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Optimization of Mapping Graphs of Parallel 
Programs onto Graphs of Distributed Computer 
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Mikhail S. Tarkov  
A.V. Rzhanov’s Institute of Semiconductor Physics 

Siberian Branch, Russian Academy of Sciences 
Russia 

1. Introduction  

A distributed computer system (CS) is a set of elementary computers (ECs) connected by a 

network that is program-controlled from these computers. Each EC includes a computing 

module (CM) (processor with a memory) and a system unit (message router). The message 

router operates under CM control and has input and output ports connected to the output 

and input ports of the neighboring ECs, correspondingly. The CS structure is described by 

the graph s s sG (V ,E ) , where sV  is the set of ECs and  s s sE = V V  is the set of connections 

between the ECs.  

The topology of a distributed system may undergo changes while the system is operating, 

due to failures or repairs of communication links, as well as due to addition or removal of 

ECs (Bertsekas,  Tsitsiklis, 1989). The CS robustness means that failures and recoveries of the 

ECs bring only to increasing and decreasing time of a task execution. Control on resources 

and tasks in the robust distributed CS suggested solution of the following problems 

(Tarkov, 2003, 2005): the CS optimal decomposition to connected subsystems; mapping 

parallel program structures onto the subsystem structures; static and dynamic balancing 

computation load among CMs of the computer system (subsystem); static and dynamic 

message routing (implementation of paths for data transfer), i.e. balancing communication 

load in the CS network; distribution of program and data copies for organization of fault 

tolerant computations; subsystem reconfiguration and redistribution of computation and 

communication load for computation recovery from failures, and so on.  

As a rule, all these problems are considered as combinatorial optimization problems (Korte 
& Vygen, 2006), solved by centralized implementation of some permutations on data 
structures distributed on elementary computers of the CS. The centralized approach to the 
problem solution suggests gathering data in some (central) EC, solving optimization 
problem in this EC with the following scattering results to all ECs of the system (subsystem). 
As a result we have sequential (and correspondingly slow) method for the problem solution 
with great overhead for gathering and scattering data. Now a decentralized approach is 
significantly developed for solution of problems of control resources and tasks in computer 
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systems with distributed memory (Tel G.,  1994), and in many cases this approach allows to 
parallelize the problem solution. 

Massive parallelism of data processing in neural networks allows us to consider neural 
networks as a perspective, high-performance, and reliable tool for solution of complicated 
optimization problems (Melamed, 1994; Trafalis &  Kasap, 1999; Smith, 1999; Haykin, 1999; 
Tarkov, 2006). The recurrent neural network (Hopfield & Tank,  1985; Wang, 1993; Siqueira, 
Steiner & Scheer, 2007, 2010; Serpen & Patwardhan, 2007; Serpen, 2008; da Silva, Amaral, 
Arruda & Flauzino, 2008; Malek, 2008) is a most interesting tool for solution of discrete 
optimization problems. A model of a globally converged recurrent Hopfield neural network 
is in good accordance with Dijkstra’s self-stabilization paradigm (Dijkstra, 1974). This 
signifies that the mappings of parallel program graphs onto graphs of distributed computer 
systems, carried out by Hopfield networks, are self-stabilizing (Jagota, 1999). An importance 
of usage of the self-stabilizing mappings is caused by a possibility of  breaking the CS graph 
regularity by failures of ECs and intercomputer connections. 

For distributed CSs, the graph of a parallel program p p pG (V ,E )  is usually determined as a 

set  pV  of the program branches (virtual elementary computers) interacting with each other 

by the point−to−point principle through transferring messages via logical (virtual) channels 

(which may be unidirectional or bidirectional) of the set p p pE V V  . Interactions between 

the processing modules are ordered in time and regular in space for most parallel 

applications (line, ring, mesh, etc.) (Fig. 1).  

