX 460, Windows 7 PRO 64 bits (Service Pack 1) with the latest
stable graphics drivers. Amongst all of the Web browsers with full implementation of WebGL
standard, we selected FireFox 6.0.2 for the test, other browsers are know to work with the
implementation like Chrome 9.0.597.981 and Opera 11.50 labs (build 246612).

It is worth while pointing out that both Chrome and Firefox, in default configuration, use
Google’s Angle library 3 to translate WebGL’s native GLSL shaders to Microsoft’s HLSL
language and compile and run them through the DirectX subsystem. This procedure improves
compatibility with lower-end hardware or older graphics drivers. Firefox Minefield has been
configured with two different settings by modifying some keys in the configuration page
about:config: (1) the default value of webgl.prefer-native-gl was set to TRUE. (2) The default value
of webgl.shader_validator was TRUE. These changes basically disable Angle as the rendering
back-end end validator of shaders, thus directly using the underlying native OpenGL support.

(a) Front View (b) Back View (c) Top View (d) Bottom View

(e) Left Side View (f) Right Side View (g) Used Transfer
Function

(h) Applying Other
TF

Fig. 8. Subfigures (a), (b), (c), (d), (e) and (f) illustrate renderings of the axial views of the
sample volume dataset. The output was generated in 800×800 with 200 steps. Subfigure (g)
depicts the applied transfer function, where the left side represents the color and the right
side the transparency (black=opaque, white=transparent). With different transfer functions
other outputs are obtained, as subfigure (h) shows.

A LightTPD Web server4 was installed and configured in the same computer, to serve
the dataset images, the sample webpages (HTML and JavaScript files) and the vertex and
fragment shaders.

1 http://www.google.com/chrome
2 http://snapshot.opera.com/labs/webgl/Opera_1150_24661_WebGL_en.exe
3 http://code.google.com/p/angleproject
4 http://www.lighttpd.net
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5.2 Medical dataset

Figure 8 shows some graphical output for the medical dataset introduced in the previous
section. The 6 different axial views have been generated using 200 steps in the shaders
implementation (800×800 canvas rendered in Firefox).

5.2.1 Dataset resolution

This qualitative test was intended to show how the input dataset resolution affects the final
rendering quality. Using the same dataset, a modified version was created by reducing the
input resolution per slice from 40962, 20482, 10242m 5122. The number of steps in the shaders
were also varied, using 30, 80, 140 and 200 steps with Firefox. A selection of the results are
shown shown in Figure 9. If the number of steps is small the banding artifacts of the algorithm
are noticiable, which is a problem. Some aproximations could be implemented to resolve this
as show by Marques et al. (2009).

5.3 Medical dataset in portable devices

The Mozilla Firefox Development Group has released a mobile version of the browser for
ARM devices called Fennec5. We have tested it on 2 Android-based devices: Samsung Galaxy
Tab6 and Samsung Galaxy S smartphone7. Taking into account the hardware limitations of
such devices, we have scaled down the Aorta dataset to half resolution, reduced the HTML
canvas size and chosen a suitable number of steps to obtain quality results with the highest
possible interactivity. The test using this browser was quite straight-forward. No further
modification in the implementation of the shaders, Glue JavaScript code or HTML Web page
were required. Although we achieved a low frame rate (about 2 or 3 frames per second),
this demonstrated the possibilty to render volume datasets on handheld devices. Further
optimizations in the data or the implementation of the shaders, specifically oriented to such
devices, might result in better overall performance. We set aside such issues for future work.

6. Contribution and complexity analysis

Our contribution is an implementation of a volume rendering system for the Web. The system
is based on the Volume Ray-Casting algorithm with a complexity of O(M ∗ S), where M is
the number of pixels to be drawn and S is the number of steps of the ray that traverses the
volume. Since the algorithm is implemented in WebGL, its visualization speed is similar
to native applications because it uses the same accelerated graphic pipeline. The original
algorithm has been slightly modified to work with the input structures due to the lack of
Volume Textures in WebGL. Therefore, our algorithm simulates the 3D data by using a 2D
tilling map of the slices of the volume maintaining the tri-linear interpolation, so there is no
real loss in quality because the interpolation is the same as that used in the GPU. Although
a slight impact in performance could be generated for this interpolation, this is minimal and
very difficult to perceive because the browsers are not capable of handling such fast events.
This is due to the browsers been heavily dependent on several layers such as the shader

5 http://www.mozilla.com/en-US/mobile
6 http://galaxytab.samsungmobile.com/2010/index.html
7 http://galaxys.samsungmobile.com
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(a) 512px - 30 steps (b) 512px - 80 steps (c) 512px - 140 steps (d) 512px - 200 steps

