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1. Introduction

Gene defects cause diseases. It is reasonable to argue that a disease is related to many genes

and a gene affects on many diseases. This multiple-to-multiple mapping between genes and

diseases makes it difficult to understand the roles of genes completely. However, in some

case, only one gene is involved in one disease. A good example of one-to-one mapping is

hemophilia related to gene F8 (National Hemophilia Foundation, 1998).

Biologists found that there are approximately 3 billion nitrogenous bases in 44+2 human DNA.

Most sequences of these bases are irrelevant to genetic inheritance. Less than 3% of whole pair

sequences are known to determine characteristic features of all human genes (Lander et al.,

2001; Venter et al., 2001). Since the diversity of human’s inherited characteristics is huge, it

can only be explained by cooperation of multiple genes.

Single gene effect with multiple alleles such as blood groups (Chung et al., 1997), color

blindness and hemophilia (Lee et al., 2001) can be studied by using the automata equations.

Their solutions have some analogy with fixed points of renormalization group equations

in physics (Mekjian, 1991; Perelson & Weisbuch, 1997), and lead into the Hardy-Weinberg

formula (Haldane, 1935; Hedrick, 1985; Li, 1976).

We extended the automata equations to investigate multiple gene effects on population

evolution with any number of loci and alleles in the presence of mutation and selection

(Chung et al., 2003). As results of the study, we present the generalized Hardy-Weinberg

formula and a simulation program on the Internet (Chung, 2007). The program explores

simultaneous control of parameters that affect the behavior of gene variations in a population.

We note that Hampe et al. (1998) studied population evolution in a different view point from

ours. The advantage of our approach is that we do not need a large RAM memory because we

do not treat individual person, but consider groups characterized by genes. One more good

point beyond the work of Hampe et al. (1998) is that we achieve quickly equilibrium state.

Using the simulation program, we find that the mortality rates due to gene inheritance are

greatly enhanced for multiple gene cases. Another user friendly simulation program provides

a convenient scheme for the most common cases (Quardokus, 2000). However, it is not easy

to extend this scheme to include more sophisticated situations.

Human beings inherit not only biological genes but also social status from their parents.

A few examples of the social inheritance are family name, nationality, or wealth. One of

the outstanding questions is how or whether this social inheritance influences the standard

biological gene evolution. We believe that this type of interaction may play a crucial
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2 Hemophilia

role in explaining appearance or disappearance of certain physical or social traits in some

communities. In order to study population evolution with inheritance of social status, we treat

inheritable social traits as social genes that behave similar to Mendelian genes. This approach

allows us to handle the biological and the social genes in a unified way and to examine the

mutual influence between the social and the biological genes.

One of the distinct features of the social gene is that it causes preferential non-random

mating. Non-random mating exists even without the social gene concepts. Desire to

avoid genetically inherited diseases and preferential sexual attraction may cause non-random

mating. However, with the social restriction and prejudice, the tendency of non-random

mating is expected to become more prominent and complicated.

The population evolution depends on four dominant factors imposed by nature with genes.

These factors are (1) mating, (2) mutation, (3) reproduction, and (4) selection. The author

proposed automata equations in order to describe the effects of these factors in the population

evolution. These equations were used to determine the equilibrium population ratios in

multiple gene inheritance, where arbitrary numbers of loci and alleles were allowed in

the presence of natural selection, mutation and recombination. A user-friendly numerical

simulation program was proposed for estimation of the infant mortality rate for fatal diseases

(Chung et al., 2003). In order to incorporate the social genes in the inheritance scheme, we

generalize the scheme to include non-random mating explicitly.

It is worthwhile to mention other population evolution studies, which are different from our

approach. First of all, Cavalli-Sforza and Feldman (1981) developed a mathematically-rich

theory of cultural transmission and evolution. Gene-culture coevolution refers to the

evolutionary phenomena that arise from interactions between the biological and social

inheritance systems (Aoki, 2001). In genetics, there exist current efforts to locate genes that

contribute to diseases or to valuable traits (Piccolboni & Gusfield, 2003). Furthermore, it is

essential to analyze the structure of populations on the basis of genetic data (Santafe et al.,

2008). It is also well-known that the coalescent method (Hudson, 1991) is use to determine

mutation rates (Thomson et al., 2000) and recombination rates (Fu & Li, 1999) in the way

of statistical inference (Rosenberg & Nordborg, 2002). Studies on substructured populations

introduce the similar feature of social gene, for instance, age (Charlesworth, 1994) or last name.

We note that many studies related to mating already exist. The convergence of the multilocus

systems under selection with a random mating was investigated (Nagylaki et al., 1999). In the

population models for the diploid ancestral process with a random mating, the convergence

criterium was proved (Möhle et al., 2003). Non-random mating has been found to play

a significant role in the models of the population genetics. In the work related with a

non-random mating (Hausken & Hirshleifer, 2001), the truthful signalling hypothesis was

used in the mating competition theory. Strategic mating between males and females was also

considered by Alpern and Reyniers (2005) and Radcliffe and Rass (1999).

The main purpose of this chapter is to provide a theoretical scheme and a simulation tool

to handle the social and the biological genes in a unified way. We present a generalized

numerical simulation tool to account for the role of the non-random mating induced by

the social genes in addition to mutation, recombination and selection. We expect that the

scheme will allow one to examine closely the impact of the social genes on the biological ones

and vice versa. For example, we study hemophilia thoroughly without and with a social

gene. Simulation results show that a medical screening to prevent birth of females with fatal
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Population Evolution in Hemophilia 3

hemophilia increases the number of the male patients and the female carriers, thus clearly

showing that the social effects significantly influence the inheritance of the biological gene.

