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1. Introduction 

Comparing with the serial ones, parallel manipulators have potential advantages in terms of 
high stiffness, accuracy and speed (Merlet, 2001). Especially the high accuracy and speed 
performances make the parallel manipulators widely applied to the following fields, like the 
pick-and-place operation in food, medicine, electronic industry and so on. At present, the 
key issues are the ways to meet the demand of high accuracy in moving process under the 
condition of high speed. In order to realize the high speed and accuracy motion, it’s very 
important to design efficient control strategies for parallel manipulators. 
In literatures, there are two basic control strategies for parallel manipulators (Zhang et.al., 
2007): kinematic control strategies and dynamic control strategies. In the kinematic control 
strategies, parallel manipulators are decoupled into a group of single axis control systems, 
so they can be controlled by a group of individual controllers. Proportional-derivative (PD) 
control(Ghorbel et.al., 2000; Wu et.al., 2002), nonlinear PD (NPD) control (Ouyang et.al., 
2002; Su et.al., 2004), and fuzzy control (Su et.al., 2005) all belong to this type of control 
strategies. These controllers do not always produce high control performance, and there is 
no guarantee of stability at the high speed. Unlike the kinematic control strategies, full 
dynamic model of parallel manipulators is taken into account in the dynamic control 
strategies. So the nonlinear dynamics of parallel manipulators can be compensated and 
better performance can be achieved with the dynamic strategies. 
The traditional dynamic control strategies of parallel manipulators are the augmented PD 
(APD) control and the computed-torque (CT) control (Li & Wu, 2004; Cheng et.al., 2003; 
Paccot et.al., 2009). In the APD controller (Cheng et.al., 2003), the control law contains the 
tracking control term and the feed-forward compensation term. The tracking control term is 
realized by the PD control algorithm. The feed-forward compensation term contains the 
dynamic compensation calculated by the desired velocity and desired acceleration on the 
basis of the dynamic model. Compared with the simple PD controller, the APD controller is 
a tracking control method. However, the feed-forward compensation can not restrain the 
trajectory disturbance effectively, thus the tracking accuracy of the APD controller will be 
decreased. In order to solve this problem, the CT controller including the velocity feed-back 
is proposed based on the PD controller (Paccot et.al., 2009). The CT control method yields a 
controller that suppresses disturbance and tracks desired trajectories uniformly in all 
configurations of the manipulators. Both the APD controller and the CT controller contain 
two parts including the PD control term and the dynamic compensation term. For the 
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presence of nonlinear factors such as modeling error and nonlinear friction in the dynamic 
models of the parallel manipulators, those traditional controllers can not achieve good 
control accuracy. 
In order to overcome the uncertain factors in parallel manipulators, nonlinear control 
methods and friction compensation method are developed in this chapter. Firstly, in order 
to restrain the modeling error of parallel manipulators, a nonlinear PD (NPD) control 
algorithm is used to the APD controller, and a so-called augmented NPD (ANPD) controller 
is designed. Secondly, considering the feed-forward compensation term in the ANPD 
controller can not restrict the external disturbance, and the tracking accuracy will be affected 
when the disturbance exists. Thus the NPD controller is combined with the CT controller 
further, and a new control method named nonlinear CT (NCT) controller is developed. 
Thirdly, in order to compensate the nonlinear friction of parallel manipulators, a nonlinear 
model with two-sigmoid-function is introduced to modeling the nonlinear friction. This 
nonlinear friction model enables reconstruction of viscous, Coulomb, and Stribeck friction 
effects of parallel manipulators, and the nonlinear optimization tool is used to estimate the 
parameters in this model. In addition to the theoretical development, all the proposed 
methods in this chapter are validated on an actual parallel manipulator. The experiment 
results indicate that, compared with the conventional controllers, the proposed ANPD and 
NCT controller can get better trajectory tracking accuracy of the end-effector. Moreover, the 
experiment results also demonstrate that the nonlinear friction model is more accurately to 
compensate the friction, and is robust against the trajectory and the velocity changes. 

2. Dynamic modelling 

The experiment platform is a 2-DOF parallel manipulator with redundant actuation. As 
shown in Fig. 1, a reference frame is established in the workspace of the parallel 
manipulator. The unit of the frame is meter. The parallel manipulator is actuated by three 
servo motors located at the base A1, A2, and A3, and the end-effector is mounted at the 
common joint O, where the three chains meet. Coordinates of the three bases are A1 (0, 0.25), 
A2 (0.433, 0), and A3 (0.433, 0.5), and all of the links have the same length 0.244l  m. The 
definitions of the joint angles are shown in the Fig. 1, 1 2 3, ,a a aq q q  refer to the active joint 
angles and 1 2 3, ,b b bq q q  refer to the passive joint angles. 
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Fig. 1. Coordinates of the 2-DOF parallel manipulator with redundant actuation 
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Cutting the parallel manipulator at the common point O  in Fig. 1, one can have an open-

chain system including three independent planar 2-DOF serial manipulators, each of which 
contains an active joint and a passive joint. The dynamic model of the parallel manipulator 
equals to the model of the open-chain system plus the closed-loop constraints, thus the 
dynamic model of the whole parallel manipulator can be formulated by combining the 
dynamics of the three serial manipulators under the constraints. 
As we know, the dynamic model of each planar 2-DOF serial manipulator can be 
formulated as (Murray et.al., 1994) 

 i i i i i i  M q C q f τ   (1) 

where  Ti ai biq qq , aiq  and biq  are the active joint and passive joint angle, respectively; 

iM  is inertia matrix, and iC  is Coriolis and centrifugal force matrix, which are defined as 
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where i , i , i , 1,2,3i   are the dynamic parameters which are related with the physical 

parameters such as mass, center of mass, and inertia. In Eq.(1),  Ti ai bi  τ  is joint torque 

vector, where ai  is the active joint torque, the passive joint torque 0bi  . Vector 

 Ti ai bif ff is the friction torque, where aif  and bif  are the active joint friction and 

passive joint friction, respectively. The friction parameters of the active joints and the 

passive joints are identified simultaneously for the parallel manipulator (Shang et.al., 2010). 

