
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer

Systems by Recurrent Neural Network

Mikhail S. Tarkov
A.V. Rzhanov’s Institute of Semiconductor Physics

Siberian Branch, Russian Academy of Sciences
Russia

1. Introduction

A distributed computer system (CS) is a set of elementary computers (ECs) connected by a

network that is program-controlled from these computers. Each EC includes a computing

module (CM) (processor with a memory) and a system unit (message router). The message

router operates under CM control and has input and output ports connected to the output

and input ports of the neighboring ECs, correspondingly. The CS structure is described by

the graph s s sG (V ,E) , where sV is the set of ECs and s s sE = V V is the set of connections

between the ECs.

The topology of a distributed system may undergo changes while the system is operating,

due to failures or repairs of communication links, as well as due to addition or removal of

ECs (Bertsekas, Tsitsiklis, 1989). The CS robustness means that failures and recoveries of the

ECs bring only to increasing and decreasing time of a task execution. Control on resources

and tasks in the robust distributed CS suggested solution of the following problems

(Tarkov, 2003, 2005): the CS optimal decomposition to connected subsystems; mapping

parallel program structures onto the subsystem structures; static and dynamic balancing

computation load among CMs of the computer system (subsystem); static and dynamic

message routing (implementation of paths for data transfer), i.e. balancing communication

load in the CS network; distribution of program and data copies for organization of fault

tolerant computations; subsystem reconfiguration and redistribution of computation and

communication load for computation recovery from failures, and so on.

As a rule, all these problems are considered as combinatorial optimization problems (Korte
& Vygen, 2006), solved by centralized implementation of some permutations on data
structures distributed on elementary computers of the CS. The centralized approach to the
problem solution suggests gathering data in some (central) EC, solving optimization
problem in this EC with the following scattering results to all ECs of the system (subsystem).
As a result we have sequential (and correspondingly slow) method for the problem solution
with great overhead for gathering and scattering data. Now a decentralized approach is
significantly developed for solution of problems of control resources and tasks in computer

www.intechopen.com

Recurrent Neural Networks and Soft Computing

204

systems with distributed memory (Tel G., 1994), and in many cases this approach allows to
parallelize the problem solution.

Massive parallelism of data processing in neural networks allows us to consider neural
networks as a perspective, high-performance, and reliable tool for solution of complicated
optimization problems (Melamed, 1994; Trafalis & Kasap, 1999; Smith, 1999; Haykin, 1999;
Tarkov, 2006). The recurrent neural network (Hopfield & Tank, 1985; Wang, 1993; Siqueira,
Steiner & Scheer, 2007, 2010; Serpen & Patwardhan, 2007; Serpen, 2008; da Silva, Amaral,
Arruda & Flauzino, 2008; Malek, 2008) is a most interesting tool for solution of discrete
optimization problems. A model of a globally converged recurrent Hopfield neural network
is in good accordance with Dijkstra’s self-stabilization paradigm (Dijkstra, 1974). This
signifies that the mappings of parallel program graphs onto graphs of distributed computer
systems, carried out by Hopfield networks, are self-stabilizing (Jagota, 1999). An importance
of usage of the self-stabilizing mappings is caused by a possibility of breaking the CS graph
regularity by failures of ECs and intercomputer connections.

For distributed CSs, the graph of a parallel program p p pG (V ,E) is usually determined as a

set pV of the program branches (virtual elementary computers) interacting with each other

by the point−to−point principle through transferring messages via logical (virtual) channels

(which may be unidirectional or bidirectional) of the set p p pE V V  . Interactions between

the processing modules are ordered in time and regular in space for most parallel

applications (line, ring, mesh, etc.) (Fig. 1).

For this reason, the maximum efficiency of information interactions in advanced high-

performance CSs is obtained by using regular graphs (,)s s sG V E of connections between

individual computers (hypercube, torus) (Parhami, 2002; Yu, Chung & Moreira, 2006; Balaji,
Gupta, Vishnu & Beckman, 2011). The hypercube structure is described by a graph known

as a m-dimensional Boolean cube with a number of nodes 2mn  . Toroidal structures are m-

dimensional Euclidean meshes with closed boundaries. For m = 2, we obtain a two-
dimensional torus (2D-torus) (Fig. 2); for m = 3, we obtain a 3D-torus.

Fig. 1. Typical graphs of parallel programs (line, ring and mesh)

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

205

Fig. 2. Example of a 2D-torus

In this paper, we consider a problem for mapping graph p p pG (V ,E) of a parallel program

onto graph s s sG (V ,E) of a distributed CS, where p sn V V  is a number of program

branches (of ECs). The mapping objective is to map nodes of the program graph pG onto

nodes of the system graph sG one-to-one to carry out mapping pG edges onto edges of

sG (to establish an isomorphism between the program graph pG and a spanning subgraph

of the system graph sG).

