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On the Stiffness Analysis and Elastodynamics of
Parallel Kinematic Machines

Alessandro Cammarata
University of Catania, Department of Mechanical and Industrial Engineering

Italy

1. Introduction

Accurate models to describe the elasticity of robots are becoming essential for those
applications involving high accelerations or high precision to improve quality in positioning
and tracking of trajectories. Stiffness analysis not only involves the mechanical structure
of a robot but even the control system necessary to drive actuators. Strategies aimed to
reduce noise and dangerous bouncing effects could be implemented to make control systems
more robust to flexibility disturbances, foreseing mechanical interaction with the control
system because of regenerative and modal chattering (1). The most used approaches to study
elasticity in the literature encompass: the Finite Element Analysis (FEA), the Matrix Structural
Analysis (MSA), the Virtual Joint Method (VJM), the Floating Frame of Reference Formulation
(FFRF) and the Absolute Nodal Coordinates Formulation (ANCF).
FEA is largely used to analyze the structural behavior of a mechanical system. The reliability
and precision of the method allow to describe each part of a mechanical system with great
detail (2). Applying FEA to a robotic system implies a time-consuming process of re-meshing
in the pre-processing phase every time that the robot posture has changed. Optimization all
over the workspace of a robot would require very long computational time, thus FEA models
are often employed to verify components or subparts of a complex robotic system.
The MSA includes some simplifications to FEA using complex elements like beams, arcs,
cables or superelements (3–5). This choice reduces the computational time and makes this
method more efficient for optimization tasks. Some authors recurred to the superposition
principle along with the virtual work principle to achieve the global stiffness model (6–8).
Others considered the minimization of the potential energy of a PKM to find the global
stiffness matrix (9), while some approaches used the total potential energy augmented adding
the kinematic constraints by means of the Lagrange multipliers (10; 11).
The first papers on VJM are based on pseudo-rigid body models with “virtual joints” (12–14).
More recent papers include link flexibility and linear/torsional springs to take into account
bending contributes (15–19). These approaches recur to the Jacobian matrix to map the
stiffness of the actuators of a PKM inside its workspace; especially for PKMs with reduced
mobility, it implies that the stiffness is limited to a subspace defined by the dofs of its
end-effector. Pashkevich et al. tried to overcome this issue by introducing a multidimensional
lumped-parameter model with localized 6-dof virtual springs (20).
Finally, the FFRF and ANCF are powerful and accurate formulations, based on FEM and
continuum mechanics, to study any flexible mechanical system (21). The FFRF is suitable
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Fig. 1. Schematic drawing of a PKM: P prismatic joint, R revolute joint, S spherical joint, U

universal joint

for large rotations and small deformations, while the ANCF is preferred for large rotations
and large deformations. Notwithstanding, both the two formulations usually require great
computational efforts to be extended to complex robots or to optimization techniques
involving the whole robot’s workspace.
In this chapter we propose a formulation to study the elastostatics and elastodynamics of
PKMs. The method is linear and tries to combine some feature existing in the literature to
build a solid framework, the outlines of which are described in Section 2. We start from
a MSA approach based on the minimization of the strain energy in which all joints are
introduced by means of constraints between nodal displacements. In this way we avoid
Lagrange multipliers and the introduction of joints becomes straightforward. Unlike VJM
methods based on lumped stiffness, we use 3D Euler beams to simulate links and to distribute
stiffness to the flexible structure of a robot, as described in Section 3. The same set of nodal
displacement arrays is used to obtain the generalized stiffness and inertia matrix, the latter
being lumped or distributed, as discussed in Sections 4 and 5. Besides, the flexibility of
the proposed method allows us to provide useful extension to compliant PKMs with joint
flexures. The ease in setting up, the direct control of joints and the speed of execution make
the procedure adapt for optimization routines, as described in Section 6. Finally, some feasible
applications are described in Section 7 studying an articulated PKMs with four dofs.

2. Outlines of the algorithm

Before introducing the reader to the proposed methodology, we have to clarify the reasons
of this work. The first question that might arise is: Why use a new method without recurring
to well confirmed formulations existing in the literature? The right answer is essentially tied
to the simplicity of the proposed formulation. The method is addressed to designers that
want to implement software to study the elastodynamics of PKMs, as well as to students
and researchers that wish to create their own customized algorithm. The author experienced
that the elastodynamics study of a complex robotic system is not a trivial issue, mainly when
dealing with some features concerning the optimization of performances in terms of elasticity
or admissible range of eigenfrequencies. Performing these analyzes often needs for a global
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On the Stiffness Analysis and Elastodynamics of Parallel Kinematic Machines 3

optimization all over the workspace of a robot too cumbersome to be faced with conventional
formulations. Further, considering that the elastodynamics behavior of a robot changes
according to its pose, an accurate analysis should be carried out several times to capture
the right response inside the robot’s workspace, drastically affecting the computational cost.
The focused issue becomes even more complicated when constrained optimization routines,
based on indices of elastostatics/dynamics performances, are implemented to work in all the
workspace. In the latter case the search for local minimum configurations needs for a simple
and robust mathematical framework adapt to iterative procedures. Working with ordinary
resources, in terms of CPU speed and memory, can make optimization prohibitive unless
the complex flexible multibody formulations would be simplified to meet requirements.
Therefore, the second question might be: Why simplify a complex formulation and do not create
a simpler one instead? The sought formulation is what the author is going to explain in this
chapter.
Let us start considering a generic PKM. It is essentially a complex robotic system with parallel
kinematics in which one or more limbs connect a base platform to a moving platform, as
shown in Fig. 1. The latter contains a tool, often referred to as end-effector, necessary to perform
a certain task or, sometimes, as in the case of flight simulators or assembly stations, the end
effector is the moving platform itself. The limbs connecting the two platforms are composed
of links constrained by joints. A limb can be a serial kinematic chain or an articulated linkage
with one or more closed kinematic chains or loops.
In performing our analysis we have to choose what is flexible and what is rigid as well.
Generally, each body is flexible and the notion of rigid body is an abstraction that becomes
a good approximation if strains of the structure are small when compared to displacements.
Thus, considering a link flexible or rigid depends on many aspects as: material, geometry,
wrenches involved in the process. Besides, some tasks might need for high precision to
be accomplished, then an accurate analysis should take care of deformations to fulfill the
requirements without gross errors. Here, we model the MP and BP as rigid bodies because,
for the most part of industrial PKMs, these are usually one order of magnitude stiffer than
the remaining links. The latter will be either flexible or rigid depending on the assumptions
made by the designer. As already pointed out in the Introduction, we use 3D Euler beams
to represent links, even if the treatment can be extended to superelements, as reported
in (22). The formulation is linear and only small deformations are considered. Given
a starting pose of the MP, the IKP allows us to find the robot’s configuration; then, the
elastodynamics—statics—is performed around this undeformed configuration. It might be
useful to lock the actuated joints in order to avoid rigid movements and to isolate only the
flexible modes.
Below, we summarize all steps necessary to find the elastodynamics equations of a PKM:

1. Solve the inverse kinematic problem (IKP) in order to know the starting pose, i.e.
the undeformed configuration, of the PKM. Here, we make the assumption that the
configuration is frozen, meaning that no coupling of rigid body and elastic motions is
considered.