2. Model

2.1 Symbols

The fundamental concept for the population evolution is the gene, which allows multiple

loci, multiple allele inheritance with recombination and mutation. The l-th gene in the i-th

chromosome is labeled by two indices (i, l). We denote n(i,l) as the number of alleles for the

gene. Hence, we denote gene

G
(i,l)
a ,

where 1 ≤ a ≤ n(i,l) and i = 1, 2, · · · , 22, X, Y, m, s including sex chromosome X, Y,

mitochondria m, and social gene s. Here, we note that the social inheritance is treated on

an equal footing with the biological one. However, the social genes may have different rules

of reproduction and mutation rates, when compared with the biological genes.

The string of genes models each chromosome. We denote chromosome C
(i)
a containing

relevant Li genes as

C
(i)
a = G

(i,1)
a1

G
(i,2)
a2

· · · G
(i,Li)
aLi

,

with i = 1, 2, · · · , 22, X, Y. We write mitochondria Ma containing relevant Lm genes as

Ma = G
(m,1)
a1

G
(m,2)
a2

· · · G
(m,Lm)
aLm

.

Also we write social gene string Sa containing relevant Ls genes as

Sa = G
(s,1)
a1

: G
(s,2)
a2

: · · · : G
(s,Ls)
aLs

.

The number of distinguishable strings is given by ∏
Li

l=1 n(i,l) ≡ n(i) with i =
1, 2, · · · , 22, X, Y, m, s. It is useful to introduce chromosome pair

: C
(i)
a1

, C
(i)
a2

:

where the chromosome pair allele would run from 1 to (n(i)+ 1)n(i)/2 with i = 1, 2, · · · , 22, X,

while Y chromosome and mitochondria do not need the pairing.

Integrating all, a female genotype T
(F)
a and a male genotype T

(M)
a are expressed in terms of

chromosome pairs, mitochondria and a series of social genes having multiple alleles. We

denote for a female genotype,

T
(F)
a = (C

(1)
p1

, C
(1)
q1

: · · · : C
(22)
p22

, C
(22)
q22

: C
(X)
pX

, C
(X)
qX

: Mpm : Sps ).

Similarly, we denote for a male genotype,

T
(M)
a = (C

(1)
p1

, C
(1)
q1

: · · · : C
(22)
p22

, C
(22)
q22

: C
(X)
pX

, C
(Y)
qY

: Mpm : Sps ).
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4 Hemophilia

We find that the number of different genotypes is given by [∏22
i=1

1
2 (1 + n(i))n(i)] 1

2 (1 +

n(X))n(X)n(m)n(s) for female, and [∏22
i=1

1
2 (1 + n(i))n(i)]n(X)n(Y)n(m)n(s) for male. Note that,

for several given genes, the number of distinguishable genotypes increases dramatically.

For a genotype T
(S)
a with S = F or M, we introduce four kinds of population ratios at the n-th

generation: adult, birth, parent before mutation, and effective parent after mutation, which are

denoted by An(T
(S)
a ), Bn(T

(S)
a ), Pn(T

(F)
a × T

(M)
b ), and P̃n(T

(F)
a × T

(M)
b ), respectively. Here, the

population ratios denote the frequencies of specific genotypes or genotype pairs of parents.

We normalize so that the sums of any population ratios are equal to 1 as shown in Table 1. We

shall notice the relationships between these population ratios later.

The population evolution is governed by the four factors: (1) mating, (2) mutation, (3)

reproduction, and (4) selection. We introduce some symbols used in the population evolution

as follows in each step.

In mating, ω(T
(F)
a → T

(M)
b ) denotes the probability that a genotype T

(F)
a adult woman mates

with a T
(M)
b adult man, while ω(T

(M)
b → T

(F)
a ) is the probability that a genotype T

(M)
b adult

man mates with a T
(F)
a adult woman. This mating probability reflects social and cultural

effects. For the random mating case, the probability ω(T
(F)
a → T

(M)
b ) is simply An(T

(M)
b ), and

ω(T
(M)
b → T

(F)
a ) = An(T

(F)
a ). Notice that ω(T

(F)
a → T

(M)
b ) �= ω(T

(M)
b → T

(F)
a ).

In mutation, the genotype mutation rates µ(T
(S)
a → T

(S)
b ) are written in terms of the gene

mutation rates µ(G
(i,l)
c → G

(i,l)
d ) and the frequency of recombination due to chromosomal

crossover. It is known that the frequency of recombination between two locations depends on

their distance. Mutation rates between chromosomes are given by

µ(C
(i)
a → C

(i)
b ) =

L

∏
l=1

µ(G
(i,l)
al

→ G
(i,l)
bl

).

