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1. Introduction

The type-2 fuzzy sets was introduced by L. Zadeh as an extension of ordinary fuzzy sets. So
the concept of type-2 fuzzy sets is also extended from type-1 fuzzy sets. If A is a type-1 fuzzy
set and membership grade of x ∈ X in A is µA(x), which is a crisp number in [0, 1]. A type-2
fuzzy set in X is Ã, and the membership grade of x ∈ X in Ã is µÃ(x), which is a type-1 fuzzy
set in [0, 1]. The elements of the domain of µÃ(x) are called primary memberships of x in Ã and
the memberships of the primary memberships in µÃ(x) are called secondary memberships of x
in Ã.

Recently, there are many researches and applications related to type-2 fuzzy sets because
of the advancing in uncertainty management. Karnik et al (2001A) proposed practical
algorithms of operations on type-2 fuzzy sets as union, intersection, complement. Karnik
et al (2001B) proposed the method of type-reduction of type-2 fuzzy sets based on centroid
defuzzification. Mendel et al (2002) have developed new representation of type-2 fuzzy sets
based on embedded type-2 fuzzy sets. This representation easily have designing of type-2
fuzzy logic system is easy to use and understand. Mendel (2004), Liu (2008) proposed some
practical algorithms in implementing and storing data to speed-up the computing rate of
type-2 fuzzy logic systems. Coupland et al (2007), Coupland et al (2008A), Coupland et al
(2008B) proposed representation type-1 and interval type-2 fuzzy sets and fuzzy logic system
by using computational geometry, the fast approach to geometric defuzzification of type-2
fuzzy sets, the approach is better in computing than analytic approaches. TIN is a method
of representation of curved surface in 3D space for many applications in computer graphics
and simulation. Many approaches Shewchuck (2002), Ruppert (1997), Chew (1989) are use to
generate TIN from set of points based Delaunay algorithms.

The chapter deals with the new representation of type-2 fuzzy sets using TIN. The
membership grades of type-2 fuzzy sets in 3D surfaces that are discretized into triangular
faces with planar equations. Size of triangle is difference depending on slope of the surface.
Authors proposed practical algorithms to implement operations on type-2 fuzzy sets by
designing computational geometry algorithms on TIN. The result is shown and corroborated
for robustness of the approach, rendering type-2 fuzzy sets in 3-D environment using
OpenSceneGraph SDK.
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2 Computer Graphics

The chapter is organized as follows: II presents TIN and geometric computation; III introduces
type-2 fuzzy sets; IV presents approximate representation of type-2 fuzzy sets; V is operations
of TIN and geometric operations of type-2 fuzzy sets; VI is conclusion and future works.

2. TIN and geometric computation

2.1 Delaunay triangulation

A topographic sur f ace υ is the image of a real bivariate function f defined over a domain D in
the Euclidean plane, as

υ =
{

(x, u, f (x, u))
∣

∣(x, u) ∈ D
}

(1)

A polyhedral model is the image of a piecewise-linear function f that is described on a
partition of D into polygonal regions {D1, ..., Dk} and the image of f over each region
Di(i = 1, ..., k) is a linear patch. If all Dis (i = 1, .., k) are triangles then the polyhedral model
is called a Triangulated Irregular Network (TIN). Hence, υ may be represented approximately
by a TIN, as

υ=̃
k

∑
i=1

{

(x, u, fi(x, u))
∣

∣(x, u) ∈ Ti

}

,
k
⋃

i=1

Ti ≡ D (2)

where fis (i = 1, ..., k) are planar equations.

Fig. 1. A Delaunay Triangulation

The Delaunay triangulation of a set V of points in IR2 is a subdivision of the convex hull
of V into triangles that their vertices are at points of V, and such that triangles are as much
equiangular as possible. More formally, a triangulation τ of V is a Delaunay triangulation if
and only if, for any triangle t of τ, the circumcircle of t does not contain any point of V in its
interior. This property is called the empty circle property of the Delaunay triangulation. Let
u and v be two vertices of V. The edge uv is in D if and only if there exists an empty circle
that passes through u and v. An edge satisfying this property is said to be Delaunay. Figure 1
Chew (1989) illustrates a Delaunay Triangulation.