(e) 1024px - 30 steps (f) 1024px - 80 steps (g) 1024px - 140 steps (h) 1024px - 200 steps

(i) 2048px - 30 steps (j) 2048px - 80 steps (k) 2048px - 140 steps (l) 2048px - 200 steps

(m) 4096px - 30 steps (n) 4096px - 80 steps (o) 4096px - 140 steps (p) 4096px - 200 steps

Fig. 9. Resolution qualitative test. Even with the dramatic reduction of the resolution, the
volume render allows identification of the main structures.
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Fig. 10. A Samsung Galaxy Tab (left) and a Galaxy S Smartphone (right) volume - rendering
medical datasets.

compilers, hardware architecture, graphic drivers, etc. Our algorithm was designed to run
entirely in the client (which is the novelty of our proposal). Some delays are expected because
of the network performance, and the interpreted nature of JavaScript. Our implementation8

does not show a significant overhead for the server to present the data in 3D as occurs in
Mahmoudi et al. (2009), therefore allowing more clients to be connected simultaneously. As a
logical conclusion, more powerful clients are required to handle this approximation.

The limitations in our method, even been WebGL compilant, stem from the fact that some
browsers do not adequately provide powerful enough shader language implementations to
even allow compilation of larger shader programs.

7. Conclusions and future work

A medical application presented here illustrates the capabilities of complex volume
rendering visualization in Web browsers. Although many performance improvements and
optimizations are still needed, the material discussed here indicates that rendering volumetric
data with Web standard technology is applicable to many other technical fields. Such
an initiative also re-ignites interest for visualization functions implemented in the past for
high-end desktop visualization applications. The integration of our implemented software
in the Web follows the upcoming HTML5 standard, namely a JavaScript API and the new
WebGL context for the HTML5 canvas element. The implementation of the algorithm in
declarative languages as X3DOM is planned.

The scope of the present chapter does not include the integration of different rendering
styles. However, interactive and complex lighting integration are promising ways to improve
render quality. The use of multi-dimensional interactive transfer functions is also a promising
direction to explore. The minor optimizations applied to this work allow us to expect
a mathematically-planned negotiation between speed performance and quality will be a
promising research field. An additional goal for optimization time-varying datasets using
videos instead of images as a render input, since video formats already minimize transmitted
data by reducing temporal redundancy.

8 http://demos.vicomtech.org/volren
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Another important evolution will be the integration of surface rendering within
volume-rendered scenes in order to visualize, for example, segmented areas in medical
images or terrain surfaces. Some tests have already been performed on desktop prototypes.
This chapter lays the technical ground that would make the integration of surface render in
volume-rendering (via WebGL) possible and reasonable.

8. Acknowledgments

This work was partially supported by the Basque Government’s ETORTEK Project (ISD4)
research programme and CAD/CAM/CAE Laboratory at EAFIT University and the
Colombian Council for Science and Technology –COLCIENCIAS–. Radar datasets were
provided by the Basque Meteorology and Climatology Department.

9. References

Arens, S. & Domik, G. (2010). A survey of transfer functions suitable for volume rendering., in
R. Westermann & G. L. Kindlmann (eds), Volume Graphics, Eurographics Association,
pp. 77–83.
URL: http://dblp.uni-trier.de/db/conf/vg/vg2010.html#ArensD10

Behr, J. & Alexa, M. (2001). Volume visualization in vrml, Proceedings of the sixth international
conference on 3D Web technology, ACM New York, NY, USA, pp. 23–27.

Behr, J., Eschler, P., Jung, Y. & Zöllner, M. (2009). X3dom: a dom-based html5/x3d integration
model, Proceedings of the 14th International Conference on 3D Web Technology, ACM,
pp. 127–135.

Blazona, B. & Mihajlovic, Z. (2007). Visualization service based on web services, Journal of
Computing and Information Technology 15(4): 339.

Congote, J., Moreno, A., Barandiaran, I., Barandiaran, J. & Ruiz, O. (2010). Extending
marching cubes with adaptative methods to obtain more accurate iso-surfaces,
Computer Vision, Imaging and Computer Graphics. Theory and Applications International
Joint Conference, VISIGRAPP 2009, Lisboa, Portugal, February 5-8, 2009. Revised Selected
Papers, Springer Berlin / Heidelberg, pp. 35–44.

