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1. Introduction 

Nowadays, mobile robots are expected to carry out various tasks in all kinds of application 
fields ranging from manufacturing plants, transportation, nursing service, resource or 
underwater exploration. In all these applications, robots should navigate autonomously in 
uncertain and dynamic environments in order to achieve their goals. So, the most current 
challenge in the development of autonomous robot control systems is making them respond 
intelligently to changing environments. Navigation in such environments involves many 
mechanisms such as: object detection, perception, internal building model, decision making, 
prediction of the future state of the environment and on-line navigation. To attend its goal 
safely, the robot should minimise interaction with other actors in order to avoid conflict 
situations. Generally, this problem comes up when many robots and/or actors would have 
access to the same space at the same time. In this case, the control of autonomous robotic 
navigation for conflict resolution has been widely studied. Some researchers have been 
focused on navigation in dynamic environments, where either reactive systems (producing 
real time behaviour), deliberative systems (introduce reasoning and need much more time 
to calculate a suitable decision) or hybrid systems (combine deliberative and reactive 
approaches) have been used in order to attend a known goal.  
Typically, reactive systems are used to deal with simple problems (detect an obstacle, go 
away from an obstacle, follow a wall, etc.). Nevertheless, reactive systems are typically less 
affected by errors and do not require an explicit model of the environment in order to 
navigate inside an unknown space. Furthermore, they usually deal only with local 
information that may be captured at real time. However, in reactive systems, the robot can 
be derived to a conflict situation with other actors because they ignore prediction and 
reasoning in the decision process. To face this problem, global planning approaches are 
used. They consist of elaborating a global plan from beginning state to goal state. These 
approaches need prior complete information about the state of the environment, so they do 
not take into account the environment uncertainty. So, in more complex situations, hybrid 
approaches are used. They combine reactive approaches according to a higher level in order 
to include anticipation of the state of the environment in the decision process. In these cases, 
low level control operates in a reactive way (local navigation) whereas high level systems 
tend to be deliberative. It provides, at each step, a partial moving plan to the robot. But these 
systems are complex because they need much more time to calculate or to update a suitable 
trajectory toward a predefined goal. In this situation, it is interesting to introduce prediction 
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in reactive schemas, without using planning techniques, in order to consider the 
environment’s evolution in the future.  
To deal with uncertainty, autonomous navigation involves using systems for navigation 
control that must be not too computationally expensive, as this would result in a sluggish 
response. In this case, we choose the fuzzy logic technique because it is faster when the 
frequency of the environment’s changes is high. 
In the field of multi-agent systems, several works have encouraged researchers to develop 
models simulating robot's behaviours in order to achieve a known target (Posadas et al., 
2008). They are more flexible and fault tolerant as several simple agents are easier to handle 
and cheaper to build. Indeed, the  term  “agent” has been defined as hardware or a software  
system  with certain properties such as autonomy, social ability, reactivity and pro-activity 
(Ferber, 1995). In fact, there are similarities between robot and agent because they share the 
same characteristics. So, the mapping from a robot to an agent seems straightforward 
because each robot represents a physical entity, independent from other robots, with a 
specific task. 
In this paper, we present a reactive anticipation model based on fuzzy logic that takes into 
account: (1) the reactive navigation in an environment composed of local minimum and 
moving obstacles, and (2) the anticipation of blocking situations and the prediction of the 
nature, the velocity and the position of obstacles in the future. This information is used to 
predict conflict situations without using a motion planning method. In order to validate our 
work, we evaluate our approach by simulating various scenarios. We also give a comparative 
study between results obtained by our model and those of some other approaches. 
In the remainder of the article, we give, in section 2, an overview of the existing approaches 
for conflict resolution applied to autonomous robot navigation. In section 3, we present the 
most used techniques to deal with the uncertainty of perception and we justify our choice of 
the fuzzy logic method. In section 4, we describe our model that combines reactivity with 
anticipation in order to deal with the problem of conflict resolution without using a motion 
planning. In Section 5, we present our experimental results. Finally, we conclude in section 6 
and we give perspectives for this work. 

2. Existing approaches for conflict resolution 

When navigation occurs in an environment that is totally or partially unknown or even 
dynamically changing, higher degree of autonomy for a mobile robot is required. Thus, a 
mobile robot should be able to take decisions on-line and to minimise conflict situations in 
such uncertain and dynamic environments using only sensors’ limited information. 
In this context, a wide range of approaches have been adopted to suggest solutions to the 
problem of space conflict when a robot shares the same environment with other actors.  

2.1 Reactive approach 

Many reactive approaches have been proposed to resolve the problem of autonomous robot 
navigation. In the following, we mention the most important among them. 

 Potential Fields (Huang et al., 2006; Khatib, 1986): this approach relies on creating an 
artificial repulsion field around obstacles and an attraction field around the goal.  

 Vector Field Histogram (Ulrich & Borenstein, 2000): it uses a heading dependent 
histogram to represent the obstacle’s density. So, the robot can move in the direction 
where there are less obstacles in order to minimise its interaction with them.  
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 Dynamic Window (Fox et al., 1997) and Curvature Velocity (Simmons, 1996): they 
search a space of the robot’s translational and rotational velocities. Obstacles near the 
robot are transformed into this space by eliminating all commanded velocities that 
would cause a collision within a certain time period. Both these methods take into 
account the kinematics and the dynamics of the robot. Commanded velocities are 
chosen based on an objective function that considers both progress towards the goal 
and robot safety.  