And from the identified results, one can find that the friction parameters of the passive 

joints are much smaller than those of the active joints. Thus, compared with the active joints 

friction aif , the passive joint friction bif  is much smaller and it can be neglected (Shang 

et.al., 2010). Generally, the active joint friction torque aif  can be formulated by using the 

Coulomb + viscous friction model as 

  ai ai ci vi aif sign q f f q    (2) 

where cif  represents the Coulomb friction, and vif  represents the coefficient of the viscous 
friction. 
Combining the dynamic models of three 2-DOF serial manipulators, the dynamic model of 
the open-chain system can be expressed as 

   Mq Cq f τ   (3) 

where the definition of the symbols is similar to those in Eq.(1), only the difference is that 
the symbols in Eq.(3) represent the whole open-chain system not a 2-DOF serial 
manipulator. Based on Eq.(3) of the open-chain system and the constraint forces due to the 
closed-loop constraints, the dynamic model of the parallel manipulator can be written as 

 T   Mq Cq f τ A λ   (4) 
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where TA λ  represents the constraint force vector, here matrix A  is the differential of the 
closed-loop constrained equation and λ  is a unknown multiplier representing the 
magnitude of the constraint forces. Fortunately, TA λ  can be eliminated, by finding the null-
space of matrix A  (Muller, 2005). With the Jacobian matrix W , we have 

 eq Wq 
 (5) 

where  1 2 3 1 2 3
T

a a a b b bq q q q q qq       represents the velocity vector of all the joints, 
T

e x yq q   q   represents the velocity vector of the end-effector, and the Jacobian matrix W  
is defined as 
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Considering the constraint equation Aq 0 , then one can have eAWq 0 with the Jacobian 
relation Eq.(5). The velocity vector eq of the end-effector contains independent generalized 
coordinates, so one can get AW 0 , or equivalently, T T W A 0 . With this result, the term 
of TA λ  can be eliminated, and the dynamic model Eq. (4) can be written as 

 T T T T T T T    W Mq W Cq W f W τ W A λ W τ   (6) 

In order to study dynamic control and trajectory planning of the parallel manipulator both 
in the task space, we will further formulate the dynamic model in the task space on the basis 
of the dynamic model Eq. (6) of the joint space. Differentiating the Jacobian Eq. (5) yields 

 e e q Wq Wq    (7) 

and substituting Eqs. (5) and (7) into Eq. (6), the dynamic model in the task space can be 
written as 

 
( )T T T T

e e   W MWq W MW CW q W f W τ 
 (8) 

If the friction torques of the passive joints is neglected, then Eq. (8) can be further simplified. 
Let aτ  and af be the actuator and friction torque vector of the three active joints 
respectively, then T T

aW τ S τ , and T T
aW f S f . Here, S  is the Jacobian matrix between the 

velocity of the end-effector and the velocity of three active joints, and S  is written as 
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2 2 2 2
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Then, the dynamic model in the task space can be written as 
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( )T T T T

e e a a   W MWq W MW CW q S f S τ 
 (9) 

The above Eq.(9) can be briefly expressed as 

 T T
e e e e a a  M q C q S f S τ   (10) 

where T
e M W MW  is the inertial matrix in the task space, and ( )T

e  C W MW CW is the 
Coriolis and centrifugal force matrix in the task space. 
The dynamic model Eq. (10) in the task space also satisfies the similar structural properties 

to the dynamic model of the open-chain system and the 2-DOF serial manipulator as follows 

(Cheng et.al., 2003): 

a. eM  is symmetric and positive. 

b. e eM 2C  is skew-symmetric matrix. 

3. Nonlinear dynamic control by using the NPD 

There are two conventional dynamic controllers for parallel manipulators: APD controller 

and CT controller. The common feature of the two controllers is eliminating the tracking 

error by linear PD control. However, the linear PD control is not robust against the 

uncertain factors such as modeling error and external disturbance. To overcome this 

problem, the NPD control can be combined with the conventional control strategies to 

improve the control accuracy and disturbance rejection ability. 

3.1 NPD controller 

As well as we know, the linear PD controller takes the form 

 ( ) ( ) ( )L p du t k e t k e t    (11) 

where pk  and dk  are the proportional and derivative constants respectively, and ( )e t  is the 
system error. 
The nonlinear PD (NPD) controller has a similar structure as the linear PD controller (11), 
the NPD controller may be any control structure of the form 

 ( ) ( ) ( ) ( ) ( )N p du t k e t k e t      (12) 

where ( )pk   and ( )dk   are the time-varying proportional and derivative gains, which may 
depend on system state, input or other variables. 
Currently, several NPD controllers have been proposed for robotic application (Xu et.al., 

1995; Kelly & Ricardo, 1996; Seraji et.al., 1998). The NPD controller has superior trajectory 

tracking and disturbance rejection ability compared with the linear PD controllers for robot 

control. The NPD controller proposed by Han has a simple structure as (Han, 1994) 

 1 1 2 2( ) ( ( ), , ) ( ( ), , )H p du t k fun e t k fun e t       (13) 

where the function fun  can be defined as 
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1

( ) ,
( , , )

/ ,

x sign x x
fun x

x x





     
  

 (14) 

where  refers to the nonlinearity, specially the NPD will degenerate into the linear PD 
when 1  ;  refers to the threshold of the error (or error derivative), and it is at the same 
magnitude with the error (or error derivative). The NPD controller (13) can be rewritten as 
the form (12), then ( )pk   can be derived as 

 
1

1

1
1

1
1 1
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p

p

p

k e e
k e

k e

 

 

   
  

 (15) 

Similarly, ( )dk   can be expressed as 

 
2

2

1
2

1
2 2

( ) d
d

d

k e e
k e

k e

 

 

   
  

 



 (16) 

In (15) and (16), 1  and 2 can be determined in the interval [0.5, 1.0] and [1.0, 1.5], 
respectively. This choice makes the nonlinear gains with the following characteristics (Han, 
1994): on one hand, large gain for small error and small gain for large error; on the other 
hand, large gain for large error rate and small gain for small error rate. Such variations of 
the gains result in a rapid transition of the systems with favorable damping. In addition, the 
NPD controller is robust against the changes of the system parameters and the nonlinear 
factors. Thus the NPD controller (13) is suitable to the trajectory tracking of the high-speed 
planar parallel manipulator. 