In section 2, we consider a recurrent neural network as a universal technique for solution of
mapping problems. It is a local optimization technique, and we propose additional
modifications (for example, penalty coefficients and splitting) to improve the technique
scalability.

In section 3, we propose an algorithm based on the recurrent neural network and WTA
(“Winner takes all”) approach for the construction of Hamiltonian cycles in graphs. This
algorithm maps only line- and ring-structured parallel programs. So, it is less universal than
the technique proposed in section 2 but more powerful because it implements a global
optimization approach, and hence it is very more scalable than the traditional recurrent
neural networks.

2. Mapping graphs of parallel programs onto graphs of distributed computer
systems by recurrent neural networks

Let us consider a matrix v of neurons with size n n , each row of the matrix corresponds

to some branch of a parallel program and every column of the matrix corresponds to some

EC. Each row and every column of the matrix v must contain only one nonzero entry equal

to one, other entries must be equal to zero. Let the distance between the neighboring nodes

of the CS graph is taken as a unit distance and ijd is the length of the shortest path between

nodes i and j in the CS graph. Then we define the energy of the corresponding Hopfield

neural network by the Lyapunov function

www.intechopen.com

Recurrent Neural Networks and Soft Computing

206

2 2

()

,

1
1 1 ,

2

1
.

2  

   

           
    

     



   

  
p

c d

c xj yi
x j i y

d xi yj ij
x i y Nb x j i

L C L D L

L v v

L v v d

 (1)

Here ijd is the distance between nodes i and j of the system graph corresponding to

adjacent nodes of the program graph (a “dilation” of the edge of the program graph on the

system graph), ()pNb x is a neighborhood of the node x on the program graph.

The value xiv is a state of the neuron in the row x and column i of the matrix v, C and D

are parameters of the Lyapunov function. cL is minimal when each row and every column

of v contains only one unity entry (all other entries are zero). Such matrix v is a correct

solution of the mapping problem (Fig. 3).

Fig. 3. Example of correct matrix of neuron states

The minimum of dL provides minimum of the sum of distances between adjacent pG nodes

mapped onto nodes of the system graph sG (Fig. 4).

The Hopfield network minimizing the function (1) is described by the equation

 xi

xi

u L

t v

 
 

 
 (2)

where xiu is an activation of the neuron with indices x, i (, 1,...,)x i n ,

 
1

1 exp
xi

xi

v
u


 

is the neuron state (output signal),  is the activation parameter.

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

207

Fig. 4. Example of optimal mapping of “line”-graph onto torus (the mapping is
distinguished by bold lines; the line-graph’s node numbers are shown in brackets)

From (1) and (2) we have

()

2 .
p

xi
xj yi yj ij

j y y Nb x j i

u
C v v D v d

t  

 
     
   
    (3)

A difference approximation of Equation (3) yields

 1

()

2
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u t C v v D v d

 

  
        

    
    , (4)

where t is a temporal step. Initial values 0
xiu (, 1,...,)x i n are stated randomly.

A choice of parameters , , ,t C D  determines a quality of the solution v of Equation (4). In

accordance with (Feng & Douligeris, 2001) for the problem (1)-(4) a necessary condition of
convergence is

 

min ,
2 1

f
C D





 (5)

where min
()

min
p

yj ij
y Nb x j i

f v d
 

    
  
  , [0,1)  and  being a value close to 1. For a parallel

program graph of a line type min 1f  . For example, taking 0.995  for the line we have

100C D  .

From (4) and (5) it follows that the parameters t and D are equally influenced on the

solution of the equation (4). Therefore we state 1t  and have the equation

www.intechopen.com

Recurrent Neural Networks and Soft Computing

208

 1

()

2 .
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u C v v D v d

 

 
       
 
 
    (6)

Let 0.1  (this value was stated experimentally). We will try to choose the value D to

provide the absence of incorrect solutions.

 2.1 Mapping by the Hopfield network

Let us evaluate the mapping quality by a number of coincidences of the program edges with

edges of the system graph. We call this number a mapping rank. The mapping rank is an

approximate evaluation of the mapping quality because the mappings with different

dilations of the edges of the program graph may have the same mapping rank.

Nevertheless, the maximum rank value, which equals to the number pE of edges of the

program graph, corresponds to optimal mapping, i.e. to a global minimum of dL in (1). Our

objective is to determine the mapping algorithm parameters providing maximum

probability of the optimal mapping.

0

10

20

30

40

50

60

70

F
re

q
u

e
n

c
y

1 2 3 4 5 6 7 8

Rank

а) 9n 

0

10

20

30

40

50

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15

Rank

b) 16n 

Fig. 5. Histograms of mappings for the neural network (6)

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

209

0
10
20
30
40
50
60
70
80
90

F
re

q
u

e
n

c
y

1 2 3 4 5 6 7 8

Rank

а) 9n 

0

10

20

30

40

50

60

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15

Rank

b) 16n 

Fig. 6. Histograms of mappings for the neural network (8)

As an example for investigation of the mapping algorithm we consider the mapping of a
line-type program graph onto a 2D-torus. Maximal value of the mapping rank for a line
with n nodes is obviously equal to n-1.