 Nearness Diagram (Minguez & Montano, 2000): it consists in analysing a situation from 
two polar diagrams. One diagram is used to extract information of environmental 
characteristics and identify the immediate goal valley. The second diagram is used to 
define the safety level between the robot and the obstacles by identifying the closest 
one. 

 Elastic Bands (Quinlan & Khatib, 1993): this method modifies the trajectory of the robot, 
originally provided by a planner, by using artificial forces which depend on the layout 
of the obstacles in the way.  

 Behaviour-based methods (Jing et al., 2003; Langer et al., 1994): they define 
fundamental behaviour sets and establish mappings between sensors’ information 
under different situations and reactive behaviours of the mobile robot. The reactive 
behaviour of the robot can be regarded as a weighted sum of these fundamental 
behaviours or can be chosen from the behaviour set according to an evaluation 
function.  

 The Velocity Obstacles method (Fiorini & Shiller, 1998): the moving obstacle is 
transformed into a velocity obstacle. This approach uses the distance between robot 
and obstacle to minimise conflict at real time. It is considered as a mapping between 
sensory data and control commands without introducing reasoning in the decision 
process.  

The main drawback of these strategies is that the robot gets into an infinite loop or local 

minimum when it is moving among multiple obstacles or in conflict situations when it 

shares the same resource with moving obstacles. To overcome this problem, many methods 

are proposed. We mention: 

 Memory state method that uses a state memory strategy (Zhu & Yang, 2004). The 
variables from which this method makes ultimate decisions are: “the distance between 
the robot and the target” and “the distance between the robot and the nearest obstacle”.  

 Minimum risk approach is based on trial-return behaviour phenomenon (Omid et al., 
2009; Wang & Liu, 2005).  

 Virtual wall method directs the robot away from the dead-end by placing a virtual wall 
that bars the limit cycle path (Ordonez et al., 2008). However, these strategies do not 
take into account the dynamic nature of the environment and the uncertainty of 
perception. So the robot can be driven into dangerous or conflict situations. 

2.2 Global planning approach 

Hence, other approaches applied in dynamic environments are proposed with the idea of 

combining the reactive techniques with global planning methods (Stachniss & Burgard, 

2002). At the beginning, a complete plan from present state to goal state is computed. These 

approaches need prior complete information about the state of the environment, so they do 

not take into account the uncertainty. 
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To face this limit, deliberative approaches are appeared. They use a global world model 

provided by user input or sensory information to generate appropriate actions for the 

mobile robot to reach the target (Pruski & Rohmer, 1997). This kind of approach enables 

prediction and reasoning in the decision process by considering the current information 

and the past information (Nilsson, 1980; Sahota, 1994). The deliberative control 

architecture comprises three modules: sensing, planning and action modules. First, robot 

sense it’s surrounding and creates a world model of static environment by combining 

sensory information. Then, it employs planning module to search an optimal path toward 

the goal and generate a plan for robot to follow. Finally, robot executes the desired actions 

to reach the target. After a successful action, robot stops and updates information to 

perform the next motion. Then, it repeats the process until it reaches the goal. It can 

coordinate multiple goals and constraints within a complex environment (Huq et al., 2008; 

Yang et al., 2006). 

However, in deliberative navigation, accurate model of environment is needed to plan a 

globally feasible path. The computational complexity of such systems is generally too great 

to attain the cycle rates needed for the resulting action to keep pace with the changing 

environments (it is difficult to obtain a completely known map). To perform necessary 

calculations, enormous processing capabilities and memory is needed. 

Therefore, these approaches are not proper in the presence of uncertainty in dynamic or real 

world. 

2.3 Hybrid approach 

In more complex situations, other control architectures appeared (Oreback & Christensen, 

2003), including the anticipation in the decision process. This combination is known as 

hybrid architecture (Arkin, 1990) which has two levels: reactive and deliberative. The 

deliberative level has to determine and offer the reactive level those behavioural patterns 

that are necessary for the robot to achieve its objectives. The reactive level has to execute 

these behavioural patterns by guaranteeing real-time restrictions (Fulgenzi et al., 2008; 

Fulgenzi, 2009). 

Practically, these methods are more complex and require more time calculations. They 

usually use local methods of obstacle avoidance in order to expand the tree and cover the 

search space. However, local methods are less suited to dynamic environments (Minguez et 

al., 2002). 

In (Schwartz & Sharir, 1983), a general algorithm was developed. It is doubly exponential 
time, this limit has been lowered by the Canny algorithm described in (Canny et al., 1990) 
whose running time is exponential in dimension. 
The algorithm D* proposed by Stentz (stentz, 1995) is a generalisation of the A* search 
algorithm in the case of partially known environments. In a finite discretized configuration 
space, the initial cost of shipping is to move from one configuration to another. A path is 
first found, and then the robot begins to execute it. If a change in the cost of a path is 
detected, only the relevant configurations are considered and the optimal path is updated in 
less time. 
Partial motion planning (PMP) (Petti & Fraichard, 2005), the algorithm explicitly takes into 

account the computation time, constraints and problems safety of navigation in dynamic 

environment. A tree is grown using a conventional algorithm based on sampling. A node is 

added to the tree if there is not an inevitable consequence collision. This enables PMP to 
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provide a safe partial path at any time. During the execution of this partial path chosen, 

another partial path is developed from the end of the previous path developed. This method 

is applied at real time in dynamic environments, but its major drawback is that it does not 

consider the uncertainty of the information collected. So it can produce non-executable 

partial paths. 