3.2 Augmented NPD controller 

The augmented NPD (ANPD) controller developed here is designed by replacing the linear 
PD in the APD controller with the NPD algorithm. According to the APD controller and the 
NPD control algorithm (13), based on the dynamic model (10), the control law of the ANPD 
controller can be written as (Shang et.al., 2009) 

 ( ) ( )d d T
A e e e e a p d     M q C q S f K e e K e e     (17) 

where d
eq  and d

eq  are the desired velocity and acceleration of the end-effector. The control 
law (17) can be divided into three terms according to different functions. The first term is the 
dynamics compensation defined by the desired trajectory, which can be written as 

 1
d d

A e e e e  M q C q   (18.a) 

The second term is the friction compensation, which can be written as 

 2
T

A a  S f  (18.b) 

The third term is the tracking error elimination, which can be written as 

 3 ( ) ( )A p d  K e e K e e   (18.c) 
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where d
e e e q q  is the position error of the end-effector; ( )pK e  and ( )dK e  are symmetric, 

positive definite matrices of time-varying gains. From (15) and (16), ( )p eK  and ( )d eK   can be 

expressed as 

  1 11 1
1 2( ) ,p p pe diag k x k x
   K  (19) 

  2 21 1
1 2( ) ,d d de diag k y k y
   K   (20) 

where pk and dk are the positive constant gains. The variables ,i ix y , 1,2i   are determined 

by the following rules: if 1ie   , then i ix e , else 1ix   ; if 2ie   , then i iy e  , 

else 2iy   ; 1 , 2 , 1 , and 2 are the designed parameters which should be tuned in 

practice. 
In the following, we will prove the asymptotic stability of the parallel manipulator system 
controlled by the ANPD controller (17). Firstly, we will introduce two lemmas (Kelly and 
Ricardo, 1996). 

Lemma 1: Let ( )  be a class   function and :f   a continuous function. If 

( ) ( )f x x x    , then 
0

( ) 0, 0
x

f d x       and 
0

( )
x

f d   as x  . 

Lemma 2: Consider the continuous diagonal matrix 2 2 2:pK    

 
1 1

2 2

( ) 0
( )

0 ( )

p

p
p

k e
K e

k e

 
  
  

  

Assume that there exist class   functions ( )i   such that  

 ( ) ( )pi ixk x x  , , 1,2x i    

then 2

0
( ) 0, 0T

p d    
e
ξ Κ ξ ξ e , and 

0
( )

e T
p d     as e  . 

Next, we will give brief proof for Lemma 2 (Kelly and Ricardo, 1996). Define ( ) ( )i pi i if e k e e , 
From Lemma 1, one can get 

 
0

( ) 0, 0
ie

i i if d e       (21) 

which is equivalent to 

 
0

( ) 0, 0
ie

pi i i i ik d e        (22) 

Therefore, the function 
0

( )
e T

p d   Κ  is positive definite. Also, Lemma 1 ensures that above 

integral is radically unbounded with respect to e , and this implies 
0

( )
e T

p d   Κ  as 

e . 
Theorem 1: If the nonlinear gains ( )p K  and ( )d K  are defined by (19) and (20) respectively, 
the parallel manipulator system controlled by the ANPD control law (17) is asymptotically 
stable. 
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Proof: Choose the Lyapunov function candidate as 

 
0

1
( , ) ( )

2
T T

e pV d  
e

e e e M e ξ K ξ ξ    (23) 

where 

 
1 2

1 1 1 1 2 2 2 20 0 0
( ) ( ) ( )

e eT
p p pd k d k d         

e
ξ K ξ ξ   

Considering the structural properties (a), the inertial matrix eM  is symmetric and positive 
definite matrix, thus the first term in (23) is positive definite. In addition, the integral term 
can be interpreted as a potential energy induced by the position error-driven part of the 
controller. Next, we will proof that the second term in (23) is positive definite. Considering 

( )pi ik e  is defined as 

 

1

1

,
( )

,

i

i

pi i i
pi i

pi i i i

k e e
k e

k e

 

 

   
  

 (24) 

Define class   functions ( )i   as 

 

1
1

1
1

,
( )

,

i

i

i i i i
i i

i i i i

e e e
e

e e

 

 

    
   

, and 0pi ik     (25) 

With the Lemma 2, one can get the integral term in (23) is a radically unbounded positive 
definite function. Thus ( , )V e e  is a positive function. Differentiating ( )V t  with respect to 
time yields 

 
1

( , ) ( )
2

T T T
e e pV   e e e M e e M e e K e e        (26) 

Combine the control law (17) and the dynamic model (10), the closed-loop system equation 

can be written as 

 ( ) ( ) 0e e p d     M e C e K e K e    (27) 

Multiplying both sides of the above equation by Te , and then substituting the resulting 
equation into (26) yields 

 
1

( ) ( 2 )
2

T T
d e eV     e K e e M C e      (28) 

Considering the structural properties (b), then one can have ( 2 ) 0T
e e e M C e   and 

 ( )T
dV   e K e    (29) 

As ( )d K  is a symmetric, positive definite matrix, then V  is a semi-negative definite matrix, 
thus the parallel manipulator system is stable. 
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Now since ( ) 0V t   and ( ) 0V t  , ( )V t  is bounded and decreasing, thus ( )V t  converges to a 
limit. From the definition of ( )V t , it implies that both e  and e  are bounded. Since eM  is 
uniform positive definite, then 1

e
M  exists and bounded, thus the closed-loop system 

equation (27) can be written as 

  1 ( ) ( )e e p d
     e M C e K e K e    (30) 

So e  is also bounded and ( )V t  is bounded. Thus, ( )V t  is uniformly continuous. With the 
Barbalat Lemma (Slotine & Li, 1991), one knows 0e  as t  , and this implies 0e  as 
t  . 
One can note that Aτ  in the control law (17) is the actuator torque of the task space, but in 
fact, we need the actuator torque aτ  of the active joints. In practice, a solution that has a 
minimum weighted Euclidian norm is selected as the actual control input. The actual control 
input vector of the active joints can be written as 

  ( ) ( ) ( )T d d
a e e e e p d a

    τ S M q C q K e e K e e f     (31) 

where 1( ) ( )T T S S S S  is the pseudo-inverse of TS , satisfying ( )T T  S S I . For the parallel 
manipulator with redundant actuation, the singularity is eliminated in the effective 
workspace (Shang et.al., 2010). Thus, the pseudo-inverse matrix ( )T S  will not be close to 
the singularity for this parallel manipulator with redundant actuation. 