An alternative characterization of the Delaunay triangulation is given based on the max −min
angle property. Let τ be a triangulation of V. An edge e of τ is said to be locally optimal if and
only if, given the quadrilateral Q formed by the two triangles of τ adjacent to e, either Q
is not convex, or replacing e with the opposite diagonal of Q (edge f lip) does not increase

2 Computer Graphics
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Approach to Representation of Type-2 Fuzzy Sets using Computational Methods of Computer Graphics 3

the minimum of the six internal angles of the resulting triangulation of Q. τ is a Delaunay
triangulation if and only if every edge of τ is locally optimal. The repeated application
of edge flips to non-optimal edges of an arbitrary triangulation finally leads to a Delaunay
triangulation.

Fig. 2. The Delaunay triangulation (solid lines) and the Voronoi diagram (dash lines) from a
point set.

The geometric dual of the Delaunay triangulations is the Voronoi diagram, which describes
the proximity relationship among the point of the given set V. The Voronoi diagram of a set
V of points is a subdivision of the plane into convex polygonal regions, where each region is
associated with a point Pi of V. The region associated with Pi is called Voronoi region of Pi, and
consists of the locus of points of the plane which lie closer to Pi than any other point in V. Two
points Pi and Pj are said to be Voronoi neighbours when the corresponding Voronoi regions are
adjacent. Figure 2 shows the Delaunay triangulation and the Voronoi diagram from a point
set.

The usual input for two-dimensional mesh generation is not merely a set of vertices. Most
theoretical treatments of meshing take as their input a planar straight line graph (PSLG). A
PSLG is a set of vertices and segments that satisfies two constraints. First, for each segment
contained in a PSLG, the PSLG must also contain the two vertices that serve as endpoints for
that segment. Second, segments are permitted to intersect only at their endpoints. A set of
segments that does not satisfy this condition can be converted into a set of segments that does.
Run a segment intersection algorithm, then divide each segment into smaller segments at the
points where it intersects other segments.

The constrained Delaunay triangulation (CDT) of a PSLG X is similar to the Delaunay
triangulation, but every input segment appears as an edge of the triangulation. An edge or
triangle is said to be constrained Delaunay if it satisfies the following two conditions. First, its
vertices are visible to each other. Here, visibility is deemed to be obstructed if a segment of X
lies between two vertices. Second, there exists a circle that passes through the vertices of the
edge or triangle in question, and the circle contains no vertices of X that are visible from the
interior of the edge or triangle.

The flip algorithm begins with an arbitrary triangulation, and searches for an edge that is
not locally Delaunay. All edges on the boundary of the triangulation are considered to be
locally Delaunay. For any edge e not on the boundary, the condition of being locally Delaunay
is similar to the condition of being Delaunay, but only the two triangles that contain e are
considered. For instance, Figure 4 demonstrates two different ways to triangulate a subset of
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4 Computer Graphics

Fig. 3. (a) A planar straight line graph. (b) Delaunay triangulation of the vertices of the PSLG.
(c)Constrained Delaunay triangulation of the PSLG.

Fig. 4. Two triangulations of a vertex set. At left, e is locally Delaunay; at right, e is not.

four vertices. In the triangulation at left, the edge e is locally Delaunay, because the depicted
containing circle of e does not contain either of the vertices opposite e in the two triangles
that contain e. In the triangulation at right, e is not locally Delaunay, because the two vertices
opposite e preclude the possibility that e has an empty containing circle. Observe that if the
triangles at left are part of a larger triangulation, e might not be Delaunay, because vertices
may lie in the containing circle, although they lie in neither triangle. However, such vertices
have no bearing on whether or not e is locally Delaunay.

Whenever the flip algorithm identifies an edge that is not locally Delaunay, the edge is flipped.
To flip an edge is to delete it, thereby combining the two containing triangles into a single
containing quadrilateral, and then to insert the crossing edge of the quadrilateral. Hence, an
edge flip could convert the triangulation at left in Figure 4 into the triangulation at right, or
vice versa.

2.2 Half edge data structure and basic operations

A common way to represent a polygon mesh is a shared list of vertices and a list of faces
storing pointers for its vertices. The half-edge data structure is a slightly more sophisticated
boundary representations which allows all of the queries listed above to be performed in
constant time. In addition, even though we are including adjacency information in the faces,
vertices and edges, their size remains fixed as well as reasonably compact.