The mutation rates of mitochondria µ(Ma → Mb) and the mutation rates of social gene string

µ(Sa → Sb) are given as the above similarly. Since each chromosome behaves independently,

we find the mutation rate of a specific genotype T
(S)
a with the sex index S = F or M as

µ(T
(S)
a → T

(S)
b ) = [

22

∏
i=1

η(i)]η(S)µ(Mam → Mbm
)µ(Sas → Sbs

),

where η(i) = η(i)(C
(i)
v , C

(i)
w → C

(i)
p , C

(i)
q ) is given by

η(i) =

⎧
⎨
⎩

µ(C
(i)
v → C

(i)
p )µ(C

(i)
w → C

(i)
p ) for p = q

µ(C
(i)
v → C

(i)
p )µ(C

(i)
w → C

(i)
q ) + µ(C

(i)
v → C

(i)
q )µ(C

(i)
w → C

(i)
p ) for p �= q

Furthermore, η(F)(C
(X)
v , C

(X)
w → C

(X)
p , C

(X)
q ) is the same as η(i), and

η(M)(C
(X)
v , C

(Y)
w → C

(X)
p , C

(Y)
q ) = µ(C

(X)
v → C

(X)
p )µ(C

(Y)
w → C

(Y)
q ).
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Population Evolution in Hemophilia 5

For the social genes, mutation rates are mainly determined by the society and will be different

for each case. In consequence, all genotype mutation rates are written in terms of the gene

mutation rates. After mutation, the effective parent population P̃n(T
(F)
a × T

(M)
b ) will make

offsprings.

In reproduction, the reproduction coefficients ξ(T
(F)
b × T

(M)
c → T

(S)
a ) are calculated with the

assumption that randomly chosen half of the father’s chromosomes and half of the mother’s

chromosomes are delivered to their baby, however only the mother’s mitochondria becomes

the baby’s mitochondria. For the social genes, the rule of reproduction will be different

on a case-by-case basis. Assuming equal preference for each genotype, the reproduction

coefficients ξ(T
(F)
b × T

(M)
c → T

(S)
a ) can be calculated. In fact, the reproduction coefficients

are written as

ξ(T
(F)
a × T

(M)
b → T

(S)
c ) = [

22

∏
i=1

ζ(i)]ζ(S)ζ(m)ζ(s).

Here, ζ(i) = ζ(i)(C
(i)
v , C

(i)
w × C

(i)
p , C

(i)
q → C

(i)
s , C

(i)
t ) is determined by the following simple

algorithm:

Start with ζ(i) = 0.

If (s, t) = (min(v, p),max(v, p)), then add
1
4 to ζ(i).

If (s, t) = (min(v, q),max(v, q)), then add
1
4 to ζ(i).

If (s, t) = (min(w, p),max(w, p)), then add
1
4 to ζ(i).

If (s, t) = (min(w, q),max(w, q)), then add
1
4 to ζ(i).

Hence, ζ(i) is given by one of four values, 0, 1
4 , 1

2 , 1. Also, ζ(F)(C
(X)
v , C

(X)
w × C

(X)
p , C

(Y)
q →

C
(X)
s , C

(X)
t ) is similarly determined:

Start with ζ(F) = 0.

If (s, t) = (min(v, p),max(v, p)), then add
1
2 to ζ(F).

If (s, t) = (min(w, p),max(w, p)), then add
1
2 to ζ(F).

Furthermore, ζ(M)(C
(X)
v , C

(X)
w × C

(X)
p , C

(Y)
q → C

(X)
s , C

(Y)
t ) is determined as follows:

Start with ζ(M) = 0.

If (s, t) = (v, q), then add
1
2 to ζ(M).

If (s, t) = (w, q), then add
1
2 to ζ(M).

For mitochondria, ζ(m)(Mv × Mp → Ms) is determined as follows:

Start with ζ(m) = 0.

If s = v, then add 1 to ζ(m).

Finally, the reproduction coefficients ζ(s) for social genes will be determined by a case-by-case

consideration.
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6 Hemophilia

Name Symbol Property

Adult population An(T
(S)
a ) ∑a An(T

(S)
a ) = 1

Birth population Bn(T
(S)
a ) ∑a Bn(T

(S)
a ) = 1

Parents population Pn(T
(F)
a × T

(M)
b ) ∑a,b Pn(T

(F)
a × T

(M)
b ) = 1

Effective parents population P̃n(T
(F)
a × T

(M)
b ) ∑a,b P̃n(T

(F)
a × T

(M)
b ) = 1

Mating probability ω(T
(F)
a → T

(M)
b ) ∑b ω(T

(F)
a → T

(M)
b ) = 1

Genotype mutation rate µ(T
(S)
a → T

(S)
b ) ∑b µ(T

(S)
a → T

(S)
b ) = 1

Reproduction coefficient ξ(T
(F)
a × T

(M)
b → T

(S)
c ) ∑c ξ(T

(F)
a × T

(M)
b → T

(S)
c ) = 1

Disadvantage factor δ(T
(S)
a ) 0.0 ≤ δ(T

(S)
a ) ≤ 1.0

Table 1. Symbols used in the paper. The index S in genotype represents female with S = F,
and male with S = M.

In selection, since human beings with faulty genes have lower survival rate, we introduce

disadvantage factor δ(T
(S)
a ) for each genotype, which is given by a value between 0 and 1. A

larger value of disadvantage factor means less chance of survival. The value of 1 represents

the complete extinction. The terminology of fitness can alternatively be used to replace the

disadvantage factor.