2. Distinguish rigid and flexible links, and discretize the latter into the desired number of
flexible elements. The base and moving platforms are modeled as rigid.

3. Introduce nodes and then nodal-arrays for each node. Each flexible part has two end-nodes
at its end-sections; the rigid links have a single node at their center of mass.

4. Introduce joint-matrices and arrays for each joint.

87On the Stiffness Analysis and Elastodynamics of Parallel Kinematic Machines
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5. Individuate the couples of bodies linked by a joint and distinguish among three cases:
rigid-flexible, flexible-flexible and flexible-rigid.

6. Find the equations expressing dependent nodal-array in terms of independent
nodal-arrays, then find the generalized stiffness and inertia matrices. The latter change
whether lumped or distributed method is used.

7. Introduce the global array q of independent nodal coordinates. This array contains all the
independent nodal arrays in the order defined by the reader.

8. Expand all matrices expressing each generalized stiffness and inertia matrix in terms of
q by means of the Boolean matrices B1 and B2. Then, sum all contributes to find the
generalized stiffness matrix KPKM and inertia matrix MPKM of the PKM.

9. Introduce the array f of generalized nodal wrenches and, finally, write the elastodynamics
equations.

3. Mathematical background and key concepts

In a mechanical system flexible bodies storage and exchange energy like a tank is able to
storage and supply water. The energy associated to deformation is termed strain energy while
the aptitude of a body for deformation is tied to the property of stiffness. For a continuum
body the stiffness is distributed and the strain energy changes according to the variation of
the displacement field of its points. In a discrete flexible element inner points’ displacements
depend on displacements of some points or nodes.

3.1 Nodal and joint-array

Robotic links can be well described by means of 3D-beams, that is, flexible elements with
two end-nodes, as shown in Fig. 2. The expression of the strain energy depends on the kind
of displacements chosen for rotations: slopes, Euler angles, quaternions, and so on, and on
the entity of displacement: large or small. Here, we choose a linear formulation based on
small displacements and Euler angles to describe rotations. Based on these assumptions, the
strain energy is a positive-definite quadratic form in the nodal displacement coordinates of the

end-nodes arrays of the beam, where a nodal displacement array u =
[

ux uy uz uϕ uθ uψ
]T

has six scalar displacements, three translational and three rotational. Hereafter, subscripts and
superscripts will be, respectively, referred to the beam and to one of the two end-nodes of a
beam.
Beams belonging to the same link are contiguous, while joints couple beams belonging to two
adjoining links. To express the kinematic bond existing between the two nodes, or sections,
coupled by the joint, a constraint equation is introduced in which the nodal displacements
of the two nodes are tied through the means of an array of joint displacements. Figure 2
describes two beams linked by a prismatic joint of axis parallel to the unit vector e. The two
nodal arrays u2

1 and u1
2 are tied together by means of the translational displacement s of the

prismatic joint P and by the 6-dimensional joint-array hP =
[

eT 0T
]T

, i.e.,

u2
1 = u1

2 + hPs (1)

We stress that eq.(1) describes a constraint among displacements, then deformations, and not
nodal coordinates. In general, Hj is a 6 × m(j) joint-matrix where m(j) is the dimension of the

joint-array θ
j. The joint-matrix Hj and the joint-array θ

j depend on the type of joint: the former
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Fig. 2. Notation of two 3D Euler beams coupled by a joint.

containing unit vectors indicating geometric axes, the latter containing joint displacements,
either linear sj, for translations, or angular θ j, for rotations. Below, two more examples of
joints are provided:

Revolute joint:

hR =
[

0T eT
]T

, θR = θ (2)

where e is the unit vector along the axis of the revolute joint R and θ is the angular
displacement about the said axis.

Universal joint:

HU =

[
0 0

e1 e2

]
, θ

U =
[

θ1 θ2
]T

(3)

where e1 and e2 are the unit vectors along the axes of the universal joint U and θ1 and θ2

are the angular displacements about the axes of U.

Other joints, i.e. cylindrical, spherical and so on, can be created combining together
elementary prismatic and/or revolute joints. The described constraint equations are used to
consider joints contribute to elastodynamics in a direct way without recurring to Lagrangian
multipliers to introduce joint constraints, (10). In the next section the above equation will be
used to obtain joint displacements in terms of nodal displacements.

3.2 Strain energy and stiffness matrix

The strain energy Vi(u
1
i , u2

i ) of a flexible body is a nonlinear scalar function of nodal
deformations, here expressed via nodal displacements. For the case of a 3D Euler beam,
considered in this analysis, the strain energy Vi of the ith-beam turns into a positive-definite
quadratic form of the stiffness matrix Ki in twelve variables, i.e. the nodal displacements of

the end-nodes arrays u1
i and u2

i . By introducing the 12-dimensional array ũi =
[

u1
i

T
u2

i
T
]T

,

the strain energy assumes the following expression

Vi =
1

2
ũT

i Kiũi (4)

The 12 × 12 stiffness matrix Ki of a 3D Euler beam with circular cross-section, and for the case
of homogeneous and isotropic material, depends on geometrical and stiffness parameters as:

89On the Stiffness Analysis and Elastodynamics of Parallel Kinematic Machines
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cross section area A, length of the beam L, torsional constant J, mass moment of inertia I, the
Young module E and shear module G. For our purposes, it is convenient to divide Ki into
blocks, i.e.