The half-edge data structure is called that because instead of storing the edges of the mesh,
storing half-edges. As the name implies, a half-edge is a half of an edge and is constructed by
splitting an edge down its length. Half-edges are directed and the two edges of a pair have
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Approach to Representation of Type-2 Fuzzy Sets using Computational Methods of Computer Graphics 5

opposite directions. Data structure of each vertex v in TIN contains a clockwise ordered list of
half edges gone out from v. Each half edge h = (eV, lF) contains end vertex (eV) and index
of right face (lF). Suppose that a TIN has m faces and n vertices, it needs to have n lists of 3m
half edges and memory is n ∗ (3 ∗ m) ∗ (2 ∗ 4) bytes. Figure 5 shows data structure of vertex
v with 6 half-edges indexed from 0 to 5, the ith half-edge contains the vertex vi and the right
face fi of the edge.

Fig. 5. List of half-edges of a vertex.

Some operations are built based on half-edges such as edge collapse operation, flip operation,
insertion or deletion operation... The following is description of half-edge based algorithms.

Algorithm 2.1 (Insertion Operation). Insert a new half edge h into the list of vertex v.

Input: The list of half edge of vertex v and new vertex eP.

Output:The new list of half edge of vertex v.

1. Identity i in the list of half edges of v so that the ray (v, eP) is between two rays (v, vi) and (v, vi+1).

2. Move k − i half edges from position i to i + 1 in the list.

3. Insert the half edge h into position i.

Figure 6 depicts an example of edge collapse operation after deleting the edge (v0, v1) from
V. The first step of edge collapse is to identity indices i0, i1 of half edges h0, h1 in the lists of
half edges of v0, v1, respectively. Then moving half edges (v1, v4), (v1, v5) of vertex v1 into
the list of v0 at i0, rejecting half edges h0, (v3, v1), (v6, v1), setting the endpoint of half edges
(v4, v1), (v5, v1) to be v0. The following is the algorithm for edge collapse:

Algorithm 2.2 (Edge Collapse). Remove the edge (v0, v1) and vertex v1 from TIN.

Input: TIN T, edge (v0, v1), vertex v1.

Output: TIN T′ is the collapsed TIN.

1. Identity i0, i1 of half edges h0, h1 in lists of v0, v1, respectively.

2. Copy half edges of v1 from position i + 2 to i − 2 (if exist) in the list to the list of half edges of v0 at
i0. Then set endpoint of respective inverse half edges is v0.

3. Delete half edges from position i − 1 to i + 1 of v1 and their inverse half edges.

4. Delete vertex v1 and its related data.

5Approach to Representation 
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6 Computer Graphics

Fig. 6. Edge collapse.

Flip operation mentioned above is shown in Figure 7. The algorithm is applied to the edge
which does not satisfy the empty circle property of Delaunay triangulation. The following is
algorithm for flip operation:

Algorithm 2.3 (Flip Operation). Flipping edge (v0, v1) become edge (v2, v3).

Input: TIN T, edge (v0, v1).

Output: TIN T′ is the flipped TIN.

1. Replace edge (v0, v1) become edge (v2, v3) in TIN.

2. Move half edges h0, h1 of vertices v0, v1 to vertices v2, v3 and their endpoints are v3, v2,
respectively.

3. Change right face of half edges (v0, v3), (v1, v2).

Fig. 7. Flip Operation.

3. Type-2 fuzzy sets

3.1 Fuzzy sets

Fuzzy set concept was proposed by L. Zadeh Zadeh (1975) in 1965. A fuzzy set A of a
universe of discourse X is characterized by a membership f unction µA : U → [0, 1] which
associates with each element y of X a real number in the interval [0, 1], with value of µA(x) at
x representing the "grade of membership" of x in A.

A fuzzy set F in U may be represented as a set of ordered pairs of a generic element x and
its grade of membership function: F = {(x, µF(x))|x ∈ U}. When U is continuous, F is
re-written as F =

∫

U µF(x)/x, in which the integral sign denotes the collection of all points

6 Computer Graphics
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Approach to Representation of Type-2 Fuzzy Sets using Computational Methods of Computer Graphics 7

x ∈ U with associated membership function µF(x). When U is discrete, F is re-written as
F = ∑U µF(x)/x, in which the summation sign denotes the collection of all points x ∈ U with
associated membership function µF(x).

In the same crisp theoretic set, basic operations of fuzzy set are union, intersection and
complement. These operations are defined in term of their membership functions. Let fuzzy
sets A and B be described by their membership functions µA(x) and µB(x). One definition of
fuzzy union leads to the membership function

µA∪B(x) = µA(x) ∨ µB(x) (3)

where ∨ is a t-conorm, for example, maximum.

and one definition of fuzzy intersection leads to the membership function

µA∩B(x) = µA(x) ⋆ µB(x) (4)

where ⋆ is a t-norm, for example minimum or product.