Engel, K., Kraus, M. & Ertl, T. (2001). High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading, Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, HWWS ’01, ACM,
New York, NY, USA, pp. 9–16.
URL: http://doi.acm.org/10.1145/383507.383515

Ernvik, A. (2002). 3d visualization of weather radar data, Master’s thesis. LITH-ISY-EX-3252-2002.
Fogal, T. & Kruger, J. (2010). Tuvok, an Architecture for Large Scale Volume Rendering, in

M. Dogget, S. Laine & W. Hunt (eds), Proceedings of the 15th International Workshop on
Vision, Modeling, and Visualization, pp. 57–66.
URL: http://www.sci.utah.edu/ tfogal/academic/tuvok/Fogal-Tuvok.pdf

Goenetxea, J., Moreno, A., Unzueta, L., Galdós, A. & Segura, A. (2010). Interactive and
stereoscopic hybrid 3d viewer of radar data with gesture recognition, in M. G. Romay,
E. Corchado & M. T. García-Sebastián (eds), HAIS (1), Vol. 6076 of Lecture Notes in
Computer Science, Springer, pp. 213–220.

175Volume Ray Casting in WebGL

www.intechopen.com



20 Computer Graphics

Hadwiger, M., Ljung, P., Salama, C. R. & Ropinski, T. (2009). Advanced illumination
techniques for gpu-based volume raycasting, ACM SIGGRAPH 2009 Courses, ACM,
pp. 1–166.

Hartley, R. & Zisserman, A. (2003). Multiple View Geometry in Computer Vision, second edn,
Cambridge University Press, Cambridge, UK.
URL: http://dx.doi.org/10.2277/0521540518

Hibbard, W. & Santek, D. (1989). Interactivity is the key, Proceedings of the 1989 Chapel Hill
workshop on Volume visualization, VVS ’89, ACM, New York, NY, USA, pp. 39–43.
URL: http://doi.acm.org/10.1145/329129.329356

John, N., Aratow, M., Couch, J., Evestedt, D., Hudson, A., Polys, N., Puk, R., Ray, A., Victor,
K. & Wang, Q. (2008). MedX3D: standards enabled desktop medical 3D., Studies in
health technology and informatics 132: 189.

John, N. W. (2007). The impact of web3d technologies on medical education and training,
Computers and Education 49(1): 19 – 31. Web3D Technologies in Learning, Education
and Training.
URL: http://www.sciencedirect.com/science/article/B6VCJ-4GNTFHN-1/2/038248c7a389ba
900e10bef7249450da

Kabongo, L., Macia, I. & Paloc, C. (2009). Development of a commercial cross-platform dicom
viewer based on open source software, in P. H. U. Lemke, P. P. K. Inamura, P. P. K. Doi,
P. P. M. W. Vannier, P. P. A. G. Farman & D. PhD (eds), International Journal of Computer
Assisted Radiology and Surgery; CARS 2009 Computer Assisted Radiology and Surgery
Proceedings of the 23rd International Congress and Exhibition, Vol. 4, International
Foundation of Computer Assisted Radiology and Surgery, Springer, Berlin, Germany,
pp. S29–S30.

Kajiya, J. T. & Von Herzen, B. P. (1984). Ray tracing volume densities, SIGGRAPH Comput.
Graph. 18: 165–174.
URL: http://doi.acm.org/10.1145/964965.808594

Kniss, J., Kindlmann, G. & Hansen, C. (2002). Multidimensional transfer functions for
interactive volume rendering, Visualization and Computer Graphics, IEEE Transactions
on 8(3): 270 – 285.

Kniss, J., Premoze, S., Ikits, M., Lefohn, A., Hansen, C. & Praun, E. (2003). Gaussian
transfer functions for multi-field volume visualization, Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), VIS ’03, IEEE Computer Society, Washington, DC, USA,
pp. 65–.
URL: http://dx.doi.org/10.1109/VISUAL.2003.1250412

Kruger, J. & Westermann, R. (2003). Acceleration techniques for gpu-based volume rendering,
VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Computer
Society, Washington, DC, USA, p. 38.

Lacroute, P. & Levoy, M. (1994). Fast volume rendering using a shear-warp factorization of the
viewing transformation, Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’94, ACM, New York, NY, USA, pp. 451–458.
URL: http://doi.acm.org/10.1145/192161.192283

Levoy, M. (1988). Display of surfaces from volume data, IEEE Comput. Graph. Appl. 8(3): 29–37.
Mahmoudi, S. E., Akhondi-Asl, A., Rahmani, R., Faghih-Roohi, S., Taimouri, V., Sabouri, A. &

Soltanian-Zadeh, H. (2009). Web-based interactive 2d/3d medical image processing
and visualization software, Computer Methods and Programs in Biomedicine In Press,

176 Computer Graphics

www.intechopen.com



Volume Ray Casting in WebGL 21

Corrected Proof: –.
URL: http://www.sciencedirect.com/science/article/B6T5J-4XYB3W7-1/2/7068a72bb5a9b0
c62a3819562ab176f5

Marques, R., Santos, L. P., Leškovsky̌, P. & Paloc, C. (2009). Gpu ray casting, in A. Coelho, A. P.
Cláudio, F. Silva & A. Gomes (eds), 17Âž Encontro Português de Computaçao Gráfica, En
Anexo, Covilha, Portugal, pp. 83–91.