For this reason, the maximum efficiency of information interactions in advanced high-

performance CSs is obtained by using regular graphs ( , )s s sG V E  of connections between 

individual computers (hypercube, torus) (Parhami, 2002; Yu, Chung & Moreira, 2006; Balaji, 
Gupta, Vishnu & Beckman, 2011). The hypercube structure is described by a graph known 

as a m-dimensional Boolean cube with a number of nodes 2mn  . Toroidal structures are m-

dimensional Euclidean meshes with closed boundaries. For m = 2, we obtain a two-
dimensional torus (2D-torus) (Fig. 2); for m = 3, we obtain a 3D-torus. 

 

Fig. 1. Typical graphs of parallel programs (line, ring and mesh) 
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Fig. 2. Example of a 2D-torus 

In this paper, we consider a problem for mapping graph p p pG (V ,E )  of a parallel program 

onto graph s s sG (V ,E )  of a distributed CS, where p sn V V   is a number of program 

branches (of  ECs). The mapping objective is to map nodes of the program graph pG  onto 

nodes of the system graph sG  one-to-one to carry out mapping  pG  edges onto edges  of  

sG  (to establish an isomorphism between the program graph pG  and a spanning subgraph 

of the system graph sG ). 

In section 2, we consider a recurrent neural network as a universal technique for solution of 
mapping problems. It is a local optimization technique, and we propose additional 
modifications (for example, penalty coefficients and splitting) to improve the technique 
scalability. 

In section 3, we propose an algorithm based on the recurrent neural network and WTA 
(“Winner takes all”)  approach for the construction of Hamiltonian cycles in graphs. This 
algorithm maps only line- and ring-structured parallel programs. So, it is less universal than 
the technique proposed in section 2 but more powerful because it implements a global 
optimization approach, and hence it is very more scalable than the traditional recurrent 
neural networks. 

2. Mapping graphs of parallel programs onto graphs of distributed computer 
systems by recurrent neural networks  

Let us consider a matrix v  of neurons with size n n , each row of the matrix corresponds 

to some branch of a parallel program and every column of the matrix corresponds to some 

EC. Each row and every column of the matrix v  must contain only one nonzero entry equal 

to one, other entries must be equal to zero.  Let the distance between the neighboring nodes 

of the CS graph is taken as a unit distance and ijd  is the length of the shortest path between 

nodes i and j in the CS graph. Then we define the energy of the corresponding Hopfield 

neural network by the Lyapunov function 
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p
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c xj yi
x j i y

d xi yj ij
x i y Nb x j i

L C L D L

L v v

L v v d

 (1) 

Here ijd  is the distance between nodes i  and j  of the system graph corresponding to 

adjacent nodes of the program graph (a “dilation” of the edge of the program graph on the 

system graph), ( )pNb x  is a neighborhood of the node x on the program graph.  

The value xiv  is a state of the neuron in the row x  and column i  of the matrix v, C and D 

are parameters of the Lyapunov function. cL  is minimal when each row and every column 

of v contains only one unity entry (all other entries are zero). Such matrix v is a correct 

solution of the mapping problem (Fig. 3).  

 

Fig. 3. Example of correct matrix of neuron states 

The minimum of dL  provides minimum of the sum of distances between adjacent pG  nodes 

mapped onto nodes of the system graph sG  (Fig. 4). 

The Hopfield network minimizing the function (1) is described by the equation  

 xi

xi

u L

t v

 
 

 
 (2) 

where xiu  is an activation of the neuron with indices x, i ( , 1,..., )x i n ,  

 
1

1 exp
xi

xi

v
u


 

 

is the neuron state (output signal),   is the activation parameter.  
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Fig. 4. Example of optimal mapping of “line”-graph onto torus (the mapping is 
distinguished by bold  lines; the line-graph’s node numbers are shown in brackets) 

From (1) and (2) we have 

 
( )

2 .
p

xi
xj yi yj ij

j y y Nb x j i

u
C v v D v d

t  

 
     
   
     (3) 

A difference approximation of Equation (3) yields 

 1

( )

2
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u t C v v D v d

 

  
        

    
    , (4) 

where t  is a temporal step. Initial values 0
xiu  ( , 1,..., )x i n  are stated randomly.  