Ki =

[
K1,1

i K1,2
i

K2,1
i K2,2

i

]
(5)

in which K2,1
i = (K1,2

i )T and the other blocks are defined as

K1,1
i =

E

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 0 0 0

0 12I
L2 0 0 0 6I

L

0 0 12I
L2 0 −

6I
L 0

0 0 0 GJ
E 0 0

0 0 −
6I
L 0 4I 0

0 6I
L 0 0 0 4I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6a)

K1,2
i =

E

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−A 0 0 0 0 0

0 −
12I
L2 0 0 0 6I

L

0 0 −
12I
L2 0 −

6I
L 0

0 0 0 −
GJ
E 0 0

0 0 6I
L 0 4I 0

0 −
6I
L 0 0 0 4I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6b)

K2,2
i =

E

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 0 0 0

0 12I
L2 0 0 0 −

6I
L

0 0 12I
L2 0 6I

L 0

0 0 0 GJ
E 0 0

0 0 6I
L 0 4I 0

0 −
6I
L 0 0 0 4I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6c)

where the two diagonal block matrices, respectively, refer to the nodal displacements of
the two end-nodes while the extra-diagonal blocks refer to the coupling among nodal
displacements of different nodes: in fact, each entry of the generic 6 × 6 block-matrix

Kl,m
i can be thought as a force— torque—at the lth-node of the ith-beam when a unit

displacement—rotation—is applied to the mth-node.

3.3 Rigid body displacement

Let us consider a rigid body with center of mass at the point G and a generic point P inside its
volume, besides let dP be the vector pointing from G to the point P. If the body can accomplish
only small displacements/rotations, let p be the displacement of point G and r, be the axial
vector of the small rotation matrix R, (9). Upon these assumptions, the displacement array uG

of G is defined as uG =
[

pT rT
]T

.
the displacement array uP can be expressed in terms of uG by means of the following equation:

uP = GPuG, GP =

[
1 −DP

O 1

]
(7)

where 1 and O, respectively, are the 3 × 3 identity- and zero-matrices and DP is the
Cross-Product Matrix (C.P.M.) of dP, (23).
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Fig. 3. Case a): Rigid body-flexible beam.

4. Stiffness matrix determination

Let us consider a linkage of flexible beams and rigid bodies connected by means of joints.
The strain energy V(u1

1, u2
1, u1

2, . . . , uG1, uG2, . . . , θ
1, θ

2, . . .) of this system depends on nodal
displacement arrays of both rigid and flexible parts and on joint displacement arrays. In
the following, we will show how to express V in terms of a reduced set of independent
nodal coordinates. In this process, we will start from three elementary blocks composed of
rigid and flexible bodies that will be combined to build a generic linkage, for instance, the
limb of a PKM. The first and the third case pertain the coupling between a rigid body and
a flexible beam by means of a joint; the second case describes the coupling of two beams
belonging to two different links. The choice to use two cases to describe the rigid body-flexible
body connection is only due to convenience to follow the order of bodies from the base to
the moving platform of a PKM. The reader might recur to a unique case to simplify the
treatment. The last part of the section is devoted to some insight on joints’ stiffness and
feasible application to flexures.

4.1 Case a) Rigid body-flexible beam

Figure 3 describes a rigid body R coupled to a flexible beam F by means of a joint. The strain
energy Va of the beam is function of the nodal displacement arrays u1

2 and u2
2, i.e.

Va =
1

2

[
u1

2
u2

2

]T
[

K1,1
2 K1,2

2

K2,1
2 K2,2

2

] [
u1

2
u2

2

]
(8)

The array u1
2 can be expressed in terms of u2

1 and θ recalling eq.(1), while u2
1, in turn, is tied to

u1
1 from eq.(7): upon combining both the equations, we obtain

u1
2 = Gu1

1 + Hθ (9)

where G depends on d. By substituting the previous equation into eq.(8) we find that Va =
V(u1

1, u2
2, θ). If the joint is passive, its displacement θ depends on the elastic properties of the

system and, therefore, on the two displacements u1
1 and u2

2: thus, it implies that Va is only

function of the two mentioned array, i.e. Va = V(u1
1, u2

2). In order to obtain the law for θ we
minimize the strain energy Va w.r.t. θ:

dVa/dθ = 0T
6 (10)

where 06 is the six-dimensional zero array. After rearrangements and simplifications, we find

θ = Y1u1
1 + Y2u2

2 (11)
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Fig. 4. Case b): Flexible beam-flexible beam.

where

Y1 = −(HTK1,1
2 H)−1HTK1,1

2 G (12a)

Y2 = −(HTK1,1
2 H)−1HTK1,2

2 (12b)

Then, by substituting eq.(11) into eq.(9), we obtain

u1
2 = X1u1

1 + X2u2
2 (13)

X1 = G + HY1, X2 = HY2 (14)

Let us define the 12-dimensional array ũa =
[

u1
1

T
u2

2
T
]T

and let us substitute the above

expression into Va, thereby obtaining

Va =
1

2
ũT

a Kaũa, Ka =

[
X1 X2

O 1

]T
[

K1,1
2 K1,2

2

K2,1
2 K2,2

2

] [
X1 X2

O 1

]
(15)

where Ka is the 12 × 12 stiffness matrix sought.

4.2 Case b) Flexible body-flexible body

For the case b) of Fig.4 two beams are coupled by a joint. The strain energy Vb is function of
the nodal displacement arrays of the two flexible bodies, i.e.

Vb =
1

2

[
u1

1
u2

1

]T
[

K1,1
1 K1,2

1

K2,1
1 K2,2

1

] [
u1

1
u2

1

]
+

1

2

[
u1

2
u2

2

]T
[

K1,1
2 K1,2

2

K2,1
2 K2,2

2

] [
u1

2
u2

2

]
(16)

The four arrays are not all independent as the following equation stands:

u2
1 = u1

2 + Hθ (17)

The strain energy is, thus, dependent on u1
1, u1

2, u2
2 and θ: Vb = V(u1

1, u2
1, u1

2, u2
2) ≡

V(u1
1, u1

2, u2
2, θ). Here, we choose to minimize Vb w.r.t. θ, as for the case a), and u1

2. The
reader should notice that our choice is not unique, it is only a particular reduction process
necessary for our purposes, it means that the reader might develop a treatment in which u1

2 is
not dependent anymore.
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Now, by imposing that the derivative of Vb w.r.t. θ vanishes, we obtain