2.4 Multi-agent systems and robotic simulation 

In the field of multi-agent systems, several works have encouraged researchers to develop 
models simulating robot’s behaviours in order to achieve a known target. In fact, there are 
similarities between robot and agent. So, the mapping from a robot to an agent seems 
straightforward because each robot represents a physical entity, independent from other 
robots, with a specific task. Hence, multi-agent simulations models are widely used to solve 
problems in mobile robotics under dynamic environments. In this way, many approaches 
are using multi-agent systems to simulate and control autonomous mobile robot in order to 
resolve the problem of space’s conflict by minimising the interaction with agents. For 
example, (Ros, 2005) proposes a multi-agent system for autonomous robot navigation in 
unknown environments. In this work, the authors use the case-based reasoning (CBR) 
techniques in order to solve the problem of local minimum and avoid only static obstacles. 
In (Ono, 2004), a multi-agent architecture is also proposed to control an intelligent 
wheelchair. It takes into account only three behaviours: obstacle avoidance (using distance), 
door passage and wall following. However, it cannot combine behaviours together and it is 
applied only in static environment. In (Innocenti, 2007), a multi-agent system is proposed as 
the robot control architecture divided into four sub-systems of agents: perception, 
behaviour, deliberative and actuator. This architecture is applied in static and dynamic 
environments and uses the distance between the robot and the moving obstacle in order to 
predict conflict situations. But this information gives a limited knowledge about the state of 
the environment and does not allow the robot to take an intelligent decision while 
navigating in a dynamic and unknown environment. In (Posadas et al., 2008) a multi-agent 
system is proposed to control the navigation of robot by using a hybrid approach (it uses a 
motion planning). The architecture is composed of two levels; reactive and deliberative. The 
communications between these levels are assured by the agents. 

2.5 Discussion 

Reactive systems are applied in local navigation and used to deal with simple problems. 
Nevertheless, reactive systems are typically less affected by errors and do not require an 

explicit models of the environment in order to navigate inside an unknown space. 
Furthermore, they usually deal only with local information that may be captured at real 

time. However, reactive systems may fall into local traps or blocking situations because they 
ignore prediction and reasoning in the decision process. For this reason, the robot can be 

derived to a conflict situation with other actors sharing the same space. In more complex 
situations, they are combined according to a higher level in order to include anticipation in 

the decision process. In these cases, low level control operates in a reactive way (local 
navigation) whereas high level systems tend to be deliberative and use motion planning 

method to update the trajectory when there are modifications in the state of the 
environment. These approaches are called hybrid approaches and are well applied in 

uncertain and dynamic environments by producing, at each step, a motion planning method 
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that minimise the conflict (Petti & Fraichard, 2005). Nevertheless, building a movement 
planning requires an important computation time in order to find the most appropriate way. 

However, if the frequency of environment’s changes is high, the use of a planning method 
becomes not only inefficient, but also useless (if the robot generates plans without using 

them). 
So, in this situation it is interesting to introduce prediction in reactive schemas in order to 

consider the environment’s evolution in the future. Hence, the main concern of this paper is 

to propose a model that combines reactivity and anticipation in order to resolve the problem 

of conflict without using a motion planning. Thus, the robot should anticipate the nature 

and velocity of the obstacles in order to minimise interactions. We use the multi-agent 

system to simulate the robot’s behaviour because there is a mapping between robots, while 

navigating in dynamic environments, and multi-agent systems. 

3. Autonomous navigation in uncertain environment 

Autonomous navigation in an uncertain environment involves using systems for navigation 

control that must not be too computationally expensive, as this would result in a sluggish 

response. In this case, soft computing methods have played important roles in the design of 

the robot controllers. The commonly used soft computing methods are: Bayesian Networks 

and Fuzzy Logic. 

3.1 Bayesian networks 

Bayesian Networks are models which capture uncertainties in terms of probabilities that can 

be used to perform reasoning under uncertainty. It epitomises probabilistic dependency 

models that represent random stochastic uncertainty via its nodes (Darwiche, 2009). The 

Bayesian inference has been widely used especially in the localisation problem (Thrun, 

1998), in the mapping and in the learning mechanisms in mobile robotics. But this technique 

is very slow and complex (NP-Complex) because it uses a probabilistic reasoning that 

require much more time to choose a suitable decision. Also, this technique requires a causal 

model of reality that is not always given. So, its application in autonomous navigation in the 

case of dynamic environments can be unprofitable. 