2.2 Population equation

For given population ratios An(T
(S)
a ) at the n-th generation, our prime concern is "what are

the next generation population ratios?". To answer this question, we introduce the four main

effects on population evolution: mating, mutation, reproduction, and selection. Based on

these four events, using the parameters in relation to probability as explained in the previous

subsection, we formulate automata equations for population evolution:

• Mating

Pn(T
(F)
a × T

(M)
b ) = An(T

(F)
a )ω(T

(F)
a → T

(M)
b ) = An(T

(M)
b )ω(T

(M)
b → T

(F)
a ), (1)

• Mutation

P̃n(T
(F)
a × T

(M)
b ) = ∑

c,d

Pn(T
(F)
c × T

(M)
d )µ(T

(F)
c → T

(F)
a )µ(T

(M)
d → T

(M)
b ), (2)

• Reproduction

Bn(T
(S)
a ) = ∑

b,c

P̃n(T
(F)
b × T

(M)
c )ξ(T

(F)
b × T

(M)
c → T

(S)
a ), (3)

• Selection

An+1(T
(S)
a ) =

Bn(T
(S)
a ){1 − δ(T

(S)
a )}

1 − ∑b Bn(T
(S)
b )δ(T

(S)
b )

. (4)

The first equation is similar to the detailed balance in Monte Carlo simulation. The

second equation shows that new populations are written as the sum of mutations from old

56 Hemophilia

www.intechopen.com



Population Evolution in Hemophilia 7

populations. The birth populations are determined in the third equation. The fractional adult

populations at the next generation after selection and normalization are given by the fourth

equation. These automata equations enable us to calculate the evolution of the genotype

frequencies.

For a given initial normalized set of adult populations, the automata equations will produce a

fixed point of A∗(T
(S)
a ) eventually. We note that the fixed point has a global stability, and is a

function of mutation rates and disadvantage factors. We present the entire library for solving

the population equation on the Internet (Chung, 2007). In fact, written in C# language, the

single reusable library of Science.dll contains Science.Biology.PopulationGenetics, with which

one can simulate all cases. It is open to the public, and runs on a personal computer with

Windows operating system. Any number of loci and alleles, and any values of mutation rates

and disadvantage factors are allowed simultaneously.

It is worth mentioning that these population equations are not universal. In fact, if we

introduce age as a social gene, these equations should be modified because only certain aged

adults can marry and reproduce offsprings.

2.3 Non-random mating

While it is difficult to obtain detailed information on the biological genes of a prospective

marriage partner, it is easy to do so on the social genes. Thus, the mating involving social

genes will be a non-random mating in general.

In the population equation for mating of Eq. (1) which is analogous to detailed balance in the

Monte Carlo simulation, the sum of probabilities must be 1. In fact, we require

∑
b

ω(T
(F)
a → T

(M)
b ) = ∑

a
ω(T

(M)
b → T

(F)
a ) = 1. (5)

Introducing a so-called mating factor Γab which should not be negative, we rewrite the parent

population as

Pn(T
(F)
a × T

(M)
b ) = An(T

(F)
a )Γab An(T

(M)
b ). (6)

Here, Γab are input parameters in this model. However, the condition of Eq. (5) assures that

the elements of Γab should satisfy

n(F)

∑
a=1

An(T
(F)
a )Γab = 1 for 1 ≤ b ≤ n(M), (7)

n(M)

∑
b=1

Γab An(T
(M)
b ) = 1 for 1 ≤ a ≤ n(F), (8)

Γab ≥ 0. (9)

These restrictions on Γab assume that all adults marry and reproduce offsprings. When some

genotype adults have handicaps for marriage, it is reflected in the disadvantage factor in

selection.

Since we obtain the same equation from Eqs. (7) and (8) as

∑
ab

An(T
(F)
a )Γab An(T

(M)
b ) = 1 = ∑

a
An(T

(F)
a ) = ∑

b

An(T
(M)
b ), (10)

57Population Evolution in Hemophilia
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8 Hemophilia

the constraint equations of Eqs. (7) and (8) are not linearly independent. We note that the

number of constraints is given by n(M) + n(F) − 1. Hence, the number of free input parameters

is given by n(F)n(M) − n(M) − n(F) + 1.

Although there are many ways to assign free parameters, we present here four cases for the

mating factors.

• Random mating

A trivial but important solution would be the random mating for which all of Γab are given by

1.

• Selective mating

If only one specific genotype is preferred completely, say T
(F)
1 and T

(M)
1 , we let the free

parameters of mating factors all zero as

(Γab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ11 Γ12 Γ13 · · · Γ1n(M)

Γ21 0 0 0

Γ31 0 0 0

...
. . .

...

Γn(F)1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟

. (11)

In order to satisfy the constraints, other n(M) + n(F) − 1 factors should be given by

(Γab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1+An(T
(F)
1 )+An(T

(M)
1 )

An(T
(F)
1 )An(T

(M)
1 )

1

An(T
(F)
1 )

1

An(T
(F)
1 )

· · · 1

An(T
(F)
1 )

1

An(T
(M)
1 )

0 0 0

1

An(T
(M)
1 )

0 0 0

...
. . .

...

1

An(T
(M)
1 )

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

. (12)

We note that the mating factors depend on population ratios at each generation. It should be

emphasized from Γ11 that the population of An(T
(F)
1 )+ An(T

(M)
1 ) must be greater than 1 at the

initial stage, and remains greater than 1 until the population ratios arrive at the equilibrium

in this non-random mating.

• Hierarchical mating

For the case of n(F) = n(M), we can define the mating factors as

(Γab) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ11 0 0 · · · 0

Γ21 Γ22 0 0

0 Γ32 Γ33 0

...
. . .

...