θ = F1u1
1 + F2u1

2 (18)

where

F1 = −(HTK2,2
1 H)−1HTK2,1

1 (19a)

F2 = −(HTK2,2
1 H)−1HTK2,2

1 (19b)

Following the previous condition, even the dependent nodal-array u1
2 must minimize Vb =

V(u1
1, u2

1(u
1
2, θ(u1

1, u1
2)), u1

2, u2
2); therefore, by applying the chain-rule, we obtain

dVb

du1
2

≡

∂Vb

∂u2
1

∂u2
1

∂u1
2

+
∂Vb

∂u1
2

≡

∂Vb

∂u2
1

(16 + HF2) +
∂Vb

∂u1
2

= 0T
6 (20)

The array u1
2 is then written in terms of u1

1, u2
2, i.e.

u1
2 = G1u1

1 + G2u2
2 (21)

where the 6 × 6 matrices G1 and G2 have the following expressions:

G1 =− (K2,2
1 + K1,1

2 + F2T
HTK2,2

1 + F2T
HTK2,2

1 HF2)−1

(K2,1
1 + K2,2

1 HF1 + F2T
HTK2,1

1 + F2T
HTK2,2

1 HF1) (22a)

G2 =− (K2,2
1 + K1,1

2 + F2T
HTK2,2

1 + F2T
HTK2,2

1 HF2)−1K1,2
1 (22b)

The joint-arrays θ
j becomes,

θ = Y1u1
1 + Y2u2

2 (23)

Y1 = F1 + F2G1, Y2 = F2G2 (24)

The dependent nodal-array u2
1 is obtained by substituting eq.(21) and eq.(23) into eq.(17):

u2
1 = X1u1

1 + X2u2
2 (25)

X1 = G1 + HY1, X2 = G2 + HY2 (26)

Let ũb =
[

u1
1

T
u2

2
T
]T

be the 12-dimensional array of independent nodal displacements, then

the final expression of Vb in terms ũb is

Vb =
1

2
ũT

b Kbũb (27)

Kb =

[
1 O

X1 X2

]T
[

K1,1
1 K1,2

1

K2,1
1 K2,2

1

] [
1 O

X1 X2

]
+

[
G1 G2

O 1

]T
[

K1,1
2 K1,2

2

K2,1
2 K2,2

2

] [
G1 G2

O 1

]
(28)

where Kb is the 12 × 12 stiffness matrix.
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Fig. 5. Case c): Flexible beam-rigid body.

4.3 Case c) Flexible body-rigid body

The case c) describes a beam coupled to a rigid body by means of a joint, as shown in Figure 5.
The expressions involving the case c) can be easily obtained by extension of those of the case
a), hence, we write only the final results for brevity:

Y1 = −(HTK2,2
1 H)−1HTK2,1

1 (29a)

Y2 = −(HTK2,2
1 H)−1HTK2,2

1 G (29b)

X1 = HY1 (30a)

X2 = G + HY2 (30b)

The strain energy Vc associated to the beam becomes

Vc =
1

2
ũT

c Kcũc, Kc =

[
1 O

X1 X2

]T
[

K1,1
1 K1,2

1

K2,1
1 K2,2

1

] [
1 O

X1 X2

]
(31)

where ũc =
[

u1
1

T
u2

2
T
]T

is the 12-dimensional array of independent nodal displacements and

Kc is the 12 × 12 generalized stiffness matrix of the case c).

4.4 Joint’s stiffness and flexure joints

The final part of the present section is devoted to show some feasible extension of the
formulation to flexure mechanisms. Similar concepts can be applied even to ordinary joints to
take into account joint stiffness. In order to reproduce the counterparts of mechanical joints,
in a continuous structure it is a common strategy to recur to flexure joints, in fact, zones where
the geometry and shape are designed to increase the compliance along specified degrees of
freedom (dofs). An ideal flexure joint should allow for only motions along its dofs, while
withstanding to remaining motions along its degrees of constraint (docs).
Figure 6 shows the cases of ideal and real flexure revolute joints. While for the ideal case the
nodal displacements u2

1 and u1
2 of the two flexible beams (1) and (2), coupled by the joint, are

tied by the usual constraint equation

u2
1 = u1

2 + Hδθ (32)
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for the real case H ≡ 16. The joint displacement array is now denoted with δθ.
Referring to Figure 7, let us consider three different configurations of the flexure joints: an
undeformed and unloaded configuration in which the joint-array is θo; a preloaded initial
configuration with the joint-array θi and a final configuration in which θ f = θi + δθ, being
δθ an array of small displacements around the initial joint-array θi. For the following
explanation, we refer only to the ideal case of Figure 6. Let Kθ be the m(j) × m(j) joint
stiffness matrix and let w be the generic wrench acting on the flexure joint; then, for the three
configurations, we can write

wo = 06 (33a)

wi = Kθ(θi − θo) ≡ Kθ∆θi (33b)

w f = Kθ(θ f − θo) ≡ Kθ∆θ f (33c)

where ∆θ f = ∆θi + δθ. The strain energy Vθ f
of the flexure joint in its final configuration

simply reduces to

Vθ f
=

1

2
∆θ

T
f Kθ∆θ f (34)

The above expressions can be simplified considering θo = 06 for the unloaded configuration.
We do not further discuss on flexure joints, leaving the reader to derive three new cases,
similar to those discussed above, taking into account joint stiffness.

5. Mass matrix determination

In this section two ways to include masses/inertias are discussed: the lumped approach and
the distributed approach. The former concentrates masses on nodes of both rigid and flexible
parts; the latter considers the real distribution of masses inside beams. As will be explained
in the text, the two methods produce good results, particularly when an accurate degree of
partitioning is chosen for flexible bodies. Finally, we focus our attention on a way to consider
joints with mass and inertia.