3.2 Fuzzy logic technique for autonomous navigation 

Fuzzy Logic (FL) has been investigated by several researchers to treat the problem of 

uncertainty in perception. This technique represents uncertainty via fuzzy sets and 

membership functions. It gives robustness to the system with respect to inaccuracy in data 

acquisition and uncertainty, and makes definition behaviour and their interactions quite 

easy by using simple linguistic rules (Klir et al., 1997; Sajotti et al., 1995). It also allows 

implementing of human knowledge and experience without requiring a precise analytical 

model of the environment. Probably, the greatest strength of behaviour-based fuzzy 

approaches is that they operate on/and reason with uncertain perception-based 

information, which makes them suitable even for difficult environments. 

We present in table 1 comparison results between the characteristics of the Bayesian 
Networks and the Fuzzy Logic. According to this comparison study, we can conclude that 
the fuzzy logic technique is faster, easier to implement and well applied to autonomous 
robot navigation. 
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 Fuzzy Logic Bayesian Network 

Complexity Simple rules NP-complex 

Reasoning Fuzzy reasoning Probabilistic reasoning 

Application Avoidance collision Localization and mapping 

Controller Fuzzy inference Bayesian inference 

Rapidity Fast (simple rules) Slow 

Table 1. Comparison between fuzzy logic and Bayesian network. 

However, the majority of existing fuzzy logic methods deal only with static environments, 

and only use the distance between the robot and the obstacle to avoid collision and to 
minimise conflict with other agents sharing the same space (Bonarini et al, 2003; Selekwa et 

al., 2008). This kind of information gives a limited knowledge about the state of the 

environment, so the robot cannot take intelligent decisions. For this reason, in our work, we 
adopt a fuzzy logic technique to deal with uncertainty. We propose a fuzzy model for 

autonomous navigation in a dynamic and uncertain environment based on the nature and 
the velocity of obstacles. 

4. Proposed approach 

According to Ferber (Ferber, 1995), a multi-agent system is composed of:  
1. An environment ‘E’,  
2. A set of objects ‘O’ in ‘E’,  
3. A set of agents ‘A’ in ‘E’,  
4. A set of relationships ‘R’ between agents,  
5. A set of operation ‘op’ enabling agents ‘A’ to collect, produce, consume and manipulate 

objects of ‘O’. 
Basing on this definition, we define our multi-agent system as a set of objects which 
represent the static objects (have a fixed position) and a set of agents (have a moving 
position) that represent dynamic objects and the robots. In our model, the principal agent is 
the “robot”. It has its own physical parts including sensors, processors, actuators and 
communication devices. So, in order to guarantee the safety of the mobile robot, it should be 
able to navigate by minimising interactions with the other agents navigating in the same 
space in order to minimise conflict and to achieve a known goal. 
This section is organised as follows. We present in subsection 4.1 the perception model of 
the robot. It allows the robot to perceive its environment in order to take the suitable 
decision autonomously. In subsection 4.2, we present the kinematic model of the robot. It 
allows the robot to localise in its environment. In subsection 4.3, we describe the principle of 
the fuzzy controller technique. In subsection 4.4, we present our fuzzy controllers model. 
The first controller is described in subsection 4.4.1. It allows the robot to determine its 
angular velocity. The second controller is presented in subsection 4.4.2. It allows the robot to 
calculate its linear velocity. We present in subsection 4.4.3 the system rules applied in our 
fuzzy controllers used to avoid conflict situations.  
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4.1 The perception model 

One of the ultimate goals of robotics is to realise autonomous robots that are able to organise 
their own internal structure and to achieve their goals through interactions with 
dynamically changing environments. The robot should take decisions on-line using only 
sensors providing limited information (without prior information about the position of 
obstacles and their trajectories) when it navigates autonomously in dynamic spaces.  
Our main objective is to make the robot able to predict the nature and the velocity of 
obstacles (static or moving) in order to minimise conflict situations, to avoid collision and to 
achieve a specific goal. At this stage, we use a perception model composed of eight 
ultrasonic sensors. We choose this type of sensors because it has some attractive properties, 
e.g. cheapness, reliability and soon, which makes it widely used in mobile robots. This type 
of sensor calculates the distance between the robots. 
According to this model of perception, we divide the robot’s space into three subspaces 
controlled by three groups of sensors (see figure 1). The subspaces are: (1) the front area “F” 
controlled by the first group composed of sensors number 1,2,7,8, (2) the left area “L” 
controlled by the second group composed of sensors number 3, 4, and (3) the right area “R” 
controlled by the third group composed of sensors number 5, 6. 

 

 

Fig. 1. The Robot’s perception areas. 

4.2 The kinematic model 

In this study, the mobile robot is a system, which is subject to non holonomic constraints. Its 
position in the environment is represented by P=(x,y,θ), where (x, y) is the position of the 
robot in the reference coordinate system XOY, and the heading direction θ is taken counter 
clockwise from the positive direction of X-axis (see figure 2). X’O’Y’ is the reference 
coordinate according to the robot system. It allows the robot to locate the objects in the 
environment. 
The robot is composed of two wheels (left and right). The velocity, acceleration and 
orientation angle of the robot is assured by the fuzzy controllers. 
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Fig. 2. Robot’s kinematic model. 