A choice of parameters , , ,t C D   determines a quality of the solution v of  Equation (4). In 

accordance with (Feng & Douligeris, 2001) for the problem (1)-(4)  a necessary condition of 
convergence is 

 
 

min ,
2 1

f
C D





 (5) 

where min
( )

min
p

yj ij
y Nb x j i

f v d
 

    
  
  , [0,1)   and   being a value close to 1. For a parallel 

program graph of a line type min 1f  . For example, taking 0.995   for the line we have 

100C D  . 

From (4) and (5) it follows that the parameters t  and D are equally influenced on the 

solution of the equation (4). Therefore we state 1t   and have the equation 
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 1

( )

2 .
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u C v v D v d

 

 
       
 
 
     (6) 

Let 0.1   (this value was stated experimentally). We will try to choose the value D  to 

provide the absence of incorrect solutions. 

 2.1 Mapping by the Hopfield network 

Let us evaluate the mapping quality by a number of coincidences of the program edges with 

edges of the system graph. We call this number a mapping rank. The mapping rank is an 

approximate evaluation of the mapping quality because the mappings with different 

dilations of the edges of the program graph may have the same mapping rank. 

Nevertheless, the maximum rank value, which equals to the number pE of edges of the 

program graph, corresponds to optimal mapping, i.e. to a global minimum of  dL  in (1). Our 

objective is to determine the mapping algorithm parameters providing maximum 

probability of the optimal mapping.  
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Fig. 5. Histograms of mappings for the neural network (6) 
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b) 16n   

Fig. 6. Histograms of mappings for the neural network (8) 

As an example for investigation of the mapping algorithm we consider the mapping of a 
line-type program graph onto a 2D-torus. Maximal value of the mapping rank for a line 
with n  nodes is obviously equal to n-1. 

For experimental investigation of the mapping quality, the histograms of the mapping rank 
frequencies are used for a number of experiments equals to 100. The experiments for 

mapping the line onto the 2D-torus with the number of nodes 2 , 3,4,n l l   where l is the 

cyclic subgroup order, are carried out. 

For 8D   the correct solutions are obtained for 9n   and 16n  , but as follows from Fig. 

5а  and Fig. 5b for 8D  , the number of solutions with optimal mapping, corresponding to 

the maximal mapping rank, is small. 

To increase the frequency of optimal solutions of Equation (6) we replace the distance values 

ijd  by the values  

www.intechopen.com



 
Recurrent Neural Networks and Soft Computing 

 

210 

 
1

1

ij ij

ij
ij ij

d d
c

p d d

   
 (7) 

where p is a penalty coefficient for the distance ijd  exceeding the value 1, i.e. for non-

coincidence of the edge of the program graph with the edge of the system graph. So, we 

obtain the equation 

 1

( )

2 .
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u C v v D v c

 

 
       
 
 
     (8) 

For the above mappings with p n  we obtain the histograms shown on Fig. 6a and Fig. 6b. 

These histograms indicate the improvement of the mapping quality but for 16n   the 

suboptimal solutions with the rank 13 have maximal frequency. 

2.2 Splitting method 

To decrease a number of local extremums of Function (1), we partition the set  1,2,...,n  of 

subscripts x and i of the variables xiv   to K sets  

 ( 1) , ( 1) 1,..., ,kI k q k q k q     /q n K , 1,2,...,k K , 

and map the subscripts kx I  only to the subscripts ki I , i.e. we reduce the solution 

matrix v to a block-diagonal form  (Fig. 7) and the Hopfield network is described by the 
equation 

 

 

1

( )

2 ,

1
, , , 1,2,..., .

1 exp

k k p

t t
xi xi xj yi yj ij

j I y I y Nb x j i

xi k
xi

u u C v v D v c

v x i I k K
u



   

 
       
 
 

  
 

   
 (9) 

In this case 0xiv   for , , 1,2,..., .k kx I i I k n    
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 
 
  

 

Fig. 7. Example of  block-diagonal  solution matrix for 2K   

In this approach which we call a splitting, for mapping line with the number of nodes 

16n   onto 2D-torus, we have for 2K   the histogram presented on Fig. 8a.  
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From Fig. 6b and Fig. 8a we see that the splitting method  essentially increases the frequency 

of optimal mappings. The increase of the parameter D up to the value 32D   results in 

additional increase of the frequency of optimal mappings (Fig. 8b). 
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a) 16n  , 2K  , 8D  . 
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b) 16n  , 2K  , 32D  . 