For experimental investigation of the mapping quality, the histograms of the mapping rank
frequencies are used for a number of experiments equals to 100. The experiments for

mapping the line onto the 2D-torus with the number of nodes 2 , 3,4,n l l  where l is the

cyclic subgroup order, are carried out.

For 8D  the correct solutions are obtained for 9n  and 16n  , but as follows from Fig.

5а and Fig. 5b for 8D  , the number of solutions with optimal mapping, corresponding to

the maximal mapping rank, is small.

To increase the frequency of optimal solutions of Equation (6) we replace the distance values

ijd by the values

www.intechopen.com

Recurrent Neural Networks and Soft Computing

210

1

1

ij ij

ij
ij ij

d d
c

p d d

   
 (7)

where p is a penalty coefficient for the distance ijd exceeding the value 1, i.e. for non-

coincidence of the edge of the program graph with the edge of the system graph. So, we

obtain the equation

 1

()

2 .
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u C v v D v c

 

 
       
 
 
    (8)

For the above mappings with p n we obtain the histograms shown on Fig. 6a and Fig. 6b.

These histograms indicate the improvement of the mapping quality but for 16n  the

suboptimal solutions with the rank 13 have maximal frequency.

2.2 Splitting method

To decrease a number of local extremums of Function (1), we partition the set  1,2,...,n of

subscripts x and i of the variables xiv to K sets

 (1) , (1) 1,..., ,kI k q k q k q     /q n K , 1,2,...,k K ,

and map the subscripts kx I only to the subscripts ki I , i.e. we reduce the solution

matrix v to a block-diagonal form (Fig. 7) and the Hopfield network is described by the
equation

 

1

()

2 ,

1
, , , 1,2,..., .

1 exp

k k p

t t
xi xi xj yi yj ij

j I y I y Nb x j i

xi k
xi

u u C v v D v c

v x i I k K
u



   

 
       
 
 

  
 

   
 (9)

In this case 0xiv  for , , 1,2,..., .k kx I i I k n  

00 01 02

10 11 12

20 21 22

33 34 35

43 44 45

53 54 55

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

v v v

v v v

v v v

v v v

v v v

v v v

 
 
 
 
 
 
 
 
  

Fig. 7. Example of block-diagonal solution matrix for 2K 

In this approach which we call a splitting, for mapping line with the number of nodes

16n  onto 2D-torus, we have for 2K  the histogram presented on Fig. 8a.

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

211

From Fig. 6b and Fig. 8a we see that the splitting method essentially increases the frequency

of optimal mappings. The increase of the parameter D up to the value 32D  results in

additional increase of the frequency of optimal mappings (Fig. 8b).

0

10

20

30

40

50

60

70

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15

Rank

a) 16n  , 2K  , 8D  .

0
10
20
30
40
50
60
70
80
90

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15

Rank

b) 16n  , 2K  , 32D  .

Fig. 8. Histograms of mappings for the neural network (9)

2.3 Mapping by the Wang network

In a recurrent Wang neural network (Wang, 1993; Hung & Wang, 2003) dL in Expression (1)

is multiplied by the value  exp t
 where  is a parameter. For the Wang network

Equation (9) is reduced to

 

 

1

()

2 exp ,

1
, , , 1,2,..., .

1 exp

k k p

t t t
xi xi xj yi yj ij

j I y I y Nb x j i

xi k
xi

u u C v v D v c

v x i I k K
u







   

 
        
 
 

  
 

   
 (10)

www.intechopen.com

Recurrent Neural Networks and Soft Computing

212

We note that in experiments we frequently have incorrect solutions if for a given maximal

number of iterations maxt (for example, max 10000t ) the condition of convergence

1

,

t t
xi xi

x i

u u   , 0.01  is not satisfied. The introduction of factor  exp t
 accelerates

the convergence of the recurrent neural network and the number of incorrect solutions is
reduced.

So, for the three-dimensional torus with 33 27n   nodes and , 3, 4096, 0.1p n K D    

in 100 experiments we have the following results:

1. On the Hopfield network (9) we have 23 incorrect solutions, 43 solutions with Rank 25
and 34 optimal solutions (with Rank 26) (Fig. 9).

2. On the Wang network (10) with the same parameters and 500  we have all (100)

correct solutions, where 27 solutions have Rank 25 and 73 solutions are optimal (with
Rank 26) (Fig. 10).