4.3 The fuzzy controller 

A Fuzzy Controller (FC) is a control system, whose input is the output of the process to be 

controlled (sensory data, internal state). Its outputs are commands for the actuators of the 

process. The ranges of the input and output parameters/variables are represented by 

membership functions and fuzzy sets. In addition, the interactions between input and 

output variables/parameters are represented by fuzzy rules. In a nutshell, system input 

parameters and variables are encoded into fuzzy representations using well defined 

“If/Then” rules which are converted into their mathematical equivalents. These rules would 

then determine actions to be taken based on Implication Operators such as Zadeh Min/Max 

(Zadeh, 1973), or Mamdani Min (Mamdani, 1974). The fuzzified data is then put through a 

defuzzification process via Center of Gravity, Center of Sum or Mean of Maxima methods to 

obtain actual commands for the actuators of the process. 

In our work, we use the Mamdani fuzzy inference methodology in order to provide the 

adequate way of modelling the relevance of the controller. For the defuzzification process 

we choose the Center of Gravity method by applying the formula 1. The crisp value U* is 

the geometrical center of the output fuzzy value µ(y), where µ(y) is the union of all the 

contributions of rules whose Degree Of Freedom (DOF) is more than zero, y  is the universe 

of discourse and b is the number of samples. 

U* =
∑ μ(y)×yb

i=a∑ μb
i=a (y)

 (1)

4.4 The principle of the behaviour controller based on Fuzzy Logic 

The use of fuzzy logic in the design of autonomous navigation behaviours is nowadays 
quite popular in robotic. The set of behaviours that are being implemented can include, for 
example, the following of walls, corridors or the avoidance of obstacles. However, usually 
the existing fuzzy logic methods use only the distance between the robot and the obstacle in 
order to avoid conflicts and so deal with static environments. 
We propose a fuzzy model for the navigation in dynamic and uncertain environments based 
on“the nature” and “the velocity” of obstacles. For example, if there is an obstacle in front of 
the robot, it is more logical to reason about its velocity. In fact, the distance between the 
robot and the obstacle allows it to immediately change the trajectory without taking into 
account the obstacle nature (mobile or static) and whether the obstacle is going in the same 
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direction of the robot or not. In contrast, the velocity allows the robot to predict if there is 
conflict in the future. In the reminder of this section, we present robot behaviour modules 
implemented as fuzzy logic controllers. Each behaviour module receives data input that 
describes the situation and produces an output to be addressed to the actuators. Our fuzzy 
architecture is composed of two fuzzy controllers. The first controller is in charge of 
determining the angular velocity of the two wheels. This controller allows the robot to 
change its angular orientation based on the prediction of the nature of the obstacle, in order 
to avoid conflict and to move closer to its target. The second controller uses the velocity of 
the obstacle. It is in charge of determining whether the robot's speed should be increased 
(accelerate its speed if there is a free space) or decreased (minimise its speed if there is an 
obstacle in its trajectory). 

4.4.1 Obstacle nature prediction: Time collision concept 

Typically ultrasonic sensors calculate the distance between the robot and the obstacle and 
therefore they do not provide information about the obstacle’s nature (mobile or static) and 
its position in the future state. However, this kind of information is necessary to predict 
conflict situations in the future. In order to overcome this problem, in our work, the robot 
uses this distance to calculate new information called “Time Collision” between the robot 
and the obstacle. 
The Time Collision (TC) represents the time left for the robot before a collision occurs with 
an obstacle. In order to predict the nature and the position of the obstacle in the future, the 
robot operates as follows. At time Ti, the robot should observe its environment (using the 
perception model). If it detects an obstacle, it calculates a Time Collision Needed (TCN) 
representing the time required to collide with this obstacle in the future while keeping the 
same velocity (see figure 3). At time Ti+1, it repeats the same procedure to recalculate a 
Time Collision Remaining (TCR) representing the time required to collide the same obstacle 
in the future while keeping the same velocity (see figure 3). The TC can be obtained by 
applying the formula 2. Di represents the distance between the robot and the obstacle at 
time Ti, and VRi represents the velocity of the robot. 

 TC=Di/VRi (2) 

 

Fig. 3. Illustration of “the Time Collision”. 

From these two values, the robot can calculate a Difference Time Collision (DTC) with this 
obstacle by applying formula 3. If the DTC is equal to zero, it means that the obstacle in the 
trajectory of the robot is static. In this situation, the robot should immediately change its 
direction in order to avoid local minimum. If the DTC is positive, then the obstacle is 
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considered as a mobile one. In this situation, the robot can expect that the trajectory will be 
free after a period of time and then it does not need to change its direction. If the DTC is 
negative, then obstacle is mobile and it is going towards the robot. In this case, the robot 
should minimise its velocity in order to avoid conflict with this obstacle, and then decide to 
change the direction completely if it is possible (moves to another subspace, which is safe), 
or wait until this mobile object moves away (the current subspace will be free), if there is no 
other free subspace. 

 DTC=TCN-TCR (3) 

The advantage of this information is that it allows the robot not only to avoid collision and 

local minimum at real time with obstacles around it, but also to anticipate their natures and 

their positions in the future so as to predict conflict situations. 