Fig. 8. Histograms of mappings for the neural network (9) 

2.3 Mapping by the Wang network 

In a recurrent Wang neural network (Wang, 1993; Hung & Wang, 2003) dL  in Expression (1) 

is multiplied by the value  exp t
  where   is a parameter. For the Wang network 

Equation (9) is reduced to 

 

 

 

1

( )

2 exp ,

1
, , , 1,2,..., .

1 exp

k k p

t t t
xi xi xj yi yj ij

j I y I y Nb x j i

xi k
xi

u u C v v D v c

v x i I k K
u







   

 
        
 
 

  
 

   
     (10) 
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We note that in experiments we frequently have incorrect solutions if for a given maximal 

number of iterations maxt  (for example, max 10000t  ) the condition of convergence 

1

,

t t
xi xi

x i

u u   , 0.01   is not satisfied. The introduction of factor   exp t
  accelerates 

the convergence of the recurrent neural network and the number of incorrect solutions is 
reduced. 

So, for the three-dimensional torus with 33 27n    nodes and , 3, 4096, 0.1p n K D      

in 100 experiments we have the following results: 

1. On the Hopfield network (9) we have 23 incorrect solutions, 43 solutions with  Rank 25 
and 34 optimal solutions (with Rank 26)  (Fig. 9). 

2. On the Wang network (10) with the same parameters and 500   we have all (100) 

correct solutions, where 27 solutions have Rank 25 and 73 solutions are optimal (with 
Rank 26) (Fig. 10). 
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Fig. 9. Histogram of mappings for the Hopfield network ( 33 27n   ) 
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Fig. 10. Histogram of mappings for the Wang network ( 33 27n   ) 
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As a result we have high frequency of optimal solutions (for 100 experiments): 

1. more than 80% for the two-dimensional tori ( 23 9n    and 24 16n   ); 

2. more than 70% for three-dimensional torus 3( 3 27)n   . 

Further investigations must be directed to increasing the probability of getting optimal 
solutions of the mapping problem when the number of the parallel program nodes is 
increased.  

3. Construction of Hamilton cycles in graphs of computer systems 

In this section, we consider algorithms for nesting ring structures of parallel programs of 
distributed CSs, which are based on using recurrent neural networks, under the condition 

p sn V V  . Such nesting reduces to constructing a Hamiltonian cycle in the CS graph and 

is based on solving the traveling salesman problem using the matrix of distances 

( , 1,..., )ijd i j n  between the CS graph nodes, with the distance between the neighboring 

nodes of the CS graph taken as a unit distance. 

The traveling salesman problem can be formulated as an assignment problem (Wang, 1993;  
Siqueira, Steiner & Scheer, 2007, 2010) 

 
1

min
n

ij ij
i j i

c x
 
 , (11) 

under the constraints 

 

 

1

1

0,1 ,

1, 1,..., ,

1, 1,..., .

ij

n

ij
i

n

ij
j

x

x j n

x i n







 

 





 (12) 

Here, ,ijc i j  is the cost of assignment of the element i to the position j, which corresponds 

to motion of the traveling salesman from the city i to the city j; ijx  is the decision variable: if 

the element i is assigned to the position j, then 1ijx  , otherwise, 0ijx  . 

For solving problem (11) − (12), J. Wang proposed a recurrent neural network that is 
described by the differential equation 

 
1 1

( )
( ) ( ) 2 exp( / )

n n
ij

ik lj ij
k l

u t
C x t x t D c t

t


 

  
       

  
  ,  (13) 

where ( ( ))ij ijx g u t ,  ( ) 1 / 1 exp( )g u u   . A difference approximation of Equation (13) 

yields 
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 1

1 1

( ) ( ) 2 exp ,
n n

t t
ij ij ik lj ij

k l

t
u u t C x t x t D c




 

                
    

   (14) 

Here , , , ,C D t    are parameters of the neural network.  