The membership function for fuzzy complement is

µ¬B(x) = 1.0 − µB(x) (5)

Fuzzy Relations represent a degree of presence or absence of association, interaction, or
interconnectedness between the element of two or more fuzzy sets. Let U and V be two
universes of discourse. A fuzzy relation, R(U, V) is a fuzzy set in the product space U × V,
i.e, it is a fuzzy subset of U × V and is characterized by membership function µR(x, y) where
x ∈ U and y ∈ V, i.e., R(U, V) = {((x, y), µR(x, y))|(x, y) ∈ U × V}.

Let R and S be two fuzzy relations in the same product space U × V. The intersection and
union of R and S, which are compositions of the two relations, are then defined as

µR∩S(x, y) = µR(x, y) ⋆ µS(x, y) (6)

µR∪S(x, y) = µR(x, y) • µS(x, y) (7)

where ⋆ is a any t-norm and • is a any t-conorm.

Sup-star composition of R and S:

µR◦S(x, z) = sup
y∈V

[µR(x, y) ⋆ µS(y, z)] (8)

3.2 Type-2 fuzzy sets

A type-2 fuzzy set in X is denoted Ã, and its membership grade of x ∈ X is µÃ(x, u), u ∈
Jx ⊆ [0, 1], which is a type-1 fuzzy set in [0, 1]. The elements of domain of µÃ(x, u) are called
primary memberships of x in Ã and memberships of primary memberships in µÃ(x, u) are
called secondary memberships of x in Ã.

Definition 3.1. A type − 2 f uzzy set, denoted Ã, is characterized by a type-2 membership function
µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (9)

7Approach to Representation 
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or

Ã =
∫

x∈X

∫

u∈Jx

µÃ(x, u))/(x, u), Jx ⊆ [0, 1] (10)

in which 0 ≤ µÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2D plane whose axes are u and µÃ(x′, u) is called a vertical
slice of µÃ(x, u). A secondary membership function is a vertical slice of µÃ(x, u). It is µÃ(x =
x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

µÃ(x = x′, u) ≡ µÃ(x′) =
∫

u∈Jx′

fx′ (u)/u, Jx′ ⊆ [0, 1] (11)

in which 0 ≤ fx′ (u) ≤ 1.

In manner of embedded fuzzy sets, a type-2 fuzzy sets Mendel et al (2002) is union of its type-2
embedded sets, i.e

Ã =
n

∑
j=1

Ã
j
e (12)

where n ≡
N
∏
i=1

Mi and Ã
j
e denoted the jth type-2 embedded set of Ã, i.e.,

Ã
j
e ≡ {

(

u
j
i , fxi (u

j
i)
)

, i = 1, 2, ..., N} (13)

where u
j
i ∈ {uik, k = 1, ..., Mi}.

Let Ã, B̃ be type-2 fuzzy sets whose secondary membership grades are fx(u), gx(w),
respectively. Theoretic operations of type-2 fuzzy sets such as union, intersection and
complement are described Karnik et al (2001A) as follows:

µÃ∪B̃(x) = µÃ(x) ⊔ µB̃(x) =
∫

u

∫

v
( fx(u) ⋆ gx(w))/(u ∨ w) (14)

µÃ∩B̃(x) = µÃ(x) ⊓ µB̃(x) =
∫

u

∫

v
( fx(u) ⋆ gx(w))/(u ⋆ w) (15)

µÃ(x) = µ¬Ã(x) =
∫

u
( fx(u))/(1 − u) (16)

where ∨, ⋆ are t-cornorm, t-norm, respectively. Type-2 fuzzy sets are called an interval type-2
fuzzy sets if the secondary membership function fx′ (u) = 1 ∀u ∈ Jx i.e. a type-2 fuzzy set are
defined as follows:

Definition 3.2. An interval type-2 fuzzy set Ã is characterized by an interval type-2 membership
function µÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (17)

Uncertainty of Ã, denoted FOU, is union of primary functions i.e. FOU(Ã) =
⋃

x∈X Jx.
Upper/lower bounds of membership function (UMF/LMF), denoted µÃ(x) and µ

Ã
(x), of

Ã are two type-1 membership function and bounds of FOU.