We present in figure 4 the FLC of angular velocity. We describe four linguistic variables that 

are: the DTCL, DTCF, DTCR, and TO. These variables represent respectively: the difference 

time collision on the left, the difference time collision in the front, the difference time 

collision on the right and the current target orientation between the robot and the goal. Each  

 

Fig. 4. Fuzzy controller of heading angular 

DTC have two membership functions: Fixed Obstacle and Moving Obstacle. The DTCL is 

used to control the left area. We present in algorithm 1 the reasoning process of the robot 

that is used to predict the nature of the nearest obstacle in this area. Thus, if the DTCL is  

 

1:  if (DTCi) ≤ the time interval Δ then 

2:        The obstacle is static 

3:  else 

4:       The obstacle is mobile 

5:         Free space 

6:  end if 

Algorithm 1. The robot’s behaviour is based on the prediction of the nature of the obstacles 
in left and right areas 

smaller or equal to Δ (the time interval between two successive perceptions) it means that 
the obstacle is static; else it is considered as mobile. We can obtain the value of this variable 
from the formula 4. The same reasoning process is applied to the right area based on the 
DTCR that can be obtained from the formula 5. The value of DTCF variable can be obtained 
from the formula 6. Algorithm 2 describes the reasoning mechanism of the robot that is used 
to predict the nature of the nearest obstacle in the front area. For example, if the DTCF is 
equal to zero, this means that the obstacle is static. Therefore, the robot should change its 
trajectory immediately in order to avoid collision. Otherwise, if the DTCF is equal to 
infinity, this means that the space is free. In order to move toward a specific goal, the robot  
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1:  if (DTCF) =0 then 

2:       The obstacle is static. The robot should change its trajectory 

4:  else 

5:      if ((DTCF)>0) and ((DTCF) < + ∞) then 

6: The obstacle is mobile and it is moving away from the robot. 

7:       else 

8: if ((DTCF) <0) and ((DTCF)> −∞) then 

9: The obstacle is mobile and it is going toward the robot. 

10: else 

11: if (DTCF) =- ∞ then 

12: The space is considered as free at ti 

13: else 

14: if (INF (DTCF) =+ ∞ then 

15: No obstacle in front of the robot. Free space 

17: end if 

18: end if 

19:               end if 

20:        end if 

21: end if 

Algorithm 2. The robot’s behaviour is based on the prediction of the nature of the obstacles 
in front area 

should have an idea about the area in which the target exists. For this purpose, the TO which 
gives an idea about this position is combined with the DTC for each area in order to reach a 
compromise between “avoid conflict” and “reach goal”. The TO has three membership 
functions that are: L: Left, F: Front, R: Right. The output of this controller is the angular 
velocity, it has five membership functions: LLT: Large Left Turn, SLT: Small Left Turn, NT: No 
Turn, SRT: Small Right Turn, LRT: Large Right Turn. Note that figure 5 describes the input of 
the fuzzy sets involved in the definition of the heading angular. Figure 6 describes the output 
variable for the angular velocity. 

 DTCL = Sup (DTCLi) where i=3, 4 (4) 

 DTCR = Sup (DTCRi) where i=5, 6 (5) 

 DTCF = Inf (DTCFi) where i=1, 2, 7, 8 (6) 

 

 

Fig. 5. The definition of angular velocity input membership functions. 
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Fig. 6. The definition of angular velocity output membership functions. 

4.4.2 Linear velocity prediction: Obstacle velocity concept 

The fuzzy controller for angular velocity uses the DTC that gives information about the 
nature of an obstacle and its trajectory. So, the robot is able to predict the future situation of 
the environment if it keeps moving in the same direction. While the second fuzzy controller 
for linear velocity uses the obstacle’s velocity in the front area. This information determines 
whether the robot’s speed should be increased or decreased to respond to the nearest 
situation detected. 
Hence, the obstacle’s velocity can be calculated according to formula 7 where D represents 
the distance travelled by the obstacle during the time interval Δ. 

 ϑ = D/Δ (7) 

The distance D is calculated according to formula 8 where Xc and Yc represent the 

coordinates of the obstacle at time ti and X'
c and Y'

c represent the coordinates of the obstacle 
at ti+Δ (see figure 7). The coordinates are obtained according to formula 9. 

 D=ට(Xc-Yc)
2
+(X'c-Y'c)

2

 (8) 

 

 

Fig. 7. Illustration of distance traversed by the obstacle. 

 

Xc=Xa+൫Xb-Xa൯ cos θ -(Yb-Ya) sin θ 

Yc=Ya+ሺYb-Yaሻ cos θ+(Xb-Xa) sin θ
(9)Cord= 
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We present in figure 8 the fuzzy logic controller for the linear velocity. This controller 
determines whether the robot’s speed should be increased or decreased. It is used to 
determine the speed change Δϑ (the linear velocity). 

 

Fig. 8. Fuzzy controller of speed change 

The D, ϑO, and the ϑR represent respectively the distance between the robot and the nearest 
obstacle in the front area, the velocity of the nearest obstacle in the front area and the current 
velocity of the robot. The input and output membership functions of the fuzzy controller for 
linear velocity are shown respectively in figure 9 and figure 10. 

 

 

Fig. 9. Input membership functions for the linear velocity 

 

Fig. 10. Output membership functions. Velocity up/down control. 