3.3 Nonlinear computed torque control 

An obvious drawback of the traditional CT controllers is the elimination of the tracking 
error by linear PD algorithm. However, the linear PD algorithm is not robust against the 
uncertain factors such as modeling error and nonlinear friction. To overcome this problem, 
the NPD algorithm can be combined with the conventional control strategies to improve the 
control accuracy. The NCT controller developed in this chapter is designed by replacing the 
linear PD in the CT controller with the NPD algorithm. 
According to the NPD algorithm (13), based on the dynamic model (10), the control law of 
the NCT controller can be written as (Shang & Cong, 2009) 

  ( ) ( )d T
N e e e e a e p d    τ M q C q S f M K e e K e e     (32) 

The control law (32) can be divided into three terms according to the different functions. The 
first term is the dynamics compensation defined by the desired acceleration and the actual 
velocity of the end-effector, which can be written as 

 1
d

N e e e e τ M q C q   (33.a) 

The second term is the friction compensation, which can be written as 

 2
T

N aτ S f  (33.b) 

The third term is the tracking error elimination, which can be written as 

  3 ( ) ( )N e p d τ M K e e K e e   (33.c) 
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where ( )pK e  and ( )dK e  are symmetric, positive definite matrices of time-varying gains. 
From (15) and (16), ( )pK e  and ( )dK e  can be expressed as 

  1 11 1
1 1 2 2( ) ,p p pdiag k x k x

   K e  (34) 

  2 21 1
1 1 2 2( ) ,d d ddiag k y k y

   K e  (35) 

where pik , dik , 1,2i   are positive constant gains. The variables ,i ix y are determined by 
the following rules: if 1ie   , then i ix e , else 1ix   ; if 2ie   , then i iy e  , else 2iy   . 

1 , 2 , 1 , and 2 are the designed parameters which should be tuned in practice. 
In the following, the asymptotic stability of the parallel manipulator system controlled by 
the NCT controller (32) will be proven. 

Theorem 2: If the nonlinear gains ( )p K  and ( )d K  are defined by (34) and (35) respectively, 
the parallel manipulator system controlled by the NCT controller (32) is asymptotically 
stable. 
Proof: Choose the Lyapunov function candidate as 

 
0

1
( , ) ( )

2

TT
pV K d  

e
e e e e ξ ξ ξ    (36) 

where
1 2

1 1 1 1 2 2 2 20 0
( ) ( ) ( )

e eT
p p pd k d k d         

e

0
ξ K ξ ξ . Obviously, the first term in (36) is 

positive definite. In addition, the integral term can be interpreted as the potential energy 

induced by the position error-driven part of the controller. Next, one can prove that the 

second term in (36) is positive definite. Considering ( )pi ik e  is defined as 

 

1
1

1
1

,
( )

,

i

i

pi i i
pi i

pi i i

k e e
k e

k e

 

 

   
  

 (37) 

and define class   functions ( )i   as 

 1

1
1

,
( )

,

i

i

i i i
i i

i i i i

e e
e

e e



 

     
   

, and 0pi ik     (38) 

From (37) and (38), one knows ( ) ( )i pi i i ie k e e  . With the Lemma 2, one can get 

0
( ) 0

i

i

e T
i p i ik d    , and 

0
( )

T
p d  

e
Κ  as e . So one can get the integral term in 

(36) is a radically unbounded positive definite function. Thus ( , )V e e  is a positive definite 

function. Differentiating ( , )V e e  with respect to time yields 

 ( , ) ( )T T
pV  e e e e e K e e      (39) 

Combine the control law (32) and the dynamic model (10) and consider T
a NS τ τ , the 

closed-loop system equation can be written as 

  ( ) ( ) 0e p d    M e K e K e   (40) 
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Since eM  is uniform positive definite, then 1
e
M  exists and bounded, thus the closed-loop 

system equation (40) can be written as 

 ( ) ( ) 0p d    e K e K e   (41) 

Multiplying both sides of the above equation by Te , and then substituting the resulting 
equation into (39) yields 

 ( )T
dV   e K e    (42) 

As ( )d K  is a symmetric, positive definite matrix, then V  is a semi-negative definite matrix, 
thus the closed-loop system is stable. Considering the closed-loop equation (41) is 
autonomous system, and defining the region Ω  as 

 4: ( , ) 0
0

V
                       
           

e e e
Ω e e

e e
 

   (43) 

Thus 
0

0

   
   

   

e

e
 is the largest invariant set of : ( , ) 0V

      
   

e
Ω e e

e
 

 , and constitutes an 

asymptotically stable equilibrium point. By using the LaSalle’s theorem, one can get that the 
closed-loop system of the parallel manipulator is asymptotically stable. 

4. Nonlinear friction model and identification 

In this section, the friction compensation method based on a nonlinear friction model is 
developed for the parallel manipulator. This nonlinear friction model enables reconstruction 
of viscous, Coulomb, and Stribeck friction effects of the parallel manipulator. Identification 
experiments are carried out, and parameters in the nonlinear friction model are estimated by 
nonlinear optimization. 