8 Computer Graphics
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Approach to Representation of Type-2 Fuzzy Sets using Computational Methods of Computer Graphics 9

4. Approximate representation of type-2 fuzzy sets

Extending the concept of interval type-2 sets of upper MF and lower MF, we define a
membership grade of type-2 fuzzy sets by dividing them into subsets: upper (lower) surface
and normal surface as follows:

Definition 4.1 (Upper surface). ÃUS is called a upper surface of type-2 fuzzy set Ã and defined as
follows:

ÃUS =
∫

x∈X

[

∫

u∈J+x
fx(u)/u

]

/x (18)

in which J+x ⊆ [u+
x , 1] and u+

x = sup{u|µÃ(x, u) = 1}.

Definition 4.2 (Lower surface). ÃLS is called lower surface of type-2 fuzzy set Ã and defined as
follows:

ÃLS =
∫

x∈X

[

∫

u∈J−x
fx(u)/u

]

/x (19)

in which J−x ⊆ [0, u−
x ] and u−

x = in f {u|µÃ(x, u) = 1}.

Definition 4.3 (Normal surface). ÃNS is called a normal surface of type-2 fuzzy set Ã and defined
as follows:

ÃNS =
∫

x∈X

[

∫

u∈J∗x
fx(u)/u

]

/x (20)

in which J∗x = [u−
x , u+

x ].

For this reason, a type-2 fuzzy set Ã is union of above defined sub-sets, i.e. Ã = ÃUS ∪ ÃNS ∪
ÃLS. Figure 8 is an example of type-2 fuzzy set that is union of subsets: upper surface, normal
surface and lower surface.

Fig. 8. Example of surfaces of type-2 fuzzy sets

A proximate representation of type-2 fuzzy sets is proposed by using a TIN that be able to
approximately represent the 3-D membership function, is expressed as the following theorem.

Theorem 4.1 (Approximation Theorem). Let Ã be type-2 fuzzy set with membership grade
µÃ(x, u) in continuous domain D. There exists a type-2 fuzzy set with membership grade is a TIN TÃ,
denoted ÃT , so that ÃT is ǫ-approximation set of Ã, i.e,

‖µÃ(x, u)− µÃT
(x, u)‖ < ǫ, ∀(x, u) ∈ D. (21)

9Approach to Representation 
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Proof. If Ã has membership grade consisting a set of patches of continuous linear surfaces
(example of its membership grades are made by only using triangular and trapezoid
membership grades), then TIN ÃT is created as follows:

1. Set V is the set of vertices of membership grades of Ã.

2. Set E is the set of edges of membership grades of Ã.

3. Call X = (V, E) is a planar straight line graph (PSLG). Make a TIN AT is the constrained
Delaunay triangulation from X. ÃT is a type-2 fuzzy set with membership function AT .

Observe that AT represents faithfully the membership grade of Ã.

If Ã has membership grade consisting only one continuous non-linear surfaces. Let AT is
a TIN that represents Ã in D. Suppose that ∃(xk, uk) ∈ D so that dk = ‖ fA(xk, uk) −
fAT

(xk, uk)‖ ≥ ǫ.

AT is modified by inserting new vertex (xk, uk) as the following steps:

1. Find the triangle Tj of AT , in which (xk, uk) ∈ Tj.

2. Partition the Tj into sub-triangles depending on the position of (xk, uk) on Tj.

+ If (xk, uk) lies on edge ek of Tj, ek is the adjacent edge of Tj and Tk. Partitioning Tj, Tk into
four sub-triangles as Figure 9a.

+ If (xk, uk) is in Tj. Partitioning Tj into three sub-triangles as Figure 9b.

3. Verify new triangles that meet the constrained Delaunay triangulation. This operation may
re-arrange triangles by using f lip operation for two adjacent triangles.

Fig. 9. Partitioning the tj triangle.

The algorithm results in that Tj is divided into smaller sub-triangles. So we could find triangle
T∗ of TIN A∗

T , is modified TIN of AT after Nk steps, so that T∗ is small enough and contains
(xk, uk). The continuity of the membership grade of Ã shows that

d∗k = ‖ fA(xk, uk)− fA∗
T
(xk, uk)‖ < ǫ (22)

We prove the theorem in the case that membership grade of Ã is set of patches of continuous
linear and non-linear surfaces. Suppose that its membership grade involves N patches of
discrete continuous linear surfaces and M patches of discrete continuous linear surfaces,
S1, S2, ..., SM. N patches of continuous linear surfaces, that are represented by a TN S∗

T , is
proven above section. According to above proof, each continuous non-linear surface A is
represented approximately by a TIN AT . So M continuous non-linear patches, S1, S2, ..., SM

are represented by M TINs ST1, ST2, ..., STM. Because of the discreteness of M patches, M
TINs representing patches are also discrete. For this reason, we could combine M TINs
ST1, ST2, ..., STM and S∗

T into only one TIN ST .