0 0 0 · · · Γn(F)n(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

. (13)
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Population Evolution in Hemophilia 9

Here all the free input parameters of the mating factors are given by zero. The n(M) + n(F) − 1

factors should be determined by the constraints. As a result, we can determine Γab as

Γ11 =
1

An(T
(M)
1 )

, (14)

Γ21 =
1

An(T
(F)
2 )

(1 −
An(T

(F)
1 )

An(T
(M)
1 )

), (15)

· · · ,

where we omit presenting other Γab, which have similar expressions in terms of the genotype

frequencies.

• General non-random mating

We consider a new and more general approach by introducing the method of the linear

programming.

When non-random mating is involved, there are n(F) · n(M) unknown values of Γab. Since

the number of the unknowns is bigger than the number of the restriction equations of Eqs.

(7) and (8), there is no unique way to determine the mating factors Γab. However, if we add a

theoretical restriction such as maximization or minimization of a specific population, a unique

process becomes possible. We introduce an additional condition of maximizing Z, which is

written in terms of the parent populations as

Z = ∑
ab

βabPn(T
(F)
a × T

(M)
b ), (16)

where the parameters βab represent the tendency of mating. In the process of maximizing Z, a

given positive (negative) value of βab will produce a bigger (smaller) value of Pn(T
(F)
a × T

(M)
b ),

which corresponds to inbreeding (outbreeding) between T
(F)
a type female and T

(M)
b type male.

This problem of maximizing the objective function Z with the constraints of Eqs. (7)-(9) is

well known, and can be solved as a linear programming problem, for example by the simplex

method (Press et al., 1992).

The nature of βab values can be understood if we use practical demographic data, for example,

incomes or divorce rates for parent groups. For instance, for the society that wants to reduce

the divorce rates, it is possible to find the mating factors Γab for the minimal divorce rate. If βab

values represent incomes, we find the mating factors for the maximum income of the society.

In this paper, we consider only medical screening.

3. Hemophilia

For hemophilia, the locus of the relevant gene called F8 is on X chromosome, and the gene has

two alleles: normal X and abnormal X′. For female, three genotypes exist: normal XX, carrier

XX′, and disease X′X′. For male, there are two genotypes: normal XY, and disease X′Y. In

the model of hemophilia, it is worthwhile to present all input parameters explicitly. First of
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all, for the random mating, all of mating factors are given by 1 as

Γab = 1.

The mutation rates are given by

µ(X → X′) = α, µ(X → X) = 1 − α,

µ(X′ → X) = β, µ(X′ → X′) = 1 − β.

The reproduction coefficients are found as

ξ(XX × XY → XX) = 1, ξ(XX × XY → XX′) = 0, ξ(XX × XY → X′X′) = 0,

ξ(XX × X′Y → XX) = 0, ξ(XX × X′Y → XX′) = 1, ξ(XX × X′Y → X′X′) = 0,

ξ(XX′ × XY → XX) = 0.5, ξ(XX′ × XY → XX′) = 0.5, ξ(XX′ × XY → X′X′) = 0,

ξ(XX′ × X′Y → XX) = 0, ξ(XX′ × X′Y → XX′) = 0.5, ξ(XX′ × X′Y → X′X′) = 0.5,

ξ(X′X′ × XY → XX) = 0, ξ(X′X′ × XY → XX′) = 1, ξ(X′X′ × XY → X′X′) = 0,

ξ(X′X′ × X′Y → XX) = 0, ξ(X′X′ × X′Y → XX′) = 0, ξ(X′X′ × X′Y → X′X′) = 1,

ξ(XX × XY → XY) = 1, ξ(XX × XY → X′Y) = 0,

ξ(XX × X′Y → XY) = 1, ξ(XX × X′Y → X′Y) = 0,

ξ(XX′ × XY → XY) = 0.5, ξ(XX′ × XY → X′Y) = 0.5,

ξ(XX′ × X′Y → XY) = 0.5, ξ(XX′ × X′Y → X′Y) = 0.5,

ξ(X′X′ × XY → XY) = 0, ξ(X′X′ × XY → X′Y) = 1,

ξ(X′X′ × X′Y → XY) = 0, ξ(X′X′ × X′Y → X′Y) = 1.

In the United States, about 17,000 people have hemophilia. About one in 7,500 live male births

has hemophilia and about one in 25,000,000 live female births has hemophilia. From the data,

we find that almost all female babies with hemophilia are dead during the pregnancy. Thus,

it is natural to assign the disadvantage factors as

δ(XX) = δ(XX′) = δ(XY) = 0, δ(X′X′) = 1, δ(X′Y) = δ.

Note that we take δ = 0 if male patients are completely cured. In the next subsections, we

study the effect of male patient treatment by changing δ. The value of δ reflects the social

development and standards of the general health care of particular geographical region where

the hemophilia population is living.

3.1 Random mating with δ = 1

The most natural case of hemophilia would be random mating with fatal mortality. In this

case, we let δ(X′Y) = δ = 1. We now focus on mutation rates µ(X → X′) = α and µ(X′ →
X) = β.
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In fact, we determine the mutation rate µ(X → X′) as about 3.3× 10−5 using the demographic

data of birth population, XY : X′Y = 0.9999 : 0.0001. The population equation at α = 3.3 ×
10−5 shows that the equilibrium adult population is calculated as

XX : XX′ : X′X′ = 0.999868 : 0.000132 : 0,

XY : X′Y = 1 : 0, (17)

where the value of 0.000132 was rather insensitive on the value of β. We found that this low

sensitivity originates from the severe disadvantage factor in hemophilia. Although there is

a report for existence of a gene self-repairing mechanism in the process of evolution (Avise,

1993), we assume that self-repairing is very rare. Throughout this section hereafter, we simply

let β = 0.0 and α = 3.3 × 10−5 for hemophilia.