0

10

20

30

40

50

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15 17 19 21 23 25

Rank

Fig. 9. Histogram of mappings for the Hopfield network (33 27n  )

0

10

20

30

40

50

60

70

80

F
re

q
u

e
n

c
y

0 2 5 7 9 11 13 15 17 19 21 23 25

Rank

Fig. 10. Histogram of mappings for the Wang network (33 27n  )

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

213

As a result we have high frequency of optimal solutions (for 100 experiments):

1. more than 80% for the two-dimensional tori (23 9n   and 24 16n  );

2. more than 70% for three-dimensional torus 3(3 27)n   .

Further investigations must be directed to increasing the probability of getting optimal
solutions of the mapping problem when the number of the parallel program nodes is
increased.

3. Construction of Hamilton cycles in graphs of computer systems

In this section, we consider algorithms for nesting ring structures of parallel programs of
distributed CSs, which are based on using recurrent neural networks, under the condition

p sn V V  . Such nesting reduces to constructing a Hamiltonian cycle in the CS graph and

is based on solving the traveling salesman problem using the matrix of distances

(, 1,...,)ijd i j n between the CS graph nodes, with the distance between the neighboring

nodes of the CS graph taken as a unit distance.

The traveling salesman problem can be formulated as an assignment problem (Wang, 1993;
Siqueira, Steiner & Scheer, 2007, 2010)

1

min
n

ij ij
i j i

c x
 
 , (11)

under the constraints

 

1

1

0,1 ,

1, 1,..., ,

1, 1,..., .

ij

n

ij
i

n

ij
j

x

x j n

x i n







 

 





 (12)

Here, ,ijc i j is the cost of assignment of the element i to the position j, which corresponds

to motion of the traveling salesman from the city i to the city j; ijx is the decision variable: if

the element i is assigned to the position j, then 1ijx  , otherwise, 0ijx  .

For solving problem (11) − (12), J. Wang proposed a recurrent neural network that is
described by the differential equation

1 1

()
() () 2 exp(/)

n n
ij

ik lj ij
k l

u t
C x t x t D c t

t


 

  
       

  
  , (13)

where (())ij ijx g u t ,  () 1 / 1 exp()g u u   . A difference approximation of Equation (13)

yields

www.intechopen.com

Recurrent Neural Networks and Soft Computing

214

 1

1 1

() () 2 exp ,
n n

t t
ij ij ik lj ij

k l

t
u u t C x t x t D c




 

                
    

  (14)

Here , , , ,C D t   are parameters of the neural network.

Siqueira et al. proposed a method of accelerating the solution of the system (14), which is
based on the WTA (“Winner takes all”) principle. The algorithm proposed below was
developed on the basis of this method.

1. A matrix (0)ijx of random values  (0) 0,1ijx  is generated. Iterations (14) are

performed until the following inequality is satisfied for all , 1,...,i j n :

1 1

() () 2
n n

ik lj
k l

x t x t 
 

    ,

where  is the specified accuracy of satisfying constraints (12).

2. Transformation of the resultant decision matrix ijx is performed:

2.1. 1i  .

2.2. The maximum element
max,i jx is sought in the ith row of the matrix (maxj is the number

of the column with the maximum element).

2.3. The transformation
max, 1i jx  is performed. All the remaining elements of the ith row

and of the column numbered maxj are set to zero. Then, there follows a transition to the row

numbered maxj . Steps 2.2 and 2.3 are repeated until the cycle returns to the first row, which

means that the cycle construction is finalized.

3. If the cycle returns to the row 1 earlier than the value 1 is assigned to n elements of the

matrix ijx , this means that the length of the constructed cycle is smaller than n. In this

case, steps 1 and 2 are repeated.

To ensure effective operation of the algorithm of Hamiltonian cycle construction, the
following values of the parameters of system (14) were chosen experimentally (by the order

of magnitude): 1, 10, 1000, 0.1D C      . Significant deviations of these parameters

from the above-indicated values deteriorate algorithm operation, namely:

1. Deviations of the parameter C from the indicated value (at a fixed value of D)

deteriorate the solution quality (the cycle length increases).
2. A decrease in  increases the number of non-Hamiltonian ring-shaped routes.

3. An increase in  deteriorates the solution quality. A decrease in  increases the

number of iterations (14).

It follows from (Feng & Douligeris, 2001) that maxt t   , where max

1 1
1

0.1 10
t

C
   


.

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

215

The experiments show that it is not always possible to construct a Hamiltonian cycle at

1t  , but cycle construction is successfully finalized if the step t is reduced. We reduced

the step t as /2t if a correct cycle could not be constructed after ten attempts.

The parameters ,ijc i j , are calculated by the formula (7) where ijd is the distance between

the nodes i and j of the graph, and p > 1 is the penalty coefficient applied if the distance ijd

exceeds 1. The penalty coefficient was introduced to ensure coincidence of transition in the
travelling agent cycle with the edges of the CS graph.