So, the speed of the robot can be influenced by the velocity of the obstacle in the front area. 
We present in algorithm 3 the reasoning process of the robot used to predict the velocity of 
the nearest obstacle in this area in order to determine its velocity. For example, if the 
velocity of the obstacle is smaller than the velocity of the robot, then the robot decreases its 
speed in order to avoid collision in the near future. If the velocity of the obstacle is larger 
than the velocity of the robot, the robot keeps the same speed if its velocity and the velocity 
of the obstacle are close. However, if there is a difference between the speed of the robot and 
the obstacle, it accelerates. 
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1:  if (VO) =0 then 

2:       The obstacle is static 

3:       The robot must minimise its acceleration. 

4:  else 

5:      if (VO < VA) then 

6:              Reduce the velocity of the robot in order to avoid conflict in the near future. 

7:       else 

8: if (VO > VA) then 

9:                 Keep the same speed if the velocity of the robot and the velocity of the 

obstacle      10:               are close or accelerate if they are different. 
11: else 

12:                       Keep the same speed. 

13:               end if 

14:        end if 

15: end if 

Algorithm 3. The velocity of the robot according to the concept of the velocity of the obstacle 

4.4.3 Fuzzy system rules 

Robot navigation is actually governed by rules in the fuzzy controller which represent 

qualitatively the human driving heuristics. The fuzzy logic controllers are applied to 

coordinate and to combine the various behaviours of the robot in order to choose a suitable 

decision. The fuzzification converts the input variables into input grades by means of the 

membership functions shown in figure 5 and figure 9. The inference and aggregation 

generate a resultant output membership function with respect to fuzzy rules. The 

defuzzification gives the output membership function shown in figure 6 and in figure 10. 

Therefore, the total number of rules to determine the angular velocity is N= 24. We can 

reduce this number into 9 if-else rules by eliminating redundancies (rules that have different 

values of input variables and the same value of the output variable can be replaced by one 

rule). We present in table 2 the fuzzy rules for the angular velocity. For example, if DTCF=M 

(the obstacle in the front area is moving) and TO=F (the target is in front area) then Δθ=NT 

(the robot do not change its trajectory) whatever the value of DTCL and DTCR. Likewise, for 

the linear velocity there are N=18 rules, but we can reduce them into 9 if-else rules. 
The use of a small number of rules is required in dynamic environments, this is especially 
important when a fast response to the changes is required (short execution and high 
frequency of sensor readings). We use the method of Center of Gravity Defuzzification to  
 

DTCF F M 

DTCL F M F M 

DTCR F M F M F M F M 

TO 

F LRT LRT SLT SLT NT NT NT NT 

L LRT LRT LLT LLT NT NT LLT LLT 

R LRT LRT LRT LRT NT LRT NT LRT 

Table 2. The fuzzy rules for the angular velocity. 
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calculate the output for the two controllers. The constants of output membership function 
for the first controller (angular velocity) are shown in figure 6 and the values of the 
constants of output membership function for the second controller (linear velocity) are 
shown in figure 10. During simulation work, the robot’s normal velocity VN is set to 0.5m/s. 

5. Experimentation results 

The robot calculates a “TC” with each obstacle around it. The value of “TC” allows it to 
predict the nature of each obstacle (static or dynamic). Then, the robot can calculate the 
velocity of each obstacle in order firstly to anticipate the state of the environment in the 
future and therefore to adjust its speed in order to avoid collisions. 
In order to prove the efficiency of the proposed model, we proceed as follows. In a first time, 
we test our method in static environments (composed of U-shape and T-shape obstacles). 
Having obtained valid results, we achieve, in a second time, tests in dynamic environments 
(including moving robots). We have used the Simbad simulation platform. 

5.1 The parameters of the robot and the controller in simulation 

In simulation, the parameters of the robot are: the maximum linear velocity ϑmax = 1m/s 
and the maximum angular velocity θmax = 45/s. The height of the mobile robot is 0.78 m, 
the diameter is 0.4 m, the weight is 50 kg and the radius of the wheel is 0.05m. The Δ time 
interval between two successive perceptions is 0.4s. This interval time is used to calculate 
the TC. 
In addition, we have defined a variety of basic scenarios for the experimentation stage. In 
the reminder of this section we detail some of them. For each scenario, the robot is initially 
positioned at the centre of the environment and starts to work without having any 
preliminary information. The simulation environment is a square area composed of multiple 
traps like U-shape and T-shape forming the static obstacle, and moving agents (moving 
objects and other robots). 

5.2 Experimentation results in static environments 

Test results in static environments are presented in figure 11. Each scenario shows the 
robot’s environment with the robot’s path covered and the detected obstacles. 
Scenario 1   The robot is initially positioned in an environment composed of multiple “dead 
cycle” as shown in figure 11.a. The robot calculates for each trap a DTC in order to predict 
the nature of the obstacle. The robot’s decision depends on this information (e.g. if the DTC 
is equal to zero then, the obstacle is static and the robot should change its direction). In 
region ‘a’ it detects that the DTCF is equal to zero, which means that the robot should 
change immediately its direction to find a free path towards its target. In region ‘b’, it 
changes its behaviour and Turns Right. In region ‘c’, the robot detects a new local minimum 
(DTCF=0, DTCR<∆T and DTCL<∆T). In this situation, the robot should find a free trajectory 
in order to move away from this obstacle. When it leaves this local minimum, the robot 
adjusts its trajectory to minimise the distance between the robot and the target. For each 
step, the robot reasons about the nature, velocity and the orientation angle in order to 
choose a direction that will be free in the future (predict the future state using the nature 
and the velocity of obstacle in order to find a suitable path with fewer constraints). 
However, in (Wang & Liu, 2005) based on trial-return behaviour phenomenon, the robot 
searches the nearest exit. Therefore, when the nearest exit is blocked by along wall, the  
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Fig. 11. Experimental results in static environments 