Siqueira et al. proposed a method of accelerating the solution of the system (14), which is 
based on the WTA (“Winner takes all”) principle. The algorithm proposed below was 
developed on the basis of this method. 

1. A matrix (0)ijx  of random values  (0) 0,1ijx   is generated. Iterations (14) are 

performed until the following inequality is satisfied for all , 1,...,i j n : 

1 1

( ) ( ) 2
n n

ik lj
k l

x t x t 
 

    , 

where   is the specified accuracy of satisfying constraints (12). 

2. Transformation of the resultant decision matrix ijx  is performed: 

2.1.  1i  . 

2.2. The maximum element 
max,i jx  is sought in the ith row of the matrix ( maxj  is the number 

of the column with the maximum element).  

2.3. The transformation 
max, 1i jx   is performed. All the remaining elements of the ith row 

and of the column numbered maxj  are set to zero. Then, there follows a transition to the row 

numbered maxj . Steps 2.2 and 2.3 are repeated until the cycle returns to the first row, which 

means that the cycle construction is finalized.  

3. If the cycle returns to the row 1 earlier than the value 1 is assigned to n elements of the 

matrix ijx , this means that the length of the constructed cycle is smaller than n. In this 

case, steps 1 and 2 are repeated.  

To ensure effective operation of the algorithm of Hamiltonian cycle construction, the 
following values of the parameters of system (14) were chosen experimentally (by the order 

of magnitude): 1, 10, 1000, 0.1D C      . Significant deviations of these parameters 

from the above-indicated values deteriorate algorithm operation, namely: 

1. Deviations of the parameter C  from the indicated value (at a fixed value of D ) 

deteriorate the solution quality (the cycle length increases). 
2. A decrease in  increases the number of non-Hamiltonian ring-shaped routes. 

3. An increase in   deteriorates the solution quality. A decrease in   increases the 

number of iterations (14). 

It follows from (Feng & Douligeris, 2001) that maxt t   , where max

1 1
1

0.1 10
t

C
   


. 
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The experiments show that it is not always possible to construct a Hamiltonian cycle at 

1t  , but cycle construction is successfully finalized if the step t  is reduced. We reduced 

the step t  as /2t  if a correct cycle could not be constructed after ten attempts. 

The parameters ,ijc i j , are calculated by the formula (7) where ijd is the distance between 

the nodes i and j of the graph, and p > 1 is the penalty coefficient applied if the distance ijd  

exceeds 1. The penalty coefficient was introduced to ensure coincidence of transition in the 
travelling agent cycle with the edges of the CS graph. 

We studied the use of iterative methods (Jacobi, Gauss–Seidel, and successive overrelaxation 
(SOR) methods (Ortega, 1988)) in solving Wang’s system of equations. With the notation 

 
1 1

2 exp /
n n

t t t
ij ik lj ij

k l

r C x x Dc t 
 

 
      

 
   

the Jacobi method (method of simple iterations) of solving system (14) has the form 

1. 1 , , 1,..., ;t t t
ij ij iju u t r i j n       

2.      
1 1 1

1

1
, , , 1,..., .

1 exp

t t t
ij ij ij t

ij

x g u g u i j n
u

  


  
 

 

According to this method, new values of 1t
ijx  ,  , 1,...,i j n , are calculated only after all 

values 1t
iju  ,  , 1,...,i j n , are found. In contrast to the method of simple iterations, the new 

value of 1t
ijx   in the Gauss–Seidel method is calculated immediately after finding the 

corresponding value of 1t
iju  : 

 1 1 1, , , 1,..., .t t t t t
ij ij ij ij iju u t r x g u i j n         

In the SOR method, the calculations are performed by the formulas 

   

 
1

1 1

,

1 , 0,2 ,

, , 1,..., .

t t
new ij ij

t t
ij new ij

t t
ij ij

u u t r

u u u

x g u i j n

  

 

   

     

 

 

With 1  , the SOR method turns to the Gauss–Seidel method. 