5.1 Lumped approach

Reducing mass and inertia of a rigid body to a particular point, the center of mass, without
changing dynamic properties of the system, is a common procedure. On the contrary, for
flexible bodies every reduction process is an approximation generating mistakes. Let us refer
to Fig. 8 in which a link is divided into four beams. In the lumped approach the mass

h(e, R)

e

θ

u2
1

u1
2

(a) Ideal flexure joint

θxθy

θz

dxdy

dz

u2
1

u1
2

(b) Real flexure joint

Fig. 6. Flexure revolute joint.
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wo

wo wi

wi

w f

w f

θo θi θ f

Fig. 7. Flexure joint: a) Undeformed configuration; b) starting preloaded configuration; c)
small rotated configuration about the starting preloaded configuration.

and inertia of each beam is concentrated on its end-nodes. Here, we choose a symmetric
distribution in which the mass m is divided by two, but the reader can use another distribution
according to the case to be examined, as instance beams with varying cross section. The first
node has a mass of m/2 while any other node, but the fourth, bears a mass m because it
receives half a mass from each of the two contiguous beams coupled at its section. The fourth
beam of the link is attached to a joint. According to what explained in the previous section,
even the mass is concentrated only on the independent joints: it means that the mass of the
last beam has to be concentrated on the fourth node, thereby the latter carrying a mass equal
to 1/2m + m = 3/2m. Analogous arguments, not reported here for conciseness, may be used
to describe inertias.
The lumped approach concentrates masses and inertias on all the independent nodes,

belonging to both rigid and flexible bodies. Mathematically, a 6× 6 mass dyad M̃i is associated
at the ith-independent node, defined as

M̃i =

[
mi1 O
O Ji

]
(35)

where mi and Ji are the mass and the 3 × 3 inertia matrix, respectively, of either a rigid body,
if the independent node is at the center of mass of the said body, or of a beam’s end-node. The
generalized inertia matrix MPKM of a PKM is readily derived upon assembling in diagonal
blocks the previous inertia dyads, following the order chosen to enumerate all independent
nodes inside the global array of independent nodal coordinates, hence

MPKM = diag(M̃1, M̃2, . . . , M̃n) (36)

5.2 Distributed approach

The distributed approach considers the true distribution of mass inside a flexible beam.
Particularly, it is possible to find a 12 × 12 matrix Mi referred to the twelve nodal coordinates
of a beam’s end-nodes. This matrix can be divided into blocks, whose entries are reported
below, as already done for the stiffness matrix Ki, i.e.
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Fig. 8. Lumped distribution of mass.

M1,1
i = ρAiLi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 0 0 0 0 0

0 13
35 + 6Iz

5ρAi L
2
i

0 0 0 11Li
210 + Iz

10ρAiLi

0 0 13
35 + 6Iz

5ρAiL
2
i

0 −11Li
210 −

Iy

10ρAi Li
0

0 0 0 Ix
3ρAi

0 0

0 0 −11Li
210 −

Iy

10ρAiLi
0

L2
i

105 +
2Iy

15ρAi
0

0 11Li
210 + Iz

10ρAiLi
0 0 0

L2
i

105 + 2Iz
15ρAi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

M1,2
i = ρAiLi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6 0 0 0 0 0

0 9
70 −

6Iz

5ρAi L
2
i

0 0 0 −
13Li
420 + Iz

10ρAiLi

0 0 9
70 −

6Iy

5ρAiL
2
i

0 13L
420 −

Iy

10ρAiLi
0

0 0 0 Ix
3ρAi

0 0

0 0 −
13Li
420 + Iz

10ρAiLi
0

−L2
i

140 −
Iy

30ρAi
0

0 13Li
420 −

Iz
10ρAiLi

0 0 0
−L2

i
140 −

Iz
30ρAi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

M2,2
i = ρAiLi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 0 0 0 0 0

0 13
35 + 6Iz

5ρAi L
2
i

0 0 0 −
11Li
210 −

Iz
10ρAi Li

0 0 13
35 +

6Iy

5ρAi L
2
i

0 11Li
210 +

Iy

10ρAiLi
0

0 0 0 Ix
3ρAi

0 0

0 0 11Li
210 +

Iy

10ρAiLi
0

L2
i

105 +
2Iy

15ρAi
0

0 −
11Li
210 −

Iz
10ρAi Li

0 0 0
L2

i
105 + 2Iz

15ρAi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

where ρ, Li, Ai, Ix, Iy and Iz, respectively, are the density, the length, the cross section area and
the mass moments of inertia for unit of length of the ith-beam. The matrix Mi is associated
to the kinetic energy Ti of a beam, the latter being defined as a quadratic forms into the
time-derivatives u̇1

i , u̇2
i of the nodal displacement arrays u1

i and u2
i :

Ti =
1

2

[
u̇1

i

u̇2
i

]T [
M1,1

i M1,2
i

M2,1
i M2,2

i

] [
u̇1

i

u̇2
i

]
(40)
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In the previous section we have found how dependent nodal displacement arrays are
expressed in terms of independent ones. Let us consider the time-derivative of both sides
of eq.(13), we write

u̇1
2 = X1u̇1

1 + X2u̇2
2 (41)

in which the matrices X1 and X2 are not dependent on time. Similar expressions can be
obtained for eqs.(21) and (26) for the case b) and for the case c). It means that the same
expressions standing for dependent and independent displacements can be extended at
velocity and acceleration level. Therefore, the following matrices Ma, Mb and Mc can be
written with perfect analogy to their counterparts Ka, Kb and Kc:

Ma =

[
X1 X2

O 1

]T
[

M1,1
2 M1,2

2

M2,1
2 M2,2

2

] [
X1 X2

O 1

]
(42a)

Mb =

[
1 O

X1 X2

]T
[

M1,1
1 M1,2

1

M2,1
1 M2,2

1

] [
1 O

X1 X2

]
+

[
G1 G2

O 1

]T
[

M1,1
2 M1,2

2

M2,1
2 M2,2

2

] [
G1 G2

O 1

]
(42b)

Mc =

[
1 O

X1 X2

]T
[

M1,1
1 M1,2

1

M2,1
1 M2,2

1

] [
1 O

X1 X2

]
(42c)

with obvious meaning of all terms. The three mass matrices, above defined, are referred to the
time-derivatives ˜̇ua, ˜̇ub and ˜̇uc of the independent nodal displacement arrays ũa, ũb and ũc. To
clarify some doubt that might arise let us refer to Fig. 3. In this case the mass matrix of the rigid
body, see eq.(35), is referred to its center of mass with displacement array u1

1. The distributed
approach first allows us to find the 12 × 12 mass matrix M2 of the beam, then the latter is
expressed in terms of only independent displacements by means of Ma. Obviously, M2 and
Ma refer to the same object, the beam; but Ma distributes M2 into the independent nodes with
displacement arrays u1

1 and u2
2. This implies that the center of mass of the rigid body carries

its own mass/inertia and part of the mass/inertia of the beam. Similar conclusions may be
sought for the cases b) and c).