We studied the use of iterative methods (Jacobi, Gauss–Seidel, and successive overrelaxation
(SOR) methods (Ortega, 1988)) in solving Wang’s system of equations. With the notation

 
1 1

2 exp /
n n

t t t
ij ik lj ij

k l

r C x x Dc t 
 

 
      

 
 

the Jacobi method (method of simple iterations) of solving system (14) has the form

1. 1 , , 1,..., ;t t t
ij ij iju u t r i j n     

2.      
1 1 1

1

1
, , , 1,..., .

1 exp

t t t
ij ij ij t

ij

x g u g u i j n
u

  


  
 

According to this method, new values of 1t
ijx  , , 1,...,i j n , are calculated only after all

values 1t
iju  , , 1,...,i j n , are found. In contrast to the method of simple iterations, the new

value of 1t
ijx  in the Gauss–Seidel method is calculated immediately after finding the

corresponding value of 1t
iju  :

 1 1 1, , , 1,..., .t t t t t
ij ij ij ij iju u t r x g u i j n       

In the SOR method, the calculations are performed by the formulas

   

 
1

1 1

,

1 , 0,2 ,

, , 1,..., .

t t
new ij ij

t t
ij new ij

t t
ij ij

u u t r

u u u

x g u i j n

  

 

   

     

 

With 1  , the SOR method turns to the Gauss–Seidel method.

Experiments on 2D-tori with the group of automorphisms 2 m mE C C  , 2n m show that

the Jacobi method can only be used for tori with a small number of nodes ({3, 4}m).

The SOR method can be used for tori with {3, 4,6}m with appropriate selection of the

parameter 1  . For m ≥ 8, it is reasonable to use the Gauss–Seidel method (1 ). Figure

11 shows an example of a Hamiltonian cycle constructed by a neural network in a 2D-mesh
with n = 16 (the cycle is indicated by the bold line).

www.intechopen.com

Recurrent Neural Networks and Soft Computing

216

Fig. 11. Example of a Hamiltonian cycle in a 2D-mesh

In our experiments, we obtained Hamiltonian cycles (with the cycle length L = n) in 2D-
meshes and 2D-tori for a number of experiments equals to 100 with up to n = 1024 nodes for
m = 2k and suboptimal cycle lengths L = n + 1 at m = 2k + 1, k = 2, 3, . . . , 16. The penalty

coefficients p and the values of t with which the Hamiltonian cycles were constructed for

n = 16, 64, 256, and 1024, and also the times of algorithm execution on Pentium (R) Dual-
Core CPU E 52 000, 2.5 GHz (the time equal to zero means that standard procedures did not
allow registering small times shorter than 0.015 s) are listed in Tables 1 and 2.

n 216 4 264 8 2256 16 21024 32

t 1 1 1 0,5

/ 2p n 8 16 128 512

Time, s 0 0.015 0.75 73.36

Table 1. 2D-mesh

n 216 4 264 8 2256 16 21024 32

t 1 1 1 0.5
p n 16 64 256 1024

Time, s 0 0 4.36 73.14

Table 2. 2D-torus

In addition to the quantities listed in Tables 1 and 2, Tables 3 and 4 give the relative increase

L n

n
 
 in the travelling salesman cycle length, as compared with the Hamiltonian cycle

length, for a 3D-torus and hypercube.

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

217

n 364 4 3216 6 3512 8 31000 10

t 0.012 0.1 0.1 0.1

p 64 32 32 32

L 64 218 520 1010
 0 0.01 0.016 0.01

Time, s 0.625 0.313 12.36 97.81

Table 3. 3D-torus

n 16 64 256 1024

t 0.1 0.1 0.1 0,1

p 32 32 32 32

L 16 64 262 1034
 0 0 0.016 0.023

Time, s 0 0.062 99.34 1147

Table 4. Hypercube

It follows from Tables 3 and 4 that:

1. In 3D-tori, the Hamiltonian cycle was constructed for n = 64. With n = 216, 512, and
1000, suboptimal cycles were constructed, which were longer than the Hamiltonian
cycles by no more than 1.6%.

2. In hypercubes, the Hamiltonian cycles were constructed for n = 16 and 64 (it should be
noted that the hypercube is isomorphous to the 2D-torus with n = 16). For n = 256 and n
= 1024, suboptimal cycles were constructed, which were longer than n by no more than
2.3%.

3.1 Construction of Hamiltonian cycles in toroidal graphs with edge defects

The capability of recurrent neural networks to converge to stable states can be used for

mapping program graphs to CS graphs with violations of regularity caused by deletion of

edges and/or nodes. Such violations of regularity are called defects. In this work, we

study the construction of Hamiltonian cycles in toroidal graphs with edge defects.