Experiments on 2D-tori with the group of automorphisms 2 m mE C C  , 2n m show that 

the Jacobi method can only be used for tori with a small number of nodes ( {3, 4}m ). 

The SOR method can be used for tori with {3, 4,6}m  with appropriate selection of the 

parameter 1  . For m ≥ 8, it is reasonable to use the Gauss–Seidel method ( 1  ). Figure 

11 shows an example of a Hamiltonian cycle constructed by a neural network in a 2D-mesh 
with n = 16 (the cycle is indicated by the bold line). 
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Fig. 11. Example of a Hamiltonian cycle in a 2D-mesh 

In our experiments, we obtained Hamiltonian cycles (with the cycle length L = n) in 2D-
meshes and 2D-tori for a number of experiments equals to 100 with up to n = 1024 nodes for 
m = 2k and suboptimal cycle lengths L = n + 1 at m = 2k + 1, k = 2, 3, . . . , 16. The penalty 

coefficients p and the values of t  with which the Hamiltonian cycles were constructed for 

n = 16, 64, 256, and 1024, and also the times of algorithm execution on Pentium (R) Dual-
Core CPU E 52 000, 2.5 GHz (the time equal to zero means that standard procedures did not 
allow registering small times shorter than 0.015 s) are listed in Tables 1 and 2. 

 

n  216 4  264 8  2256 16  21024 32  

t  1 1 1 0,5 

/ 2p n  8 16 128 512 

Time, s 0 0.015 0.75 73.36 

Table 1. 2D-mesh 

 

n  216 4  264 8  2256 16  21024 32  

t  1 1 1 0.5 
p n  16 64 256 1024 

Time, s 0 0 4.36 73.14 

Table 2. 2D-torus 

In addition to the quantities listed in Tables 1 and 2, Tables 3 and 4 give the relative increase 

L n

n
 
  in the travelling salesman cycle length, as compared with the Hamiltonian cycle 

length, for a 3D-torus and hypercube. 
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n 364 4  3216 6  3512 8  31000 10  

t  0.012 0.1 0.1 0.1 

p 64 32 32 32 

L 64 218 520 1010 
  0 0.01 0.016 0.01 

Time, s 0.625 0.313 12.36 97.81 

Table 3. 3D-torus 

 

n 16 64 256 1024 

t  0.1 0.1 0.1 0,1 

p 32 32 32 32 

L 16 64 262 1034 
  0 0 0.016 0.023 

Time, s 0 0.062 99.34 1147 

Table 4. Hypercube 

It follows from Tables 3 and 4 that: 

1. In 3D-tori, the Hamiltonian cycle was constructed for n = 64. With n = 216, 512, and 
1000, suboptimal cycles were constructed, which were longer than the Hamiltonian 
cycles by no more than 1.6%. 

2. In hypercubes, the Hamiltonian cycles were constructed for n = 16 and 64 (it should be 
noted that the hypercube is isomorphous to the 2D-torus with n = 16). For n = 256 and n 
= 1024, suboptimal cycles were constructed, which were longer than n by no more than 
2.3%. 

3.1 Construction of Hamiltonian cycles in toroidal graphs with edge defects 

The capability of recurrent neural networks to converge to stable states can be used for 

mapping program graphs to CS graphs with violations of regularity caused by deletion of 

edges and/or nodes. Such violations of regularity are called defects. In this work, we 

study the construction of Hamiltonian cycles in toroidal graphs with edge defects. 

Experiments in 2D-tori with a deleted edge and with n = 9 to n = 256 nodes for p = n were 

conducted. The experiments show that the construction of Hamiltonian cycles in these 

graphs by the above-described algorithm is possible, but the value of the step t  at which 

the cycle can be constructed depends on the choice of the deleted edge. The method of 

automatic selection of the step t  is described at the beginning of Section 3. Table 5 

illustrates the dependence of the step t  on the choice of the deleted edge in constructing 

an optimal Hamiltonian cycle by the SOR method in a 2D-torus with n = 16 nodes for 

0.125  . 