It is shown that these equilibrium population ratio values can be easily achieved not only

analytically but also numerically (Lee et al., 2001). Numerical simulations show that these

values become stable after about 100 generations, having no dependence on the initial state.

3.2 Random mating with δ = 0.1

We consider the case where male patients of hemophilia can be treated so that some of them

could lead normal lives, although a genetic defect remains intact. However, since female baby

patients are dead during the pregnancy, it is assumed that there is still no cure for female

patients as it stands at present. In fact, when the disadvantage factors are given by δ(XX) =
δ(XX′) = δ(XY) = 0, δ(X′Y) = 0.1, and δ(X′X′) = 1 with the same mutation rates as the

above, we find the equilibrium population:

XX : XX′ : X′X′ = 0.998121 : 0.001879 : 0,

XY : X′Y = 0.999125 : 0.000875, (18)

in the random mating case where all Γab = 1. These numbers will be used as references to

study the effect of the non-random mating below.

Recently an interesting article (Stonebraker et al., 2010) on hemophilia prevalence in different

countries was published. The prevalence (per 100,000 males) for high income countries was

12.8 ± 6.0 (mean ± SD) whereas it was 6.6 ± 4.8 for the rest of the world. Within a country,

there was a strong trend of increasing prevalence over time: the prevalence for Canada ranged

from 10.2 in 1989 to 14.2 in 2008 and for the United Kingdom it ranged from 9.3 in 1974 to 21.6

in 2006. The data are consistent with the fact that the cure results in increasing hemophilia

prevalence.

3.3 Non-random mating with δ = 0.1 in minimizing Pn(XX′×X′Y)
Since rapid advances in molecular genetics have highlighted the potential use of genetic

testing to screen for adult-onset chronic diseases (Burke et al., 2001), medical screening

becomes more plausible.

We consider an artificial circumstance, where society-wide medical screening is available to

control the mating factors. For example, we consider the case of hemophilia with a medical

screening. The goal in this consideration is to find the equilibrium populations in that society.

We assume that the medical screening helps male patients avoid marrying disease carrier
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women. This restriction lead us to choose the objective function as

Z = −Pn(XX′ × X′Y),

with which we expect a minimal value of Pn(XX′ × X′Y) for maximizing Z. In consequence,

with the previous disadvantage factors and mutation rates, the population equations give the

equilibrium as

XX : XX′ : X′X′ = 0.998089 : 0.001911 : 0,

XY : X′Y = 0.999110 : 0.000890. (19)

The corresponding objective function Z is given by simply 0 as expected. We find the different

numbers of the male patients and the female carriers from those of the random mating in Eq.

(18).

3.4 Non-random mating with δ = 0.1 in maximizing Pn(XX′×X′Y)
It is instructive to compare the above result with that of the opposite situation where the

objective function is given by

Z = Pn(XX′ × X′Y)

to maximize Pn(XX′ × X′Y). For the same disadvantage factors and mutation rates as the

above, the population equation gives the equilibrium as

XX : XX′ : X′X′ = 0.999868 : 0.000132 : 0,

XY : X′Y = 0.999911 : 0.000089. (20)

The corresponding objective function Z at equilibrium is given by 8.90937 × 10−5, which

means that all male patients marry with female carriers because X′Y is given by 0.000089

as shown in the above.

We find that the population ratios of Eq. (18) in random mating are between two extremal

cases of Eqs. (19) and (20), which correspond to outbreeding and inbreeding of female carriers

and male patients, respectively.

3.5 Non-random mating in association of a social gene

We now consider the effect of the social inheritance on the evolution of the biological genes

in the case of hemophilia. We consider a two-gene system, where one of the relevant genes

is hemophilia on X chromosome, and the other is a social gene. For simplicity, we assume

that the social gene has two allele: Rich(R) and Poor(P). In this model, there are six female

genotypes and four male genotypes:

T
(F)
1 = XX : R, T

(F)
2 = XX : P,

T
(F)
3 = X′X : R, T

(F)
4 = X′X : P,

T
(F)
5 = X′X′ : R, T

(F)
6 = X′X′ : P,

T
(M)
1 = XY : R, T

(M)
2 = XY : P,

T
(M)
3 = X′Y : R, T

(M)
4 = X′Y : P. (21)
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For the biological gene, we use the same mutation rates µ(X → X′), µ(X′ → X) and the same

reproduction rates ξ(b) as before.