Experiments in 2D-tori with a deleted edge and with n = 9 to n = 256 nodes for p = n were

conducted. The experiments show that the construction of Hamiltonian cycles in these

graphs by the above-described algorithm is possible, but the value of the step t at which

the cycle can be constructed depends on the choice of the deleted edge. The method of

automatic selection of the step t is described at the beginning of Section 3. Table 5

illustrates the dependence of the step t on the choice of the deleted edge in constructing

an optimal Hamiltonian cycle by the SOR method in a 2D-torus with n = 16 nodes for

0.125  .

Examples of Hamiltonian cycles constructed by the SOR method in a 2D-torus with n = 16

nodes are given in Figs. 12a and 12b. Figure 12a shows the cycle constructed in the torus

without edge defects for 0.5  and 0.25t  . Figure 12b shows the cycle constructed in

the torus with a deleted edge (0, 12) for 0.125  and 0.008t  .

www.intechopen.com

Recurrent Neural Networks and Soft Computing

218

Edge t Edge t

(0,12) 0,008 (5,9) 0,5

(0,3) 1,0 (6,7) 0,063

(0,1) 1,0 (6,10) 1,0

(0,4) 1,0 (7,11) 1,0

(1,13) 1,0 (8,11) 1,0

(1,2) 0,25 (8,9) 1,0

(1,5) 1,0 (8,12) 1,0

(2,14) 0,125 (9,10) 0,125

(2,3) 0,125 (9,13) 1,0

(2,6) 1,0 (10,11) 1,0

(3,15) 1,0 (10,14) 1,0

(3,7) 0,25 (11,15) 1,0

(4,7) 0,25 (12,15) 1,0

(4,5) 1,0 (12,13) 0,5

(4,8) 1,0 (13,14) 0,5

(5,6) 1,0 (14,15) 1,0

Table 5. Dependence t of the step on the choice of the deleted edge

Results discussed in this section should be considered as preliminary and opening the
research field studying the relation between the quality of nesting of graphs of parallel
algorithms to graphs of computer systems whose regularity is violated by node and edge
defects and the parameters of neural network algorithms implementing this nesting.

Fig. 12. Examples of Hamiltonian cycles in 2D-torus

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

219

3.2 Construction of Hamiltonian cycles by the splitting method

The time of execution of the above-described algorithm can be substantially reduced by
using the following method:

1. Split the initial graph of the system into k connected subgraphs.
2. Construct a Hamiltonian cycle in each subgraph by the algorithm described above.
3. Unite the Hamiltonian cycles of the subgraphs into one Hamiltonian cycle.

For example, the initial graph of the system can be split into connected subgraphs by the
algorithms proposed in (Tarkov, 2005).

Fig. 13. Unification of cycles

www.intechopen.com

Recurrent Neural Networks and Soft Computing

220

For unification of two cycles 1R and 2R , it is sufficient if the graph of the system has a cycle

ABCD of length 4 such that the edge AB belongs to the cycle 1R and the edge CD belongs to

the cycle 2R (Fig. 13).

The cycles 1R and 2R can be united into one cycle by using the following algorithm:

1. Find the cycle ABCD possessing the above-noted property.

2. Eliminate the edge AB from the cycle and successively numerate the nodes of the

cycle 1R in such a way that to assign number 0 to the node A and assign number

1 1L  , where 1L is the length of the cycle 1R , to the edge B. Include the edge BC into

the cycle.

3. Eliminate the edge CD and successively numerate the nodes of the cycle 2R so that the

node C is assigned the number L1, and the node D is assigned the number 1 2 1L L  ,

where 2L is the length of the cycle 2R . Include the edge DA into the cycle. The unified

cycle of length 1 2L L is constructed.

The cycles 1R and 2R , and also the resulting cycle are marked by bold lines in Fig. 12.

The edges that are not included into the above-mentioned cycles are marked by dotted

lines.

For comparison, Table 6 gives times (in seconds) of constructing Hamiltonian cycles in a 2D-

mesh by the initial algorithm (1t) and by the algorithm with splitting of cycle construction

(2t) with the number of subgraphs k = 2. The times are measured for p = n. The cycle

construction time can be additionally reduced by parallel construction of cycles in

subgraphs.

n 16 64 256 1024

1t 0.02 0.23 9.62 595.8

2t 0.01 0.03 2.5 156.19

Table 6. Comparison of cycle construction times in 2D-mesh

The proposed approach can be applied to constructing Hamiltonian cycles in arbitrary

nonweighted nonoriented graphs without multiple edges and loops.

We can use the splitting method to construct Hamilton cycles in three-dimensional tori

because the three-dimensional torus can be considered as a connected set of two-

dimensional tori. So, the Hamilton cycle in three-dimensional torus can be constructed as

follows:

1. Construct the Hamilton cycles in all of two-dimensional tori of the three-dimensional

torus.

2. Unify the constructed cycles by the above unifying algorithm.

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

221

If the Hamilton cycles in all two-dimensional tori are optimal then the resulting Hamilton

cycle in the three-dimensional torus is optimal too.