5.3 Joint’s mass and inertia

In this final subsection we describe a method to consider mass and inertia of joints. For
convenience, let us refer to Fig. 4. The joint is split into two parts, one belonging to the first

beam, the remaining to the second beam. Let M̃L and M̃R, where capital letters stand for left
and right, be the mass dyads of the two half-parts of the joint, defined as

M̃L =

[
mL1 O

O JL

]
M̃R =

[
mR1 O

O JR

]
(43)

The kinetic energy TJ of the joint can be written in terms of the above matrices M̃L and M̃R

and of the time-derivatives of the nodal arrays u̇2
1, u̇1

2, thus

TJ =
1

2
(u̇2

1)
TM̃Lu̇2

1 +
1

2
(u̇1

2)
TM̃Ru̇1

2 (44)
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Then, upon recalling eqs.(21) and (26), TJ can be expressed in terms of ˜̇u =
[

u1
1

T
u2

2
T
]T

, i.e.

TJ =
1

2
( ˜̇u)TMJ ˜̇u (45)

where MJ is the 12 × 12 generalized inertia matrix of the joint expressed in terms of
independent nodal displacements, respectively, defined as

Ma =

[
X1T

M̃RX1 + GTM̃LG X1T
M̃RX2

X2T
M̃RX1 X2T

M̃RX2

]
(46a)

Mb =

[
X1T

M̃LX1 + G1T
M̃RG1 X1T

M̃LX2 + G1T
M̃RG2

X2T
M̃LX1 + G2T

M̃RG1 X2T
M̃LX2 + G2T

M̃RG2

]
(46b)

Mc =

[
X1T

M̃LX1 X1T
M̃LX2

X2T
M̃LX1 X2T

M̃LX2 + GTM̃RG

]
(46c)

for the three cases in exam.

6. Linearized elastodynamics equations

In this section we will derive the generalized inertia and stiffness matrices necessary to
write the linearized elastodynamics equations. As described in the two previous sections
stiffness and inertia matrices of rigid bodies and flexible beams are referred to the independent
nodal displacements of the system. Now, one might ask how to combine different matrices
to build the global stiffness and inertia matrices. In order to solve this issue let us
introduce two Boolean matrices B1 and B2 able to map a 6-dimensional displacement array
ui or a 12-dimensional displacement array ũ in terms of a 6n-dimensional global array
q =

[
u1 u2 . . . un

]
containing all the independent displacement arrays of the robot. It is

important that the reader would define the order in which every single array ui appears inside
q. The 6 × 6n matrix B1 and the 12 × 6n matrix B2 are defined as:

ui = B1(i)q, ũ ≡

[
ui

uj

]
= B2(i, j)q (47)

B1(i) =
[

O6 O6 . . . 16(i) . . . O6

]
, B2(i, j) =

[
O6 O6 . . . 16(i) . . . O6

O6 16(j) . . . O6 . . . O6

]
(48)

The above expressions allow us to convert each nodal displacement array in term of q. As
instance, let us take into exam the strain energy Vb of eq.(27), it simply turns into Vb =
1
2 qTB2(i, j)TKbB2(i, j)q, where i and j indicate the position indices of u1

1 and u2
2 inside q.

From Vb we can extract a new 6n × 6n matrix Kb, that is a stiffness matrix expanded to the
final dimension of the problem, defined as

Kb = B2(i, j)TKbB2(i, j) (49)

Likewise, the generic expanded 6n × 6n mass matrix Mi of Mi, see eq.(35), can be written as

Mi = B1(i)
TM̃iB1(i), where i is the position index of ui, i.e. the displacement array of the

ith-rigid body’s center of mass, inside q. By the same strategy, it is possible to expand every
stiffness and inertia matrix. This operation is essential as, only when referred to the same set
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BP

MP

distal link

proximal link

Parallelogram

Fig. 9. CAD model of the robot.

of nodal displacement coordinates, these matrices can be summed and combined to obtain the
global generalized matrices KPKM and MPKM of the robot. The way to use B1 and B2 will be
shown in detail in the case study of the next section.
Let us introduce the 6n-dimensional array f of generalized nodal wrenches, i.e. nodal forces
and torques, then, the system of linearized elastodynamics equations becomes

MPKMq̈ + KPKMq = f (50)

The previous system may be used to solve statics around a starting posture of the robot. The
homogeneous part of eq.(50), i.e. the left side, may be used to find eigenfrequencies and
eigenmodes of the robot, or the zero-input response. As already pointed out, the natural
frequencies of the robot change with regard to the pose that the robot is attaining. To
determine how stiffness or natural frequencies vary inside the workspace local and global
performance indices may be introduced to investigate elastodynamic behavior of PKMs. As
instance, let us consider the first natural frequency f1 mapped inside a robot’s workspace.
The latter can be analyzed to differentiate areas with high range of frequency from areas
in which the elastodynamic performances worsen. The multidimensional integral Ω1 of f1,
extended to the whole workspace W or part of it, can be a good global index to show how
global performances increase or decrease changing some geometrical, structural or inertial
parameter, i.e.

Ω1 =

∫
W f1dW

W
≈

∑
nw

i=1 Wi f1i

∑
nw

i=1 Wi
(51)

where, in the approximated discrete formula of the right side, W is divided into nw hypercubes
Wi, while the frequency f1i is calculated at the center point of Wi.
We conclude this section considering an useful application of the method to find singularities.
It is well known that as a robot approaches to a singularity configuration it gains mobility. As
a consequence, its generalized stiffness matrix becomes singular and its first eigenfrequency
goes to zero. Analyzing the variation of f1 inside the workspace may be useful to avoid
zones close to singularity or with low values of frequency. We stress that singularities directly
come from kinematics: stiffness and inertial parameters, respectively influencing the elasticity
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and the dynamics of a mechanical system, can only amplify or reduce, without creating or
nullifying, the effects of the kinematics.
Different considerations can be made for the boundary surface of the workspace. For the
latter case, a robot undergoes poses in which one or more legs are completely extended,
thus the robot loses dofs associated to those directions normal to the tangent plane at the
boundary surface of the workspace. If the displacement of the MP for the corresponding
eigenmode, when evaluated at a pose lying on the boundary surface, is normal to the said
tangent plane the robot is virtually locked, it means that its stiffness along that direction is
high, thus reflecting into an increment of frequency. On the contrary, if the displacement of
the MP lies onto the tangent plane its in-plane stiffness, and its natural frequency as well,
in theory goes to zero. All remaining cases are included between zero and a maximum value
depending on the projection of displacements on the tangent plane. This important conclusion
can be summarized by the following statement: the value of a given natural frequency of a
PKM on the boundary surface of its workspace can be interpreted through the projection of
the moving platform’s displacements, for the corresponding eigenmode, on the tangent plane
to the said surface. The previous statement is strict only when a three dimensional workspace,
e.g. the constant orientation workspace, can be considered. In other cases, one should recur
to concepts of projection based on twist theory, beyond the scopes of this chapter.