Examples of Hamiltonian cycles constructed by the SOR method in a 2D-torus with n = 16 

nodes are given in Figs. 12a and 12b. Figure 12a shows the cycle constructed in the torus 

without edge defects for 0.5   and 0.25t  . Figure 12b shows the cycle constructed in 

the torus with a deleted edge (0, 12) for 0.125   and 0.008t  . 
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Edge t  Edge t  

(0,12) 0,008 (5,9) 0,5 

(0,3) 1,0 (6,7) 0,063 

(0,1) 1,0 (6,10) 1,0 

(0,4) 1,0 (7,11) 1,0 

(1,13) 1,0 (8,11) 1,0 

(1,2) 0,25 (8,9) 1,0 

(1,5) 1,0 (8,12) 1,0 

(2,14) 0,125 (9,10) 0,125 

(2,3) 0,125 (9,13) 1,0 

(2,6) 1,0 (10,11) 1,0 

(3,15) 1,0 (10,14) 1,0 

(3,7) 0,25 (11,15) 1,0 

(4,7) 0,25 (12,15) 1,0 

(4,5) 1,0 (12,13) 0,5 

(4,8) 1,0 (13,14) 0,5 

(5,6) 1,0 (14,15) 1,0 

Table 5. Dependence t  of the step on the choice of the deleted edge 

Results discussed in this section should be considered as preliminary and opening the 
research field studying the relation between the quality of nesting of graphs of parallel 
algorithms to graphs of computer systems whose regularity is violated by node and edge 
defects and the parameters of neural network algorithms implementing this nesting. 

 

Fig. 12. Examples of Hamiltonian cycles in 2D-torus 
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3.2 Construction of Hamiltonian cycles by the splitting method 

The time of execution of the above-described algorithm can be substantially reduced by 
using the following method: 

1. Split the initial graph of the system into k connected subgraphs. 
2. Construct a Hamiltonian cycle in each subgraph by the algorithm described above. 
3. Unite the Hamiltonian cycles of the subgraphs into one Hamiltonian cycle. 

For example, the initial graph of the system can be split into connected subgraphs by the 
algorithms proposed in (Tarkov, 2005). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 13. Unification of cycles 
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For unification of two cycles 1R  and 2R , it is sufficient if the graph of the system has a cycle 

ABCD of length 4 such that the edge AB belongs to the cycle 1R  and the edge CD belongs to 

the cycle 2R (Fig. 13). 

The cycles 1R  and 2R  can be united into one cycle by using the following algorithm: 

1. Find the cycle ABCD possessing the above-noted property. 

2. Eliminate the edge AB from the cycle and successively numerate the nodes of the 

cycle 1R  in such a way that to assign number 0 to the node A and assign number 

1 1L  , where 1L is the length of the cycle 1R , to the edge B. Include the edge BC into 

the cycle. 

3. Eliminate the edge CD and successively numerate the nodes of the cycle 2R  so that the 

node C is assigned the number L1, and the node D is assigned the number 1 2 1L L  , 

where 2L is the length of the cycle 2R . Include the edge DA into the cycle. The unified 

cycle of length 1 2L L  is constructed. 

The cycles 1R  and 2R , and also the resulting cycle are marked by bold lines in Fig. 12. 

The edges that are not included into the above-mentioned cycles are marked by dotted 

lines. 

For comparison, Table 6 gives times (in seconds) of constructing Hamiltonian cycles in a 2D-

mesh by the initial algorithm ( 1t ) and by the algorithm with splitting of cycle construction 

( 2t ) with the number of subgraphs k = 2. The times are measured for p = n. The cycle 

construction time can be additionally reduced by parallel construction of cycles in 

subgraphs. 

 

n 16 64 256 1024 

1t  0.02 0.23 9.62 595.8 

2t  0.01 0.03 2.5 156.19 

Table 6. Comparison of cycle construction times in 2D-mesh 

The proposed approach can be applied to constructing Hamiltonian cycles in arbitrary 

nonweighted nonoriented graphs without multiple edges and loops.  