4.1 Nonlinear friction modeling 

In order to reconstruct the nonlinear friction effect, the nonlinear friction model can be 
formulated as (Hensen et.al., 2000; Kostic et.al., 2004) 

 
3

2
1

2
( ) (1 ) , 1,2,3

1 k
v k

k

f B f k
e  


     


 

   (44) 

where the first term represents the viscous friction and vB  is the viscous friction coefficient. 
The other terms model the Coulomb and Stribeck friction effects. The parameters kf  
represent the magnitude of the Coulomb friction and the Stribeck curve. The parameters k  
determine the slope in the approximation of the sigmoid function in the Coulomb friction 
and the Stribeck curve. 
Obviously, the nonlinear friction model is an odd continuous function. Since )(f  is clearly 
zero at 0 , the model does not capture the static friction. The friction model does not 
describe stiction, because the system will always slide for an applied force unequal to zero. 
The stiction regime will be approximated, if the slope of the function near 0  is very 
steep. Then the model can still give acceptable simulation results, i.e., angular displacement 
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during stiction is neglectable. On the other hand, a continuous friction function will facilitate 
the numerical solution if such a model is used in parameter identification. 
In (44), there are three sigmoid functions. If more sigmoid functions are selected, the 
estimation accuracy with this model will be better, but the friction model will have more 
parameters and it will be more complicated. So for this nonlinear friction model, a suitable 
number of the sigmoid function is important. One can also analyze this problem with the 
neural network. The nonlinear terms in (44) can be constructed with a two layers neural 
network, i.e., one hidden layer and one output layer. Defining the weight matrices for the 
first and second layer as 1W  and 2W , the neural network output can be written as (Hensen 
et.al., 2000) 

 2 1 1 2( ) ( )Tf b b    W W θ  (45) 

where ib  represents the bias value for the neurons in the i-th layer and ( )  is a nonlinear 

operator with 1 2 3( ) [ ( ) ( ) ( )]Tx x x x    , the activation function 
2

2
( ) 1

1 x
x

e
  


. From 

(44), the parameter b1 and b2 are both zero. The weight matrix for the first layer and the 

second layer can be written as 1 1 2 3[ ]T   W and 2 1 2 3[ ]Tf f fW  respectively. As 

we known, increasing the number of the hidden neurons, the approximation performance 
with the network will be better. However, too many hidden neurons will make the network 
more complicated and the training time may be longer. In practice, suitable number of the 
hidden neurons should be selected. In order to model the nonlinear friction of the parallel 
manipulator, two hidden neurons are enough, that is to say two sigmoid functions will be 
selected. 
If the friction of the passive joints is neglected, according to (44), one can define the 

nonlinear friction model for the 2-DOF planar parallel manipulator as follows 

 
1 2

1 22 2

2 2
(1 ) (1 )

1 1i ai i ai
ai vi ai i i iq q

f B q f f d
e e      

   , 1,2,3i   (46) 

where the first term represents the viscous friction and viB  is the viscous friction coefficient 
of the ith active joint; id  represents the zero drift of the motion control board; the remaining 
terms model the Coulomb and Stribeck friction effects of the ith active joint. The parameter 

1if  and 2if  represent the magnitude of the Coulomb friction and the Stribeck curve. The 
parameters 1i  and 2i determine the slope in the approximation of the sigmoid function in 
the Coulomb friction and the Stribeck curve. 

4.2 Nonlinear friction identification 

In the dynamic model Eq. (10), the dynamic parameters can be calculated directly, and only 

the parameters in the nonlinear friction model Eq. (46) need to be identified. In Eq. (10), the 

mass, length and joint angles all united into the standard units. The corresponding torque 

has the unit N.m. Since the commanded torque for the motion control board of the parallel 

manipulator is digital value, the proportion should be obtained between the torque of the 

unit N.m and the commanded digital value of the torque (Shang et.al., 2008). Defining the 

dynamic torque ( ) ( )T
e e e e

  S M q C q D   and the proportion is k , the dynamic model Eq. 

(10) can be rewritten as 
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 a ak  D f τ  (47) 

Substituting the nonlinear friction model (46) into (47), one can define the optimization 
function J as follows 

 
1 2

2
3

1 22 2
1 1

2 2
( ) ( (1 ) (1 ) )

1 1
j j

i iai ai

N
j j j

vi i i iai i ai q q
j i

J k D B q f f d
e e 

 

 
            
  

  (48) 

where j
ai  and j

iD  represent the actuator torque and the dynamic torque of the ith active 
joint in the jth configuration respectively. And j

aiq  represents the velocity of the ith active 
joint in the jth configuration. 
The parameters viB , 1if , 2if , 1i , 2i , id , and the proportion k , a total of 19 parameters, are 

selected as the optimization variables. These parameters will be estimated by making the 

optimization function J minimum. Parameter optimization procedures are programmed with 

Matlab, and the nonlinear optimization function fmincon finding a constrained minimum of a 

function of several variables is called for in Matlab. In order to use the fmincon, the first step is 

set the initial value, the lower limit value and the upper limit value of the 19 optimization 

variables. Then (48) is defined as the optimized function of fmincon. The third step is getting 

the variables j
ai , j

iD , and j
aiq  in (48). Next we will give the procedures about getting the 

variables j
ai , j

iD , and j
aiq  in our actual identification experiment. 

In actual identification experiment, the end-effector of the parallel manipulator is driven to 
track a circular trajectory. The center coordinates of the circle are (0.29，0.25) and radius is 
0.07 , the unit is meter, this circle motion is repeated clockwise for 15 times. The parallel 
manipulator is controlled by the PD controller in the task space, the actuator torque is also 
the control input, thus j

ai  is a variable known. The control input is selected in the null-
space of the matrix TS , thus the actuator torque j

ai  in (48) is also in the null-space of the 
matrix TS . And this selection will make the control input used in the identification 
experiment minimum. For the parallel manipulator, only angles of the active joints can be 
measured directly by the absolute optical-electrical encoders. The angular velocity of the 
active joints is obtained by numerical differentiation of the active joint angles, and a low-
pass filter is adopted to filter the angular velocity signal, then we will get the variable j

aiq . 
The angular acceleration of the joints is obtained by numerical differentiation of the filtered 
angular velocity. With the velocity and the acceleration of the joints, and considering the 
kinematics of the parallel manipulator, the actual velocity and acceleration of the end-
effector can be obtained. Thus j

iD  can be calculated with these variables. With the actual 
values of the variable j

ai , j
iD , and j

aiq , the unknown parameters of the parallel manipulator 
are identified and results are shown in Table 1. 