10 Computer Graphics
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Approach to Representation of Type-2 Fuzzy Sets using Computational Methods of Computer Graphics 11

Definition 4.4. A base-line of a TIN representing a type-2 fuzzy set is a polyline vi(i = 1, .., N)
satisfying vi.u = 0 and vivi+1 is a edge of triangle of TIN.

Figure 10 is the TIN that represent approximately of Gaussian type-2 fuzzy sets with ǫ = 0.1.
The primary MF is a Gaussian with fixed deviation and mean mk ∈ [m1, m2] and the secondary
MF is a triangular MF. The dask-line is a base-line of TIN.

Fig. 10. Example of representation of a type-2 Gaussian fuzzy sets

5. Applications

5.1 Algorithms for operations on TIN

Data of TIN includes vertices, indices of faces and relations of them. Data of vertices is a list of
3D vectors with x, y and z components. Indices of faces are three indices of vertices of triangle.
Relations between vertices and faces is used to speed up algorithms on TIN such as searching
or computing algorithms.

The section introduces some algorithms operating on TIN such as: intersection of two TINs,
minimum or maximum of two TINs. Algorithm on intersection is to create a poly-line that
is intersection and break-line of TINs. Algorithm on maximum/minimum is to generate
new TIN T0 from two TINs T1, T2 satisfying ∀(x, u)|µT0 (x, u) = min(µT1 (x, u), µT2 (x, u)) or
µT0 (x, u) = max(µT1 (x, u), µT2 (x, u)). The following is the detailed descriptions of algorithms.

Algorithm 5.1 (Intersection Algorithm). Input: T1, T2 are two TINs representing two type-2 fuzzy
sets.

Outputs: Modified T1, T2 are with some new vertices and edges on intersection poly-lines.

1. Computing L1, L2 are base-lines of T1, T2, respectively.

2. Find v∗k (k = 1, .., M) are the intersection points of L1, L2.

3. If M = 0 or set of intersection points is empty then return.

4. For each v∗k (k = 1, ..., M)

v∗ ← v∗k . Init queue Qk.

While not find v∗

(a) v ← v∗. Insert v into queue Qk.

(b) Insert v into each of T1, T2, become vT1
, vT2

.

(c) Find adjacent triangle t∗1 , t∗2 of vT1
andvT2

, respectively, so that t∗1 , t∗2 are intersected by a
segment in t∗1 and t∗2 .

11Approach to Representation 
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(d) If existing new v∗ point so that vv∗ is a intersecting segment of t∗1 and t∗2 then

v ← v∗

Come back step a).

Else

Come back step 2).

Algorithm 5.2 (maximum/minimum Algorithm). Input: T1, T2 are two TINs that represent two
type-2 fuzzy sets.

Output: T0 is result TIN of minimum/maximum operation.

1. Computing intersection of T1, T2 (using the algorithm of computing intersection).

2. Init queue Q.

3. for each triangle t of T1 or T2.

(a) With maximum algorithm:

if t is triangle of T1(T2) and be upper than T2(T1) then push t into Q.

(b) With minimum algorithm:

if t is triangle of T1(T2) and be lower than T2(T1) then push t into Q.

(c) Generating TIN from triangles in Q.

Fig. 11. Example of two fuzzy sets for operations

5.2 Join operation

Theoretic union operation is described the following using Zadeh’s Extension Principle.

µÃ∪B̃(x) = µÃ(x) ⊔ µB̃(x) =
∫

u

∫

v
( fx(u) ⋆ gx(w))/(u ∨ w) (23)

where ∨ represents the max t-conorm and ⋆ represents a t-norm. If µÃ(x) and µB̃(x) have
discrete domains, (23) is rewritten as follows:

µÃ∪B̃(x) = µÃ(x) ⊔ µB̃(x) = ∑
u

∑
v
( fx(u) ⋆ gx(w))/(u ∨ w) (24)

In (23) and (24), if more than one calculation of u and w gives the same point u ∨ w, then in the
union the one with the largest membership grade is kept. Suppose, for example, u1 ∨ w1 = θ∗

and u2 ∨ w2 = θ∗. Then within the computation of (23) and (24) we would have

fx(u1) ⋆ gx(w1)/θ∗ + fx(u2) ⋆ gx(w2)/θ∗ (25)

where + denotes union. Combining these two terms for the common θ∗ is a type-1
computation in which t-conorm can be used, e.g. the maximum.
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Theoretic join operation is described as follows. For every pair of points {u, w}, such that

u ∈ F ⊆ [0, 1] of Ã and w ∈ G ⊆ [0, 1] of B̃, we find the maximum of v and w and the

minimum of their memberships, so that v ∨ w is an element of F ⊔ G and fx(v) ∧ gx(w) is

the corresponding membership grade. If more than one {u, w} pair gives the same maximum

(i.e., the same element in F ⊔ G), maximum of all the corresponding membership grades is

used as the membership of this element.