We can use the splitting method to construct Hamilton cycles in three-dimensional tori 

because the three-dimensional torus can be considered as a connected set of two-

dimensional tori. So, the Hamilton cycle in three-dimensional torus can be constructed as 

follows:  

1. Construct the Hamilton cycles in all of two-dimensional tori of the three-dimensional 

torus.  

2. Unify the constructed cycles by the above unifying algorithm. 
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If the Hamilton cycles in all two-dimensional tori are optimal then the resulting Hamilton 

cycle in the three-dimensional torus is optimal too. 

In the table 7 the times (in seconds) of construction of optimal Hamilton cycles  in three-

dimensional tori with n m m m    nodes are presented: seqt is the time of the sequential 

algorithm, part  is the time of the parallel algorithm on processor Intel Pentium Dual-Core 

CPU E 52000, 2,5 GHz with usage of the parallel programming system OpenMP (Chapman, 

Jost &  van der Pas, 2008), /seq parS t t  is the speedup.  The system of equations (14) was 

chosen for parallelization. 

 

m  4 8 12 16 20 24 28 32 

n  64 512 1728 4096 8000 13284 21952 32768 

seqt  0.125 0.062 0.906 6.265 31.22 133.11 390.61 2293.5 

part  0.171 0.062 0.484 3.265 15.95 70.36 217.78 1397.6 

S  0.73 1 1.87 1.92 1.96 1.89 1.79 1.64 

Table 7. Construction of Hamiltonian Cycles in 3D-torus 

So, the experiments show that the proposed algorithm:  

1. Constructs optimal Hamilton cycles in 2D-tori with edge defects;  
2. Allows to construct optimal Hamilton cycles in 3D-tori with tens of thousands of nodes 

(See Table 7). 

4. Conclusion 

A problem of mapping graphs of parallel programs onto graphs of distributed computer 

systems by recurrent neural networks is formulated. The parameter values providing the 

absence of incorrect solutions are experimentally determined. Optimal solutions are found 

for mapping a “line”-graph onto a two-dimensional torus due to introduction into 

Lyapunov function of penalty coefficients for the program graph edges not-mapped onto 

the system graph edges.  

For increasing probability of finding optimal mapping, a method for splitting the mapping 

is proposed. The method essence is a reducing solution matrix to a block-diagonal form. The 

Wang recurrent neural network is used to exclude incorrect solutions of the problem of 

mapping the line-graph onto three-dimensional torus. This network converges quicker than 

the Hopfield one. 

An efficient algorithm based on a recurrent neural Wang’s network and the WTA principle 
is proposed for the construction of Hamiltonian cycles (ring program graphs) in regular 
graphs (2D- and 3D-tori, and hypercubes) of distributed computer systems and 2D-tori 
disturbed by removing an arbitrary edge (edge defect). The neural network parameters for 
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the construction of Hamiltonian cycles and suboptimal cycles with a length close to that of 
Hamiltonian ones are determined. 

Resulting algorithm allows us to construct optimal Hamilton cycles in 3D-tori with number 
of nodes up to 32768. The usage of this algorithm is actual in modern supercomputers 
having topology of the 3D-torus for organization of inter-processor communications in 
parallel solution of complicated problems.  

Recurrent neural (Hopfield and Wang) network is a universal technique for solution of 
optimization problems but it is a local optimization technique, and we need additional 
modifications (for example, penalty coefficients and splitting) to improve the technique 
scalability. 

The proposed algorithm for the construction of Hamiltonian cycles is less universal but 
more powerful because it implements a global optimization approach and so it is very more 
scalable than the traditional recurrent neural networks. 

The traditional topology aware mappings ((Parhami, 2002; Yu, Chung & Moreira, 2006; 
Balaji, Gupta, Vishnu & Beckman, 2011))  are constructed especially for regular graphs 
(hypercubes and tori) of distributed computer systems. The proposed neural network 
algorithms are more universal and can be used for mapping program graphs onto graphs of 
distributed computer systems with defects of edges and nodes. 
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