Marrin, C. (2011). WebGL Specification, Khronos WebGL Working Group.
URL: http://www.khronos.org/webgl/

Meißner, M., Huang, J., Bartz, D., Mueller, K. & Crawfis, R. (2000). A practical evaluation
of popular volume rendering algorithms, Proceedings of the 2000 IEEE symposium on
Volume visualization, Citeseer, pp. 81–90.

Meyer-Spradow, J., Ropinski, T., Mensmann, J. & Hinrichs, K. H. (2009). Voreen: A
rapid-prototyping environment for ray-casting-based volume visualizations, IEEE
Computer Graphics and Applications (Applications Department) 29(6): 6–13.
URL: http://viscg.uni-muenster.de/publications/2009/MRMH09

Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L., Raghu, K.,
Machiraju, R. & Lee, J. (2001). The transfer function bake-off, Computer Graphics and
Applications, IEEE 21(3): 16 –22.

Phong, B. T. (1975). Illumination for computer generated pictures, Commun. ACM
18(6): 311–317.

Poliakov, A. V., Albright, E., Hinshaw, K. P., Corina, D. P., Ojemann, G., Martin, R. F. &
Brinkley, J. F. (2005). Server-based approach to web visualization of integrated
three-dimensional brain imaging data, Journal of the American Medical Informatics
Association 12(2): 140 – 151.
URL: http://www.sciencedirect.com/science/article/B7CPS-4FJT8T8-7/2/1ec1f4078ec3bf48
810583ea08227b32

Riley, K., Song, Y., Kraus, M., Ebert, D. S. & Levit, J. J. (2006). Visualization of structured
nonuniform grids, IEEE Computer Graphics and Applications 26: 46–55.

Salonen, K., Järvinen, H. & Lindskog, M. (2003). Model for Doppler Radar Radial winds.
Segura, Á., Moreno, A., García, I., Aginako, N., Labayen, M., Posada, J., Aranda, J. A.

& Andoin, R. G. D. (2009). Visual processing of geographic and environmental
information in the basque country: Two basque case studies, in R. D. Amicis,
R. Stojanovic & G. Conti (eds), GeoSpatial Visual Analytics, NATO Science for Peace
and Security Series C: Environmental Security, Springer Netherlands, pp. 199–208.

Sundaram, V., Zhao, L., Song, C., Benes, B., Veeramacheneni, R. & Kristof, P. (2008).
Real-time Data Delivery and Remote Visualization through Multi-layer Interfaces,
Grid Computing Environments Workshop, 2008. GCE’08, pp. 1–10.

Westover, L. A. (1991). Splatting: a parallel, feed-forward volume rendering algorithm, PhD thesis,
Chapel Hill, NC, USA. UMI Order No. GAX92-08005.

Wu, Y. & Qu, H. (2007). Interactive transfer function design based on editing direct volume
rendered images, Visualization and Computer Graphics, IEEE Transactions on 13(5): 1027
–1040.

Yoo, S., Key, J., Choi, K. & Jo, J. (2005). Web-Based Hybrid Visualization of Medical Images,
Lecture notes in computer science 3568: 376.

177Volume Ray Casting in WebGL

www.intechopen.com



22 Computer Graphics

Zhou, J. & Takatsuka, M. (2009). Automatic transfer function generation using contour
tree controlled residue flow model and color harmonics, Visualization and Computer
Graphics, IEEE Transactions on 15(6): 1481 –1488.

178 Computer Graphics

www.intechopen.com



Computer Graphics

Edited by Prof. Nobuhiko Mukai

ISBN 978-953-51-0455-1

Hard cover, 256 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Computer graphics is now used in various fields; for industrial, educational, medical and entertainment

purposes. The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In

order to visualize various things, many technologies are necessary and they are mainly divided into two types

in computer graphics: modeling and rendering technologies. This book covers the most advanced

technologies for both types. It also includes some visualization techniques and applications for motion blur,

virtual agents and historical textiles. This book provides useful insights for researchers in computer graphics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

John Congote, Luis Kabongo, Aitor Moreno, Alvaro Segura, Andoni Beristain, Jorge Posada and Oscar Ruiz

(2012). Volume Ray Casting in WebGL, Computer Graphics, Prof. Nobuhiko Mukai (Ed.), ISBN: 978-953-51-

0455-1, InTech, Available from: http://www.intechopen.com/books/computer-graphics/volume-ray-casting-in-

webgl



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