If θ ∈ F ⊔ G, the possible {u, w} pairs that can give θ as the result of the maximum operation

are {u, θ} where u ∈ (−∞, θ] and {θ, w} where w ∈ (−∞, θ]. The process of finding the

membership of θ in Ã ⊔ B̃ can be divided into three steps: (1) find the minimum between the

memberships of all the pairs {u, θ} such that u ∈ (−∞, θ] and then find their supremum; (2)

do the same with all the pairs {θ, w} such that w ∈ (−∞, θ]; and, (3) find the maximum of the

two supremum, i.e.,

hF⊔G(θ) = φ1(θ) ∨ φ2(θ) (26)

where

φ1(θ) = sup
u∈(−∞,θ]

{

fx(u) ∧ gx(θ)} = gx(θ) ∧ sup
u∈(−∞,θ]

{

fx(u)} (27)

and

φ2(θ) = sup
w∈(−∞,θ]

{

fx(θ) ∧ gx(w)} = fx(θ) ∧ sup
w∈(−∞,θ]

{

gx(w)} (28)

Based-on theoretic join and meet operation, we proposed TIN-based geometric algorithm for

join operation. This algorithm uses two above mentioned algorithms involving intersection

and min/max.

Fig. 12. Join operation

Algorithm 5.3 (Join Operation). Input: Ã, B̃ are two type-2 fuzzy sets with TINs TÃ, TB̃.

Output: C̃ is result of join operation.

1. Find the upper surface by using the max-algorithm:

TC̃US
= max(TÃUS

, TB̃US
)

2. Find the lower surface by using the max-algorithm:

TC̃LS
= max(TÃLS

, TB̃LS
)

3. Generate normal surface from TC̃US
and TC̃US

using Delaunay Triangulation.

Figure 11 is two type-2 fuzzy sets that its primary MF is Gaussian MF and its secondary MF is

triangular MF. Figure 12 is the result T2FS that are rendered in 3D environment.
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Fig. 13. Meet operation

5.3 Meet operation

Recall theoretic meet operation is described as follows:

µÃ∩B̃(x) = µÃ(x) ⊓ µB̃(x) =
∫

u

∫

v
( fx(u) ⋆ gx(w))/(u ⋆ w) (29)

where ⋆ represents a t-norm. If µÃ(x) and µB̃(x) have discrete domains, (29) is rewritten as
follows:

µÃ∩B̃(x) = µÃ(x) ⊓ µB̃(x) = ∑
u

∑
v
( fx(u) ⋆ gx(w))/(u ∧ w) (30)

In a similar way, the point u ⋆ w with the largest membership grade is kept if more than one
calculation of u and w gives the same one.

For every pair of points {u, w}, such that u ∈ F ⊆ [0, 1] of Ã and w ∈ G ⊆ [0, 1] of B̃, we find
the minimum or product of v and w and the minimum of their memberships, so that v ⋆ w is
an element of F ⊓ G and fx(v) ∧ gx(w) is the corresponding membership grade.

If θ ∈ F ⊓ G, the possible {u, w} pairs that can give θ as the result of the maximum operation
are {θ, u} where u ∈ [θ, ∞) and {w, θ} where w ∈ [θ, ∞). The process of finding the
membership of θ in Ã ⊓ B̃ can be broken into three steps: (1) find the minimum between
the memberships of all the pairs {u, θ} such that u ∈ [θ, ∞) and then find their supremum; (2)
do the same with all the pairs {θ, w} such that w ∈ [θ, ∞); and, (3) find the maximum of the
two supremum, i.e.,

hF1⊔F2
(θ) = φ1(θ) ∧ φ2(θ) (31)

where
φ1(θ) = sup

u∈[θ,∞)

{

fx(u) ∧ gx(θ)} = gx(θ) ∧ sup
u∈[θ,∞)

{

fx(u)} (32)

and
φ2(θ) = sup

w∈[θ,∞)

{

fx(θ) ∧ gx()} = fx(θ) ∧ sup
w∈[θ,∞)

{

gx(w)} (33)

Algorithm 5.4 (Meet Operation). Input: Ã, B̃ are two type-2 fuzzy sets with TINs TÃ, TB̃.