In the table 7 the times (in seconds) of construction of optimal Hamilton cycles in three-

dimensional tori with n m m m   nodes are presented: seqt is the time of the sequential

algorithm, part is the time of the parallel algorithm on processor Intel Pentium Dual-Core

CPU E 52000, 2,5 GHz with usage of the parallel programming system OpenMP (Chapman,

Jost & van der Pas, 2008), /seq parS t t is the speedup. The system of equations (14) was

chosen for parallelization.

m 4 8 12 16 20 24 28 32

n 64 512 1728 4096 8000 13284 21952 32768

seqt 0.125 0.062 0.906 6.265 31.22 133.11 390.61 2293.5

part 0.171 0.062 0.484 3.265 15.95 70.36 217.78 1397.6

S 0.73 1 1.87 1.92 1.96 1.89 1.79 1.64

Table 7. Construction of Hamiltonian Cycles in 3D-torus

So, the experiments show that the proposed algorithm:

1. Constructs optimal Hamilton cycles in 2D-tori with edge defects;
2. Allows to construct optimal Hamilton cycles in 3D-tori with tens of thousands of nodes

(See Table 7).

4. Conclusion

A problem of mapping graphs of parallel programs onto graphs of distributed computer

systems by recurrent neural networks is formulated. The parameter values providing the

absence of incorrect solutions are experimentally determined. Optimal solutions are found

for mapping a “line”-graph onto a two-dimensional torus due to introduction into

Lyapunov function of penalty coefficients for the program graph edges not-mapped onto

the system graph edges.

For increasing probability of finding optimal mapping, a method for splitting the mapping

is proposed. The method essence is a reducing solution matrix to a block-diagonal form. The

Wang recurrent neural network is used to exclude incorrect solutions of the problem of

mapping the line-graph onto three-dimensional torus. This network converges quicker than

the Hopfield one.

An efficient algorithm based on a recurrent neural Wang’s network and the WTA principle
is proposed for the construction of Hamiltonian cycles (ring program graphs) in regular
graphs (2D- and 3D-tori, and hypercubes) of distributed computer systems and 2D-tori
disturbed by removing an arbitrary edge (edge defect). The neural network parameters for

www.intechopen.com

Recurrent Neural Networks and Soft Computing

222

the construction of Hamiltonian cycles and suboptimal cycles with a length close to that of
Hamiltonian ones are determined.

Resulting algorithm allows us to construct optimal Hamilton cycles in 3D-tori with number
of nodes up to 32768. The usage of this algorithm is actual in modern supercomputers
having topology of the 3D-torus for organization of inter-processor communications in
parallel solution of complicated problems.

Recurrent neural (Hopfield and Wang) network is a universal technique for solution of
optimization problems but it is a local optimization technique, and we need additional
modifications (for example, penalty coefficients and splitting) to improve the technique
scalability.

The proposed algorithm for the construction of Hamiltonian cycles is less universal but
more powerful because it implements a global optimization approach and so it is very more
scalable than the traditional recurrent neural networks.

The traditional topology aware mappings ((Parhami, 2002; Yu, Chung & Moreira, 2006;
Balaji, Gupta, Vishnu & Beckman, 2011)) are constructed especially for regular graphs
(hypercubes and tori) of distributed computer systems. The proposed neural network
algorithms are more universal and can be used for mapping program graphs onto graphs of
distributed computer systems with defects of edges and nodes.

5. References

Balaji, P.; Gupta, R.; Vishnu, A. & Beckman, P. (2011). Mapping Communication Layouts to

Network Hardware Characteristics on Massive-Scale Blue Gene Systems, Comput.

Sci. Res. Dev., Vol. 26, pp.247–256

Bertsekas, D.P. & Tsitsiklis, J.N. (1989). Parallel and Distributed Computation: Numerical

Methods, Athena scientific, Bellmont, Massachusets: Prentis Hall

Chapman, B., Jost, G. & van der Pas, R. (2008). Using OpenMP : portable shared memory

parallel programming , Cambridge, Massachusetts :The MIT Press

da Silva, I. N.; Amaral, W. C.; Arruda, L. V. & Flauzino, R. A. (2008). Recurrent Neural

Approach for Solving Several Types of Optimization Problems, Recurrent

Neural Networks, Eds. Xiaolin Hu and P. Balasubramaniam, Croatia: Intech, pp.

229-254

Dijkstra, E.W. (1974). Self-stabilizing Systems in Spite of Distributed Control. Commun.

ACM, Vol.17, No.11, pp. 643-644

Feng, G. & Douligeris C. (2001). The Convergence and Parameter Relationship for Discrete-

Time Continuous-State Hopfield Networks, Proc. of Intern. Joint Conference on

Neural Networks

Haykin, S. (1999). Neural Networks. A Comprehensive Foundation, Prentice Hall Inc.