7. Case study

In this section we apply the method to a complex PKM with 4-dofs. The robot, shown in
Fig. 9, is composed of four legs connecting the base frame to a moving platform. Due to the
particular kind of constraints generated by the limbs, the moving platform can accomplish
three translations and a rotation around the vertical axis. This motion, even referred to as
Schönflies motion, is typical of SCARA robots and it is largely used in industry for pick and
place applications. Each leg is composed of a distal link connected to the base frame by means
of an actuated revolute joint and to a parallelogram linkage, i.e. a Π-joint, by means of a
revolute joint. The parallelogram, in turn, is linked to a proximal link by another revolute.
Finally, the proximal link is coupled to the MP by a vertical axis revolute joint. All revolute
joints, apart from the one fixed to the inertial frame, are passive. We do not further go inside
the analysis of the kinematics, citing (24) for more explanations and for any detail pertaining
the robot’s geometry.

7.1 Application of the method to a generic leg

In order to apply the proposed method each leg is decomposed into three modules. The first
module includes the BP and the proximal link, the second the parallelogram linkage, while the
last includes the distal link and the MP. We recur to some simplifications that do not change
the meaning of the treatment. In general, the two bases of a PKM are one order stiffer than
the links composing the structure and can be modeled as rigid without loss of accuracy. Even
the short input and output links of a Π-joint can be considered rigid when compared to the
slender coupler links. As verified by FEM, the said assumptions are good approximations
that simplify the final model introducing rigid-flexible and flexible-rigid connections inside
and between each module.
Let us analyze the first module shown in Fig. 10. The distal link is split into three flexible
bodies, the choice of discretization being absolutely arbitrary. In this simple case the
end-bodies F1 and F3 of the link are coupled to two rigid bodies, i.e., the base BP and the
input link I of the Π-joint, by means of two revolute joints of axes parallel to the unit vector
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Fig. 10. Drawing of a the first module: Base platform-distal link

e. The remaining flexible body F2 is internal to the proximal link and coupled to the others
bodies by means of fixed connections. Following what explained in the previous sections, the
strain energy Vm1 of the first module is the sum of three components, i.e. the strain energies
VFi

of the three beams in which is decomposed, namely

Vm1 =
3

∑
i=1

VFi
=

3

∑
i=1

1

2
ũT

i Kiũi (52)

with ũ1 =
[

u1
1

T
u2

1
T
]T

, ũ2 =
[

u2
2

T
u3

2
T
]T

and ũ3 =
[

u3
3

T
u4

3
T
]T

. The first actuated revolute

joint is considered locked to perform the elastodynamics analysis, thereby, u1
1 ≡ u1

BP ≡ u1.
In this way the generalized stiffness matrix of the robot is not singular as rigid body motions
of the robot are deleted and the analysis is performed at a frozen configuration. Even for the
other three fixed connections at points 2 and 3, similar equations stand: u2

1 ≡ u2
2 ≡ u2 and

u3
2 ≡ u3

3 ≡ u3. Finally, for the displacement array of the input link R, we can write: uR ≡ u4.

By substituting into the previous expressions, we derive ũ1 =
[

u1T
u2T

]T
, ũ2 =

[
u2T

u3T
]T

and ũ3 =
[

u3T
u4

3
T
]T

. The local stiffness matrix Ki of the ith-body Fi is expressed into the

global reference frame. In Figure 10 the first local frame {x1, y1, z1}, with origin at point 1,
and the base global reference frame {x, y, z}, with origin at point O, are displayed. The set
of independent displacements are defined inside the independent displacement array qM1

of the first module: qM1 =
[

u1 u2 u3 u4
]
, where u4 is the nodal displacement array of the

center of mass of the rigid body I. While the first and the second term, i.e. VF1
and VF2

, of the
strain energy Vm1 contain only independent displacements, the last term VF3

is function of the

dependent nodal array u4
3. The flexible body F3, indeed, is coupled by a revolute joint to the

rigid body I, thus, the case c), flexible-rigid, can be applied to express its strain energy only in
terms of independent displacements. Following the notation above introduced, we write:

VF3
=

1

2
ũT

3 K3ũ3 ≡

1

2
ũT

c3Kc3ũc3 (53)

where ũc3 ≡

[
u3T

u4T
]T

and Kc3 has been defined in eq.(31). Notice that in order to find

Kc3 we have to use the 6-dimensional joint array hR(e); besides, the position vector d going

102 Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization

www.intechopen.com



On the Stiffness Analysis and Elastodynamics of Parallel Kinematic Machines 19

I

e

di

Fi

xi
yi

zi

O

(a) Drawing of a the second module:
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(b) Drawing of a the third module: proximal
link-moving platform

from the center of mass of I to the center of the revolute joint, in this case, is the zero vector.
Then, by introducing the 12 × nqm1 binary-entry matrix B2(•, •) mapping the independent
nodal-arrays in terms of the array qM1, the expression of the generalized stiffness matrix KM1

can be calculated as

Vm1 =
1

2
qM1

TKM1qM1

KM1 = B2(1, 2)TK1B2(1, 2) + B2(2, 3)TK2B2(2, 3) + B2(3, 4)TKc3B2(3, 4) (54)

Here, the matrix KM1 is expressed in terms of qM1. The reader must notice that to obtain
KPKM each matrix has to be expressed in terms of a final nq-dimensional array q including
all the independent nodal displacements. In order to define q, as the modules of a leg are in
series, the last node of a module coincides with the first one of the next module and it must be
denoted by a unique nodal displacement array. Extension to the final dimension of q is readily
obtained by substituting into eq.(54) a new 12 × nq binary-entry matrix B2(•, •) mapping the
independent nodal-arrays in terms of the global array q.
The second module is shown in Fig. 11(a). In this case two rigid-flexible and two
flexible-rigid connections must be used to describe the couplings between flexible couplers
and input-output rigid bodies I and O. The joint array hR(e) remains the same for all the
four revolute joints as a matter of fact of the parallelogram architecture. The third module,
shown in Fig. 11(b), includes one rigid-flexible and one flexible-rigid connection, respectively,
between the distal link and the output link O of the Π-joint and the distal link and the MP.
As displayed in the same figure, the two revolute joints to be used to find the joint arrays hR

have axes of unit vectors e1 and e2. We do not describe the calculations to find the generalized
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u

(c) Algorithm model (d) Ansys© model

Fig. 11. Static deformation of the robot.