Output: C̃ is result of meet operation.

1. Find the upper surface by using the min-algorithm:

TC̃US
= max(TÃUS

, TB̃US
)

2. Find the lower surface by using the min-algorithm:

TC̃LS
= max(TÃLS

, TB̃LS
)

3. Generate normal surface from TC̃US
and TC̃US

using Delaunay Triangulation.
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5.4 Negation operation

Algorithm 5.5 (Negation Operation). Input: Ã is a type-2 fuzzy set. Output is result of negation
operation.

1. For each vetex vk of TUS or TLS of B̃.

vk.y = 1.0 − vk.y

2. Set T′
US ← TLS, T′

LS ← TUS.

3. Set B̃ = {T′
US, TNS, T′

LS}.

Fig. 14. Negation operation

5.5 Rendering and performance

The OpenSceneGraph (OSG) [http://www.openscenegraph.org] is an open source high
performance 3D graphics toolkit, used by application developers in fields such as visual
simulation, games, virtual reality, scientific visualization and modelling. Written entirely
in Standard C++ and OpenGL it runs on all Windows platforms, OSX, GNU/Linux, IRIX,
Solaris, HP-Ux, AIX and FreeBSD operating systems. The OpenSceneGraph is now well
established as the world leading scene graph technology, used widely in the vis-sim, space,
scientific, oil-gas, games and virtual reality industries.

We use the OSG for rendering of type-2 fuzzy sets. The approach is implemented for
representation of general T2FS with various ε-approximation. Let Ã is a general type-2 fuzzy
set. The feature membership functions of Ã are described as follows:

FOU is Gaussian function with upper MF and lower MF as follows:

Upper MF of FOU:

fu(x) =

{

e−
1
2 (

x−m1
σ )2 i f x<m1

1 i f m1≤x≤m2

e−
1
2 (

x−m2
σ )2 i f x>m2

(34)

Lower MF of FOU:

fl(x) =

{

e−
1
2 (

x−m2
σ )2 i f x<

m1+m2
2

e−
1
2 (

x−m1
σ )2 i f otherwise

(35)

where m1 = 3.0, m2 = 4.0 and σ = 0.5.

The next feature of Ã is set of points where µÃ(x, u) = 1.0, involves points belong to the MF
described as follows:

fm(x) = e−
1
2 (

x−(m1+m2)/2

σ )2
(36)
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ε Extracted Point Triangles Time TIN
(miliseconds)

1 E-2 39 49 0.651

5 E-3 51 65 0.899

1 E-3 107 145 2.252

5 E-4 154 211 4.480

1 E-4 376 549 12.020

1 E-5 2460 4292 154.96

Table 1. Results of representation Ã

The new approach uses memory and computations less than previous approaches. If the TIN
has N vertices, M faces then it takes N*12 bytes for vertices, M*6 bytes for faces and M*6 for
relations between vertices and faces. For examples, triangular or trapezoid takes about 720
bytes with N ∼= M ∼= 30. Gaussian membership grades take about 200 vertices and 300 faces
with accuracy ǫ = 0.01, i.e 6000 bytes. Beside, the memory using for traditional approach
takes about 100 000 bytes with step is 0.01 and x takes value in [0, 10].

We also tested the performance of algorithms with different membership grades. We
implemented operations in 1000 times for each operation and summarized run-time (in
milliseconds) in table 2.

Type-2 MF Join Meet Negation

Triangular-Triangular 1 1 1
Gaussian - Triangular 474 290 1
Interval Gaussian 114 86 1

Table 2. The run-time of operations
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6. Conclusion

The chapter introduces the new approach to represent a type-2 fuzzy sets using triangular
irregular network. TIN has used to represent 3D surfaces by partitioning domain D into
sub-triangle satisfying Delaunay criteria or constrained Delaunay criteria. This representation
is used for membership functions of type-2 fuzzy sets that are 3D surfaces. We also proposed
approach using half-edge to operate TIN in real-time application. Based-on this result, we
have developed new computation to implement operations of type-2 fuzzy sets such as join,
meet, negation. These operations is the base to develop computing for type-2 fuzzy logic
systems.

The next goals is to continue improving geometry algorithms decrease computational time
based on GPU. The second is to apply computing for developing type-2 fuzzy logic system
using geometry algorithms.
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