For the social gene, we let the mutation rates be

µ(R → P) = 0.2 and µ(P → R) = 0.1 (22)

as a sample example. Also, we assign the reproduction rates ξ(s) with which the whole

reproduction rates ξ in the population equations are written as ξ = ξ(b)ξ(s):

ξ(s)(R × R → R) = 1, ξ(s)(R × R → P) = 0,

ξ(s)(R × P → R) = 1, ξ(s)(R × P → P) = 0,

ξ(s)(P × R → R) = 1, ξ(s)(P × R → P) = 0,

ξ(s)(P × P → R) = 0, ξ(s)(P × P → P) = 1. (23)

We further assign the disadvantage factors as

δ(T
(F)
1 ) = 0, δ(T

(F)
2 ) = 0,

δ(T
(F)
3 ) = 0, δ(T

(F)
4 ) = 0,

δ(T
(F)
5 ) = 1, δ(T

(F)
6 ) = 1,

δ(T
(M)
1 ) = 0, δ(T

(M)
2 ) = 0,

δ(T
(M)
3 ) = 0, δ(T

(M)
4 ) = 0.1. (24)

These factors imply that hemophilia is still fatal for female patients, while the rich social gene

can make male patients lead normal lives.

In order to analyze equilibrium population resulted from inbreeding between the normal and

rich genotypes, we set the objective function as

Z = Pn(T
(F)
1 × T

(M)
1 ).

With all the given parameters as the above with the inbreeding, we find the equilibrium

population ratios as

T
(F)
1 : T

(F)
2 : T

(F)
3 : T

(F)
4 : T

(F)
5 : T

(F)
6

= 0.833195 : 0.154462 : 0.009700 : 0.002643 : 0 : 0,

T
(M)
1 : T

(M)
2 : T

(M)
3 : T

(M)
4

= 0.837755 : 0.156138 : 0.005223 : 0.000884. (25)

We clearly observe that the existence of social gene drastically influences the inheritance of

the biological genes. We believe that this influence is induced by the disadvantage factor of

the genotype, T
(M)
4 .

In order to examine the role of the disadvantage factor in the evolution mechanism, we have

carried out a calculation by changing only δ(T
(M)
4 ) from 0.1 to 1. The resulting population

63Population Evolution in Hemophilia

www.intechopen.com



14 Hemophilia

ratios are given by

T
(F)
1 : T

(F)
2 : T

(F)
3 : T

(F)
4 : T

(F)
5 : T

(F)
6

= 0.826752 : 0.171908 : 0.001127 : 0.000213 : 0 : 0,

T
(M)
1 : T

(M)
2 : T

(M)
3 : T

(M)
4

= 0.827356 : 0.172040 : 0.000604 : 0. (26)

Comparing with Eq. (25), we clearly observe that the change of the disadvantage factor has

a significant influence on the hemophiliac biological evolution. We also note that the ratio of

rich to poor is higher in the diseased than in the healthy, clearly indicating the social gene

effect of richness. Thus, we note again that existence of a particular social gene can have

significant effect on the evolution process.

We note that a drawback of our approach is in the large number of tunable parameters. While

mutation rates and recombination rates for biological genes may be adjusted by the coalescent

method, it is hard to find an empirical basis for social genes. The social gene of last name

probably gains some empirical support. However, if no support is provided, it is reasonable

to perform sensitivity analysis by scanning around chosen parameters.

There are many genetic diseases other than hemophilia in the real world. As an example,

the same approach may be applied to the case of congenital hypothyroidism (Calaciura et al.,

2002). Expansion of the present scheme to other cases including more diverse social genes

remains as a future study.

4. Conclusion

We have presented a theoretical scheme and a simulation program to study population

genetics in a realistic complex situation. The result shows that the multiplicity of the gene

loci greatly affect the demographic distribution of fractional population ratios. We suggest

that more detailed demographic data including gene mutation (Porter, 1968; Strachan, 1996)

and fitness is desirable to elaborate the theory further.

Treating social status as an inheritance trait, we introduce the concept of the social gene.

Treating the social genes on equal footing with the biological genes, we build a unified

framework to find the population evolution (Cavalli-Sforza & Bodmer, 1996) in the biological

and the social inheritance. The nature of the social inheritance inevitably introduces the

concept of non-random mating. This framework is used to investigate the detailed cases of

hemophilia.

For hemophilia, we have presented a theoretical scheme to determine the mating factors

uniquely in the non-random mating process by introducing the objective function concept.

Finally, we have considered the effect of the social gene with two alleles, Rich and Poor on the

biological gene of hemophilia. The result shows that the introduction of a social gene or social

inheritances change the population evolution of the biological gene. We note that the social

gene concept introduced here is different from polyphenism, for which multiple phenotypes

can arise from a single genotype as a result of differing environment conditions. The reason

for the difference is that the social gene is inherited with the biological gene, whereas the

environment is not.
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The current study does not include any dynamic change of mutation factors, which are

expected especially in the social gene inheritance. The collective and the dynamic behavior

are subjects of future studies.

5. References

Alpern, S. & Reyniers, D. (2005). Strategic mating with common preferences. Journal of

Theoretical Biology, 237 : 337-354.

Aoki, K. (2001). Theoretical and empirical aspects of gene-culture coevolution. Theoretical

Population Biology, 59 : 253-261.

Avise, J.C. (1993). The evolutionary biology of aging, sexual reproduction, and DNA repair.

Evolution, 47 : 1293-1301.

Bamshad, M.J. et al. (1998). Female gene flow stratifies hindu castes. Nature, 395 : 651-652.

Burke, W.; Coughlin, S.S.; Lee, N.C.; Weed, D.L. & Khoury, M.J. (2001). Application of

population screening principles to genetic screening for adult-onset conditions.

Genetic Testing, 5 : 201-211.

Calaciura, F. et al. (2002). Genetics of specific phenotypes of congenital hypothyroidism: a

population-based approach. Thyroid, 12 : 945-951.