4.3 Coulomb + viscous friction identification 

In order to compare with the nonlinear friction model, a common Coulomb + viscous friction 
model containing the viscous friction and Coulomb friction effect is established for the 
parallel manipulator. The friction model can be written as 

 ( )ai ai ci vi ai if sign q f f q d    , 1,2.3i   (49) 

where cif  represents the Coulomb friction; vif  represents the coefficient of the viscous 
friction; id  represents the zero drift of the motion control board. 
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parameters values parameters values parameters values parameters values 

k  508.7 21  -16.4 12  -18 23f  500 

1vB  892.8 1d  -2.6 22  5.1 13  -0.9 

11f  1040.1 2vB  1396.4 2d  -21.9 23  10 

21f  -268.0 12f  -309.0 3vB  402.6 3d  30 

11  0.7 22f  -61.8 13f  -867.7   

Table 1. Identification results of the nonlinear friction model. 

With the analysis of the identification of the nonlinear friction model, the corresponding 
work of the Coulomb + viscous friction model is much simpler. Substituting the Coulomb + 
viscous friction model (49) into (47), one can get a linear equation about the identified 
parameters as follows 

  1 2 3 1 1 1 1 2 2 2 2 3 3 3 3
T

v v v c c c c c c ak f f f d f d f d f d f d f d f      D K τ  (50) 

where 

 
1 1 1

2 2 2

3 3 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a

a

a

q u l

q u l

q u l

 
   
  

K





  

For simplicity, parameter combinations i cid f  and i cid f  are viewed as identified 
parameters, and the coefficients iu  and li of the parameters are determined by the following 
rules: 1, 0i iu l   when 0aiq  , and 0, 1i iu l   when 0aiq  . 
There are 10 parameters to be identified in Eq. (50), but only three independent equations 
can be got for each sampling point. So a group of linear equations about the unknown 
parameters can be got with the sampling data of a continuous trajectory, then the Least 
Squares method is used to identify the unknown parameters. 
The identification experiment designed for the Coulomb + viscous friction model is the same 
with the nonlinear friction model discussed in section 4.2. Identification results of the 
Coulomb + viscous friction model are shown in Table 2. 
 

parameters values parameters values 

k  512.7 1 1cd f  -261.7 

1vf  1534.8 2 2cd f  212.6 

2vf  1415.9 2 2cd f  -256 

3vf  1475.1 3 3cd f  179.2 

1 1cd f  248.5 3 3cd f  -129 

Table 2. Identification results of the Coulomb + viscous friction model 

5. Experiments 

As shown in Fig. 2, the actual experiment platform is a 2-DOF parallel manipulator with 
redundant actuation designed by Googol Tech. Ltd. in Shenzhen, China. It is equipped with 
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three permanent magnet synchronous servo motors with harmonic gear drives. The active 
joint angles are measured with absolute optical-electrical encoders. The nonlinear dynamic 
controllers and the friction compensation method are programmed with the Visual C++, 
and the algorithms run on a Pentium III CPU at 733MHz. with the sampling period 2ms. 
 

 

Fig. 2. The prototype of the 2-DOF parallel manipulator with redundant actuation 

5.1 Experiments of the ANPD controller 

The trajectory tracking control experiment is designed for the parallel manipulator to 

validate the ANPD controller. The desired trajectory of the end-effector is a straight line, the 

starting point is (0.22, 0.29) and the ending point is (0.37, 0.21), thus the motion distance is 

0.17m. The profile of the desired velocity is an S-type curve (Cheng et.al., 2003). In the 

experiment, the low-speed and high-speed motions are both tested. For the low-speed 

motion, the max velocity is 0.2m/s, the max acceleration is 5m/s2, and the jerk is 200m/s3. 

For the high-speed motion, the max velocity is 0.5m/s, the max acceleration is 10m/s2, and 

the jerk is 400m/s3. 

In order to implement the ANPD controller (17), the dynamic parameters in (18.a) and the 

friction parameters in (18.b) must be known. In the experiment, the nominal values of the 

dynamic parameters are used (Shang et.al., 2008). Then, with the known dynamic 

parameters, the friction parameters in the Coulomb + viscous friction model can be identified 

by the Least Squares method, as shown in Table 2. In fact, the control parameters in (18.c) 

are tuned and determined by the actual experiments. The procedures to tune the control 

parameters in (18.c) can be summarized as follows: 

1. Assume 1 2p p pk k k  , 1 2d d dk k k  . Let 0dk  , 1 1  , 2 1  , and increase the value 
of pk  from zero until the system show a little oscillation to some extent. 

2. Keep the value of pk  tuned well in the first stage, and increase the value of dk  to 
improve the dynamic performance further. 

3. Regulate finely the above two values and make tradeoffs between pk  and dk . 
4. Find the maximum error and error rate of the end-effector under the tuned value of pk  

and dk . 
5. In the ANPD controller, 1  and 2  are the threshold of the error and the error rate. If 

1  is tuned bigger than the maximum error, then the proportional gain ( )p ik e  will 
always equals to 1 1

1pk   ; and 1  is tuned close to 0, then ( )p ik e  will always equal to 
1 1

p ik e
 

. So, 1  should be made a tradeoff between the maximum error and 0 error. 
Similar method can be used to tune parameter 2 . From our actual experiences, the 
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value of 1  is tuned to the half value of the maximum error, and the value of 2  is 
tuned to the half of the maximum error rate. This choice has good control performance 
and it’s easy to implement. 

6. For the parameters 1 1   and 2 1  , the proportional gain ( )p ik e  is a constant of pk , 
and the derivative gains ( )d ik e  is a constant of dk . Thus the NPD algorithm can be 
considered as the linear PD algorithm. So decrease the value of 1 ( 10.5 1   ), and 
decrease the value of pk  at the same time to improve the error curve further, and make 
tradeoffs between the two values. Using this step, one can get the nonlinear 
proportional gain of the ANPD controller. 