Hopfield, J.J. & Tank, D.W. (1985). Neural Computation of Decisions in Optimization

Problems, Biological Cybernetics, Vol.52, pp.141-152

Hung, D.L. & Wang, J. (2003). Digital hardware realization of a recurrent neural network for

solving the assignment problem, Neurocomputing, Vol. 51, pp.447-461

www.intechopen.com

Optimization of Mapping Graphs of Parallel
Programs onto Graphs of Distributed Computer Systems by Recurrent Neural Network

223

Jagota, A. (1999). Hopfield Neural Networks and Self-Stabilization, Chicago Journal of

Theoretical Computer Science, Vol.1999,Article 6,

http://mitpress.mit.edu/CJTCS/

Korte, B. & Vygen, J. (2006). Combinatorial optimization. Theory and algorithms. Bonn,

Germany: Springer

Malek, A. (2008). Applications of Recurrent Neural Networks to Optimization Problems,

Recurrent Neural Networks, Eds. Xiaolin Hu and P. Balasubramaniam, Croatia:

Intech, pp. 255-288

Melamed, I.I. (1994). Neural networks and combinatorial optimization, Automation and

remote control, Vol.55,No.11, pp.1553-1584

Ortega, J.M. (1988). Introduction to Parallel and Vector Solution of Linear Systems, New York:

Plenum

Parhami, B. (2002). Introduction to Parallel Processing. Algorithms and Architectures, New York:

Kluwer Academic Publishers

Serpen, G. & Patwardhan, A. (2007). Enhancing Computational Promise of Neural

Optimization for Graph-Theoretic Problems in Real-Time Environments, DCDIS A

Supplement, Advances in Neural Networks, Vol. 14, No. S1, pp. 168--176

Serpen, G. (2008). Hopfield Network as Static Optimizer: Learning the Weights and

Eliminating the Guesswork, Neural Processing Letters, Vol.27, No.1, pp. 1-15

Siqueira, P.H., Steiner, M.T.A., & Scheer, S. (2007). A New Approach to Solve The Travelling

Salesman Problem, Neurocomputing, Vol. 70, pp.1013-1021

Siqueira, P.H., Steiner, M.T.A., & Scheer, S. (2010). Recurrent Neural Network With Soft

'Winner Takes All' Principle for The TSP, Proceedings of the International Conference

on Fuzzy Computation and 2nd International Conference on Neural Computation, pp.

265-270, SciTePress, 2010

Smith, K. A. (1999). Neural Networks for Combinatorial Optimization: A Review of More

Than a Decade of Research, INFORMS Journal on Computing, Vol.11,No.1, pp.15-34.

Tarkov, M.S. (2003). Mapping Parallel Program Structures onto Structures of Distributed

Computer Systems, Optoelectronics, Instrumentation and Data Processing, Vol. 39, No.

3, pp.72-83

Tarkov, M.S. (2005). Decentralized Control of Resources and Tasks in Robust Distributed

Computer Systems, Optoelectronics, Instrumentation and Data Processing, Vol. 41, No.

5, pp.69-77

Tarkov, M.S. (2006). Neurocomputer systems, Мoscow, Internet University of Inf.

Technologies: Binom. Knowledge laboratory (in Russian)

Trafalis T.B. & Kasap S. (1999). Neural Network Approaches for Combinatorial Optimization

Problems, Handbook of Combinatorial Optimization, D.-Z. Du and P.M. Pardalos

(Eds.), pp. 259-293, Kluwer Academic Publishers

Tel, G. (1994). Introduction to Distributed Algorithms, Cambridge University Press, England,

1994

Wang, J. (1993). Analysis and Design of a Recurrent Neural Network for Linear

Programming, IEEE Trans. On Circuits and Systems-I: Fundamental Theory and

Applications, Vol. 40, No.9, pp.613-618

www.intechopen.com

Recurrent Neural Networks and Soft Computing

224

Yu, H.; Chung, I.H. & Moreira, J. (2006). Topology Mapping for Blue Gene/L

Supercomputer, Proceedings of the 2006 ACM/IEEE conference on Supercomputing,

ACM Press, New York, NY, USA, pp. 5264

www.intechopen.com

Recurrent Neural Networks and Soft Computing

Edited by Dr. Mahmoud ElHefnawi

ISBN 978-953-51-0409-4

Hard cover, 290 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mikhail S. Tarkov (2012). Optimization of Mapping Graphs of Parallel Programs Onto Graphs of Distributed

Computer Systems by Recurrent Neural Network, Recurrent Neural Networks and Soft Computing, Dr.

Mahmoud ElHefnawi (Ed.), ISBN: 978-953-51-0409-4, InTech, Available from:

http://www.intechopen.com/books/recurrent-neural-networks-and-soft-computing/optimization-of-mapping-

graphs-of-parallel-programs-onto-graphs-of-distributed-computer-systems-by-r

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