nearest exit will be the opening at the right hand side where the wall ends (see figure 11.b). 
This method takes a large time to find the free end of the wall. However, the problem with 
trial-return motion is high power consumption and the time spent from start point to target 
is long when the obstacle is composed of complex traps like U-shape and T-shape. In (Zhu & 
Yang, 2004), the dead cycle problem is resolved by using a state memory strategy (see figure 
11.c). Therefore, there is a situation where the robot cannot go straight toward the target. It 
has to keep turning around the obstacle (point “a”) if the distance between the robot and the 
obstacle is shorter than the distance between the robot and the target. 
Scenario 2   We test our method in an environment composed of corridors (wide and 
narrow). As shown in figure 11.d the robot moves in a corridor in order to reach its target. 
The problem is how to ensure the motion’s stability without oscillation. In our architecture, 
there is a compromise between “reach target” and “avoid obstacles”. In region 1, the robot 
crosses a large corridor; it changes its direction when it detects a static obstacle. In region 2, 
the robot crosses a narrow corridor; in this situation the DTCR<∆T and the DTCL<∆T. Thus, 
the robot cannot change its trajectory, but it should only adjust its velocity with the velocity 
of the nearest obstacle in the front area. This reasoning allows the robot to reach its target 
easily without oscillation. 

5.3 Experimentation results in dynamic environments 

Scenario 1   Generally it is difficult to deal with narrow passage cases when there are 
moving actors because there may be oscillation in the trajectory between multiple obstacles. 
However, we can show, in figure 12, the effectiveness of our method when dealing with this 
case. The robot navigates in an environment composed of corridors with a moving obstacle. 
At the first time, the corridor is narrow. In this setting the robot adjusts its velocity to avoid 
collision with the obstacle without changing the direction because the goal is in the front  
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Fig. 12. Experimental results in a dynamic environment: case of conflict situations in narrow 
and large corridors. 

area and there is no free area neither on the left nor on the right (DTC<∆T on the Left and 
the Right). When the corridor becomes large, the robot changes its direction because there is 
a free area on the right. In this trajectory, the robot detects that there is a conflict space 
(DTCF is negative). With the concept of DTC, the robot can find the trajectory that will be 
free in the future. Thus, the robot should choose the most adequate direction that minimises 
states of conflict. So, in our model the robot can go through narrow passages successfully. 
However, in (Lazkano et al., 2007) a reactive navigation method based on Bayesian 
Networks is proposed. This method only takes into account the door-crossing behaviour. Its 
drawback is that it becomes slow when the environment becomes more dynamic because it 
requires a long computing time. 
Scenario 2   We test our method in a dynamic environment composed of multiple traps as 
shown in figure 13. The robot adjusts its velocity in order to avoid collision with moving  
 

Fig. 13. Experimental results in a dynamic environment: case of conflict situations in a 
dynamic environment composed of local traps. 
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obstacles and changes its orientation if it detects a static obstacle. In region 1, it moves away 
from a U-shape obstacle because it detects that the DTC is equal to zero. In region 2, the 
robot is in a large corridor with moving obstacles, it calculates the DTC relative to every 
moving obstacle in order to predict conflict situations. In this setting, the DTC of every 
obstacle around the robot decreases, which means that the obstacles are going toward the 
robot. At the first step, the robot calculates the velocity of the nearest moving obstacle in 
order to adjust its velocity. At the second step, it reasons about the trajectory that it has to 
choose (minimise interactions with other agents). 
According to a large number of simulation experiments, we can conclude that:  
1. The robot uses a simple model of perception composed of ultrasonic sensors that 

provides information at real time.  
2. The robot can provide a suitable trajectory in dynamic environments and there are no 

local minimum encountered.  
3. The results provided by our method are satisfactory with the robot’s dynamic 

constraints. 
4. The robot can easily predict the nature of obstacles around it, and it uses this kind of 

information to predict conflict situations with other agents sharing the same resources.  
5. The robot can also predict the velocity of each obstacle, using its simple model of 

perception, to adjust its linear velocity in order to avoid collision with other agents. 
6. Our method can be adapted to different cases in dynamic environments.  

6. Conclusion and perspectives 

In this paper, a new method based on the sensors’ information to combine reactivity and 
anticipation in order to predict conflict situations between robots has been proposed. We 
have used fuzzy logic to develop a control system that enables the robot to navigate at 
real time and to minimise its interaction with other agents. Basing on the simulation 
experiments, we can conclude that our method operates in different cases of dynamic 
environments. The robot can easily predict the nature of obstacles in order to anticipate 
conflict situations. It can also predict the velocity of each obstacle and adjust its linear 
velocity in order to avoid collision. As perspectives for this work, we attend to improve 
the robot's behaviour by introducing both the ability to learn and the concept of 
communication between robots in order to explore the environment and to share 
knowledge. 
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