7. Increase the value of 2 ( 21 1.5   ), and decrease the value of dk  at the same time to 
improve the error rate curve further, then make tradeoffs between the two values. 

Using the above procedures, the ANPD controller parameters are tuned as follow: 

 4500pk  , 470dk  , 4
1 3 10   , 3

2 3 10   , 1 0.7  , 2 1.1    

In order to make a comparison between the ANPD controller and the APD controller, the 
same tracking experiments are implemented on the parallel manipulator. We choose the 
APD controller is because it has nonlinear dynamics compensation and friction 
compensation. In the APD controller, the control input vector of the three actuated joints can 
be calculated as (Shang et.al., 2009) 

  ( )T d d
a e e e e lp ld a

    τ S M q C q K e K e f    (51) 

where lpK  and ldK  are both symmetric, positive definite matrices of constant gains. In the 
APD controller (51), eM  and eC  can be calculated with the nominal dynamic parameters, 
and af  can be calculated with the values of the friction parameters shown in Table 2. The 
procedures of tuning parameters lpK  and ldK  in APD controller are similar to the 
procedures of tuning parameters pk  and dk  in ANPD controller. Thus, the tuning 
procedures (1) to (3) can be used to tune the parameters lpK  and ldK . 
The experiment results of the APD and ANPD controller are shown in Fig. 3-4. Fig. 3a and 
Fig. 3b are the tracking errors of the end-effector at the low-speed on the X-direction and Y-
direction respectively. From the experimental curves, one can see that the ANPD controller 
can decrease the tracking errors during the whole motion process obviously, and the 
maximum error in the motion is smaller. Fig. 4a and Fig. 4b are the tracking errors of the 
end-effector at the high-speed on the X-direction and Y-direction respectively. One can find 
that the tracking errors are much smaller with the ANPD controller than with the APD 
controller, especially at the acceleration process. And one can conclude that, by the ANPD 
controller, the performance improvement of trajectory tracking accuracy at the high-speed is 
more obvious than at the low-speed. 
Furthermore, to evaluate the performances of the two controllers, the root-square mean 
error (RSME) of the end-effector position is selected as the performance index 

 

 

   

2 2

1

2 2

1

1
( ) ( )

1
( ) ( ) ( ) ( )

N

x y
j

N
d d

j

RSME e j e j
N

x j x j y j y j
N





 

     
 




 (52) 
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Fig. 3. Tracking errors of the end-effector at the low-speed: (a) X-direction; (b) Y-direction 
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Fig. 4. Tracking errors of the end-effector at the high-speed: (a) X-direction; (b) Y-direction. 

where ( )dx j  and ( )dy j  represent the X-direction and Y-direction position coordinates at the 
jth sampling point of the desired trajectory respectively; ( )x j  and ( )y j  represent the X-
direction and Y-direction position coordinates of the jth sampling point of the actual 
trajectory respectively. 
The RSME results of the trajectory tracking experiment of the ANPD and APD controller are 
shown in Table 3. From the data of the RPE (reduced percentage of error) in Table 3, the 
ANPD controller can increase the position accuracy of the end-effector above 30%, 
compared with the conventional APD controller. 
 

 at slow-speed(m) at high-speed(m) 

APD 1.04×10-4 4.55×10-4 

ANPD 7.22×10-5 2.78×10-4 

RPE 30.6% 38.9% 

Table 3. RSME of the APD and ANPD controller 

5.2 Experiments of the NCT controller 

In order to validate the NCT controller further, the trajectory tracking control experiment is 
designed for the parallel manipulator. Both the linear and circular trajectories in the 
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workspace are selected as the desired trajectory. For the linear trajectory, the starting point 
is (0.22, 0.19) and the ending point is (0.35, 0.29), thus the motion distance is 0.164m. The 
velocity profile of the linear trajectory is an S-type curve (Cheng et.al., 2003), the max 
velocity is 0.5m/s, the max acceleration is 10m/s2, and the jerk is 400m/s3. For the circular 
trajectory with the constant speed of 0.5m/s, the center is (0.29, 0.25) and the starting point 
is (0.29, 0.31), thus the radius is 0.06m. 

The actual implement of the NCT controller is similar to the ANPD controller, and the 
dynamic parameters in (33.a) and the friction parameters in (33.b) must be known. In the 
experiment, the nominal values are selected as the values of the actual dynamic parameters 
(Shang et.al., 2008). Then, with the known dynamic parameters, the friction parameters can 
be identified by the Least Squares method (Shang et.al., 2008). And the values of the control 
parameters in (33.c) are tuned and determined by the actual experiments. The tuning 
procedures for the ANPD controller can be used to tune the NCT controller. Using those 
procedures, the NCT controller parameters are tuned as follows: 2400pk  , 240dk  , 

4
1 3 10   , 3

2 3 10   , 1 0.7  , 2 1.1  . Moreover, to demonstrate that the NCT 
controller can improve the tracking accuracy of the end-effector, experiments using the CT 
controller are carried out as comparison (Shang & Cong, 2009). The CT controller is chosen 
because it has friction compensation and feedback dynamics compensation. In the CT 
controller, the control input vector of the three active joints can be calculated as 

     T d
a e e e e e lp ld ae e


    τ S M q C q M K K f    (53) 

where lpK  and ldK  are both symmetric, positive definite matrices of constant gains. 

In the CT controller (53), the dynamic parameters in eM  and eC , and the friction 
parameters in af  are the same with these of the NCT controller. The procedures of tuning 
parameters of lpK  and ldK  in the CT controller are similar to the procedures of tuning 
parameters of pk  and dk  in the NCT controller. Thus, the tuning procedures (1), (2), and (3) 
can be used to tune the parameters of lpK  and ldK . Using the above methods, the CT 
controller parameters are tuned as follows:  20000, 20000lp diagK , 

 150, 150ld diagK . 
The tracking error curves of the end-effector controlled by the CT and NCT controller are 
shown in Fig. 5-6. Fig. 5 is the linear trajectory tracking errors of the end-effector on the X-
direction and Y-direction. From the experiment curves, one can see that the NCT controller can 
decrease the tracking errors during the whole motion process obviously, and the maximum 
error in the motion is smaller. Fig. 6 is the circular trajectory tracking errors of the end-effector 
on the X-direction and Y-direction. From the curves one can see, the tracking accuracy is 
improved obviously using the NCT controller, compared with the CT controller. The RSME 
results of the trajectory tracking experiment of the NCT and CT controller are shown in Table 
4. From the data of the RPE in Table 4, the NCT controller can increase the position accuracy of 
the end-effector above 35%, compared with the conventional CT controller. 
 