Disp. Algorithm Marc© Ansys© err% Marc© err% Ansys©

ux 0.068066 0.068065 0.067436 −0.0008815 −0.933626
uy −0.030545 −0.030545 −0.029890 0.003274 −2.191368

uz 0 0 0 0 0

Table 1. Translational displacements of the end-effector’s center node.

stiffness matrices of the two modules as can be readily obtained following procedures similar
to the case of the first module.

7.2 Comparison to FEA software and validation

In this subsection the proposed elastodynamics model is compared to FEA results for
validation. Two FEA models, with increasing complexity, are implemented in order to
establish the nearness of the examined case to the real case. The first model, developed
by the commercial software Marc©, considers only 3D-beams and rigid bodies, while joints
are modeled by means of relative degrees of freedom between common nodes belonging to
two coupled bodies. This model perfectly fits the simplifications of the method in exam.
The second model, developed by the commercial software Ansys©, describes a robot with
a complex structure closer to reality. Links are solids while joints have finite burdens and
provide their function by means of the coupling of surfaces and screws.

7.2.1 Statics

We first compared the static deformation of the robot when an external force of 1000 N, along
the x-direction, is applied on the end-effector, when the latter is positioned at its home pose
with angle of rotation of MP equal to zero. Figure 11 shows the displacements of our model
when compared to Ansys© model, while in Tab. 1 the translational displacements of the
end-effector center node are reported.
It can be observed how the first MARC© model perfectly fit to the results of our method. The
relative error grows, but still remaining limited, when displacements are compared to Ansys©

model. The reason is well understood as it comes from the use of solid bodies and joints to
simulate the robot’s structure.
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(a) First mode

(b) Second mode

(c) Third mode

(d) Fourth mode

Fig. 12. Modes comparison: Algorithm vs. Ansys©.

7.2.2 Natural modes and frequencies

As in the case of statics, the elastodynamics model of the 3T1R robot is used to compare natural
modes and frequencies to FEA software. We report only the comparison to Ansys©, as more
indicative of a feasible application of the method to a real case. Figure 12 shows the first four
natural modes obtained when the robot is attaining its home pose. In Table 2 the first ten
natural frequency of the robot, at the same pose, are reported. Results show good agreement
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Freq. Algorithm [Hz] Ansys© [Hz] err%

1 2.920 3.019 3.28%

2 7.062 7.204 1.97%
3 11.275 11.487 1.85%

4 20.834 21.554 3.34%

5 25.480 25.722 0.94%
6 25.545 25.804 1.00%

7 26.028 26.181 0.58%

8 28.306 28.830 1.82%
9 30.368 31.295 2.96%

10 31.060 32.286 3.80%

Table 2. The first ten natural frequencies of the robot at the home pose.

with Ansys© model. Some discrepancies still occur due to the same reasons explained for
the static case and to the use of flexible bodies to simulate all links and platforms in Ansys©.
This choice has been taken in order to avoid asymmetric contacts between rigid and flexible
solids leading to convergence mistakes. In turn, we used a stiffer material to approximate
rigid behavior of the MP and rigid links.

7.2.3 Distribution of frequencies inside the workspace

In order to provide a further useful extension of the proposed method, the first natural
frequency is calculated and plotted inside the constant orientation workspace of the robot
(25). We have chosen elementary cubes of side 5 cm to discretize the workspace of the robot
while the angle of rotation of the MP is θz = 0. It can be observed that two privileged
diagonals divide the workspace into four symmetric areas. These directions coincide with
the two diagonals of the squared BP of Fig. 9, meaning that, at the home pose, geometric
symmetry reflects itself into the elastic behavior of the robot. The boundary of the constant
orientation workspace shows areas with high range of frequency along with other areas in
which the first natural frequency reaches values close to zero (Hz). As already outlined in the
text, this behavior is due to the MP’s displacement (deformation) in correspondence of the
first eigenmode: if at a certain pose, in which the analysis is performed, the displacement is
along a doc of the MP, the ensuing frequency will be high; conversely, if it is along a dof of the
MP, the frequency will come near zero.

[Hz]

Fig. 13. Distribution of the first natural frequency inside the robot’s constant orientation
workspace.
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8. Conclusions

This chapter has discussed a method, based on the Matrix Structural Analysis, to study
the linearized elastodynamics of PKMs. Base and moving platforms are considered rigid,
while links can be modeled as rigid or flexible parts, the latter being decomposed into two
or more flexible bodies. Here, we used 3D Euler beams but the method can be extended
to superelements with two end-nodes. Joints are directly included, without recurring
to Lagrange multipliers, by means of kinematic constraints between nodal displacement
arrays. Three cases have been taken into account to model the rigid-flexible, flexible-flexible
and flexible-rigid coupling of bodies by means joints. Each case yields equations, linking
dependent, independent nodal displacement arrays and joint displacements as well, to be
used to find generalized stiffness and inertia matrices. The latter are then combined as
elementary blocks to find the global matrices of the whole system. Some useful extension
to compliant mechanism has been introduced, while two strategy, the lumped and the
distributed one, have been explained to include mass/inertia into the model. Feasible
applications of the method pertain: the study of natural frequencies inside the robot’s
workspace by means of local and global indices, the singularity finding, the optimization of
elastodynamic performances varying geometric, structural or inertial parameters.
Finally, the method has been applied to an articulated four-dofs PKMs with Schönflies
motions. A modular approach is used to split each of the four legs into three modules.
Results, compared to commercial software, revealed good accuracy in determining natural
frequency range, while drastically reducing the time of computation avoiding the annoying
and time-consuming FEM meshing routines.
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