Cavalli-Sforza, L.L. & Bodmer, W.F. (1971). The Genetics of Human Populations, W. H. Freeman

and Company, San Francisco.

Cavalli-Sforza, L.L. & Feldman, M.W. (1981). Cultural Transmission and Evolution: A quantitative

approach, Princeton University Press, New Jersey.

Charlesworth, B. (1994). Evolution in age-structured populations second edition, Cambridge

University Press, Cambridge.

Chung, M.-H.; Lee, S.P.; Kim, C.K. & Nahm, K. (1997). Fractional populations of blood groups.

Physical Review E, 56 : 865-869.

Chung, M.H.; Kim, C.K. & Nahm, K. (2003). Fractional populations in multiple gene

inheritance. Bioinformatics, 19 : 256-260.

Chung, M.H. (2007). http://www.sciencecode.com/populationgenetics.htm.

Chung, M.H.; Kim, C.K. (2010). Non-random mating involving inheritance of social status.

Journal of Computational Biology, 17 : 745-754.

Fu, Y.X. & Li, W.H. (1999). Minireview: coalescing into the 21st century: an overview and

prospects of coalescent theory. Theoretical Population Biology, 56 : 1-10.

Haldane, J.B.S. (1935). The rate of spontaneous mutation of a human gene. Journal of Genetics,

31 : 317-326.

Hampe, J.; Wienker, T.; Schreiber, S. & Nürnberg, P. (1998). POPSIM: a general population

simulation program. Bioinformatics, 14 : 458-464.

Hausken, K. & Hirshleifer, J. (2001). The truthful signalling hypothesis: an explicit general

equilibrium model. Journal of Theoretical Biology, 228 : 497-511.

Hedrick, P.W. (1985). Genetics of Populations, Jones And Bartlett Publishers, Boston.

Hudson, R.R. (1991). Oxford Surveys in Evolutionary Biology Vol. 7, Cambridge University Press,

Cambridge, pp. 1-44.

Lander, E.S. et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409 :

860-921.

Lee, S.P.; Chung, M.-H.; Kim, C.K. & Nahm, K. (2001). Fractional populations in sex-linked

inheritance. Physica A, 291 : 533-541.

65Population Evolution in Hemophilia

www.intechopen.com



16 Hemophilia

Li, C.C. (1976). First Course in Population Genetics, Boxwood, Pacific Grove.

Mekjian, D.A.Z. (1991). Cluster distributions in physics and genetic diversity. Physical Review

A, 44 : 8361-8374.

Möhle, M. & Sagitov, S. (2003). Coalescent patterns in exchangeable diploid population

models. Journal of Mathematical Biology, 47 : 337-352.

Nagylaki, T.; Hofbauer, J. & Brunovský, P. (1999). Convergence of multilocus systems under

weak epistasis or weak selection. Journal of Mathematical Biology, 38 : 103-133.

National Hemophilia Foundation. (1998). http://www.hemophilia.org.

Perelson, A.S. & Weisbuch, G. (1997). Immunology for physicists. Reviews of Modern Physics,

69 : 1219-1267.

Piccolboni, A. & Gusfield, D. (2003). On the Complexity of Fundamental Computational

Problems in Pedigree Analysis. Journal of Computatinal Biology, 10 : 763-774.

Porter, I.H. (1968). Heredity and Disease, McGraw-Hill, New York.

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T. & Flannery, B.P. (1992). Numerical recipes in C

second edition, Cambridge University Press, Cambridge, pp. 430-444.

Quardokus, E. (2000). Modeling population genetics. Science, 288 : 458-459.

Radcliffe, J. & Rass, L. (1999). Strategic and genetic models of evolution. Mathematical

Biosciences, 156 : 291-307.

Rosenberg, N.A. & Nordborg, M.N. (2002). Genealogical trees, coalescent theory and the

analysis of genetic polymorphisms. Nature Reviews Genetics, 3 : 380-390.

Santafe, G.; Lozano, J.A. & Larranaga, P. (2008). Inference of Population Structure Using

Genetic Markers and a Bayesian Model Averaging Approach for Clustering. Journal

of Computational Biology, 15 : 207-220.

Stonebraker, J.S.; Bolton-Maggs, P.H.B.; Michael Soucie, J.; Walker, I. & Brooker, M. (2010).

A study of variations in the reported haemophilia A prevalence around the world.

Haemophilia, 16 : 20-32.

Strachan, T. & Read, A.P. (1996). Human Molecular Genetics, Bios Scientific Publishers, Oxford.

Thomson, R.; Pritchard, J.K.; Shen, P.; Oefner, P.J. & Feldman, M.W. (2000). Proceedings of the

National Academy of Sciences, 97 : 7360-7365.

Venter, J.C. et al. (2001). The sequence of the human genome. Science, 291 : 1304-1351.

66 Hemophilia

www.intechopen.com



Hemophilia

Edited by Dr. Angelika Batorova

ISBN 978-953-51-0429-2

Hard cover, 130 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book demonstrates the great efforts aimed at further improving the care of the hemophilia, which may

bring further improvement in the quality of life of hemophilia persons and their families.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Myung-Hoon Chung (2012). Population Evolution in Hemophilia, Hemophilia, Dr. Angelika Batorova (Ed.),

ISBN: 978-953-51-0429-2, InTech, Available from: http://www.intechopen.com/books/hemophilia/population-

evolution-in-hemophilia



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