 Line (m) Circle (m) 

CT 4.77×10-4 4.41×10-4 

NCT 3.08×10-4 2.59×10-4 

RPE 35.4% 41.3% 

Table 4. RSME of the CT and NCT controller 
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Fig. 5. Linear trajectory tracking errors of the end-effector: (a) X-direction; (b) Y-direction 
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Fig. 6. Circular trajectory tracking errors of the end-effector: (a) X-direction; (b) Y-direction. 

5.3 Experiments of nonlinear friction compensation 
In order to compare with the compensation performances of the nonlinear friction model and 
the Coulomb + viscous friction model, the trajectory tracking experiments are implemented on 
the parallel manipulator. In the actual experiment, the augmented PD (APD) controller is 
designed in the task space for the parallel manipulator (Shang et.al., 2009). In the APD 
controller, the control input vector of the three active joints can be calculated as 

  ( )T d d
a e e e e lp ld a

    τ S M q C q K e K e f    (54) 

where the term af  is the friction compensation calculated by the nonlinear friction model 
(46) with the parameter values in Table 1. Moreover, af  can be calculated by the Coulomb + 
viscous friction model (49) with the parameter values in Table 2. If the term af  is neglected 
in the APD controller (54), it means the friction compensation is not considered in the 
controller and the friction is ignored in the parallel manipulator. 
Both the straight line and the circle in the task space are selected as the desired trajectory to 
study the friction compensation. For the straight line, the starting point is (0.22, 0.29) and the 
ending point is (0.37, 0.21), thus the motion distance is 0.17m. The profile of the desired 
velocity is trapezoidal curve. In the experiment, both the low-speed and high-speed motions 
are implemented. For the low-speed motion, the maximum velocity is 0.2m/s and the 
acceleration is 5m/s2. For the high-speed motion, the maximum velocity is 0.5m/s and the 
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acceleration is 10m/s2. In the circle motion with constant speed, the center coordinates of the 
circle are (0.29，0.25) and radius is 0.04, also both the low-speed motion of 0.2m/s, and the 
high-speed motion of 0.5m/s are implemented. 
Linear trajectory tracking errors of the end-effector at the slow-speed and the high-speed are 
shown in Fig.7. From the curves one can see, the tracking errors are much smaller with the 
friction compensation methods based on the Coulomb + viscous model or the nonlinear 
model, compared with the without friction compensation method which means the term af  
is neglected in the APD controller (54). Especially, the maximum error at the acceleration 
process is decreased greatly with the friction compensation methods. Also one can see that, 
compared with the friction compensation based on the Coulomb + viscous model, the tracking 
accuracy has improved further at the low-speed, and the improvement at the high-speed is 
even more apparent by using the friction compensation based on the nonlinear model. 
Circular trajectory tracking errors of the end-effector at the slow-speed and the high-speed are 
shown in Fig.8. From the curves one can see, the tracking accuracy is improved obviously 
using the two friction compensation methods, compared with the without friction 
compensation method. Also one can see that, with the friction compensation based on the 
nonlinear model, the tracking error is decreased at the low-speed, and the improvement at the 
high-speed is more obvious than the friction compensation based on the Coulomb + viscous. 
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Fig. 7. Linear trajectory tracking error of the end-effector: (a) at the low-speed; (b) at the 
high-speed. 
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Fig. 8. Circular trajectory tracking error of the end-effector: (a) at the low-speed; (b) at the 
high-speed 
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Furthermore, the RSMEs of the trajectory tracking experiment are shown in Table 5. From 
the data in the table one can see, by using the two friction compensation methods, the 
RSMEs are much smaller than the method ignoring friction compensation. And the RSMEs 
of the friction compensation based on the nonlinear model are smaller than the friction 
compensation with the Coulomb + viscous model, especially when the speed is higher. 
 

Friction compensation 
method 

Straight line motion (m) Circle motion (m) 

0.2m/s 0.5m/s 0.2m/s 0.5m/s 

Without compensation 3.83×10-4 7.07×10-4 4.00×10-4 7.45×10-4 

Coulomb + viscous model 1.03×10-4 4.56×10-4 1.29×10-4 6.68×10-4 

Nonlinear model 8.88×10-5 2.71×10-4 9.53×10-5 4.49×10-4 

Table 5. RSME of the trajectory tracking experiments 

6. Conclusions 

In order to realize the high-speed and high-accuracy motion control of parallel manipulator, 
nonlinear control method is used to improve the traditional dynamic controllers such as the 
APD controller and the CT controller. The common feature of the two controllers is 
eliminating tracking error by linear PD control, and the friction compensation is realized by 
using the Coulomb + viscous friction model. However, the linear PD control is not robust 
against the uncertain factors such as modeling error and external disturbance. To overcome 
this problem, the NPD control is combined with the conventional control strategies and two 
nonlinear dynamic controllers are developed. Moreover, a nonlinear model is used to 
construct the friction of the parallel manipulator, and the nonlinear friction can be 
compensated effectively. Our theory analysis implies that, the proposed controllers can 
guarantee asymptotic convergence to zero of both tracking error and error rate. And for its 
simple structures and design, the proposed controllers are easy to be realized for the 
industry applications of parallel manipulators. Our experiment results show that, the 
position error of the end-effector decrease obviously with the proposed controllers and the 
nonlinear friction compensation method, especially at the high-speed. So the nonlinear 
dynamic controller and nonlinear friction compensation can realize high-speed and high-
accuracy trajectory tracking of the parallel manipulator in practice. Also these new methods 
can be used to other manipulators, such as serial ones, or parallel manipulator without 
redundant actuation to realize high-speed and high accuracy motion. 
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