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1. Introduction 

The kinematic and dynamic modelling of robotic manipulators has, as a specific field of 
robotics, represented a complex problem. To deal with this, the researchers have based 
their works on a great variety of mathematical theories (Seiling, 1999).  One of these tools 
is the Dual Algebra, which is a concept originally introduced in 1893 by William Kingdon 
Clifford (Fisher, 1998; Funda, 1988). A dual number is a compact form that can be used to 
represent the rigid body motion in the space (Keller, 2000; Pennestrí & Stefanelli, 2007), it 
has therefore, a natural application in the analysis of spatial mechanisms specifically 
mechanical manipulators (Bandyopadhyay, 2004, 2006; Bayro-Corrochano & Kähler, 2000, 
2001). 
Several works related to dual-number in kinematics, dynamics and synthesis of 
mechanisms have been developed (Cheng, 1994; Fisher, 1998, 1995, 2003) in (Moon & Kota, 
2001) is presented a methodology for combining basic building blocks to generate 
alternative mechanism concepts. The methodology is based on a mathematical framework 
for carrying out systematic conceptual design of mechanisms using dual vector algebra. 
The dual vector representation enables separation of kinematic function from mechanism 
topology, allowing a decomposition of a desired task into subtask, in order to meet either 
kinematic function or spatial constraints. (Ying et al, 2004) use dual angles as an alternative 
approach to quantify general spatial human joint motion. Ying proposes that dual Euler 
angles method provides a way to combine rotational and translational joint motions in 
Cartesian Coordinate systems, which can avoid the problems caused by the use of the joint 
coordinate system due to non-orthogonality. Hence the dual angles method is suitable for 
analyzing the motion characteristics of the ankle joint. The motion at the ankle joint 
complex involves rotations about and translations along three axes. In the same field of 
biomechanics (KiatTeu et al, 2006) present a method that provides a convenient assessment 
of golf-swing effectiveness. The method can also be applied to other sports to examine 
segmental rotations. In general, this method facilitates the study of human motion with 
relative ease. The use of a biomechanical model, in conjunction with dual-number 
coordinate transformation for motion analysis, was shown to provide accurate and reliable 
results. In particular, the advantage of using the dual Euler angles based on the dual-
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number coordinate transformation approach, is that it allows, for a complete 3D motion, to 
use only six parameters for each anatomical joint. KiatTeu infers that the method has 
proved to be an effective means to examine high-speed movement in 3D space. It also 
provides an option in assessing the contributions of the individual segmental rotations in 
production of the relevant velocity of the end-effector. 
(Page et al, 2007) present the location of the instantaneous screw axis (ISA) in order to obtain 
useful kinematic models of the human body for applications such as prosthesis and orthoses 
design or even to help in disease diagnosis techniques. Dual vectors are used to represent 
and operate with kinematic screws with the purpose of locating the instantaneous screw 
axes which characterize this instantaneous motion. A photogrammetry system based on 
markers is used to obtain the experimental data from which the kinematic magnitudes are 
obtained. A comprehensive analysis of the errors in the measurement of kinematic 
parameters was developed, obtaining explicit expressions for them based on the number of 
markers and their distribution.  

1.1 Dual-number representation in robotics 

The dual-number representation has been extended to other fields of mechanics; rigid body 

mechanics is an area where the dual number formulation has been applied, especially in the 

kinematics and dynamics of mechanisms. 

The homogeneous transformation is a point transformation; in contrast, a line 

transformation can also naturally be defined in 3D Cartesian space, in which the 

transformed element is a line in 3D space instead of a point. In robotic kinematics and 

dynamics, the velocity and acceleration vectors are often the direct targets of analysis. The 

line transformation will have advantages over the ordinary point transformation, since the 

combination of the linear and angular quantities can be represented by lines in 3D space. 

Since a line in 3D space is determined by four independent parameters. (Gu, 1988) presents 

a procedure that, offers an algorithm which deals with the symbolic analysis for both 

rotation and translation. In particular, the aforementioned is effective for the direct 

determination of Jacobian matrices and their derivatives. The dual-number transformation 

procedure, based on these properties and the principle of transference, can be used for 

finding Jacobian matrices in robotic kinematics and their derivatives in robotic dynamics 

and control modeling. A related work was performed in (Pennock & Mattson, 1996) where 

the forward position problem of two PUMA robots manipulating a planar four bar linkage 

payload is solved using closed-form solutions for the remaining unknown angular 

displacements based in orthogonal transformation matrices with dual-number. (Brosky & 

Shoham, 1998; Sai-Kai, 2000) introduce the generalized Jacobian matrix which consists of the 

complete dual transformation matrices. The generalized Jacobian matrix relates force and 

moment at the end-effector to force and moment at the joints for each axe. Furthermore, the 

generalized Jacobian matrix also relates motion in all directions at the joints to the motion of 

the end-effector, an essential relation required at the design stage of robot manipulators. An 

extension of these kinematics and statics schemes into dynamics is possible by applying the 

dual inertia operator. (Brodsky, 1999) formulated the representation of rigid body dynamic 

equations introducing the dual inertia operator. Brodsky gives a general expression for the 

three-dimensional dynamic equation of a rigid body with respect to an arbitrary point. Then 

the dual Lagrange equation is established by developing derivative rules of a real function 

with respect to dual variables. 
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(Bandyopadhyay & Ghosal, 2004) performs a study in order to determinate principal twist 

of the end-effector of a multi-degree of freedom manipulator, which plays a central role in 

the analysis, design, motion planning and determination of singularities. 

(Yang & Wang, 2010) solve the direct and inverse kinematics of a SCARA robot. They 

proved that the dual number allows compact formulations considerably facilitating the 

analysis of robot kinematics. To deal with coordinate transformation in three dimensional 

Cartesian space, the homogeneous transformation is usually applied. It is defined in the 

four-dimensional space and its matrix multiplication performs the simultaneous rotation 

and translation.  

2. Mathematical preliminaries 

Let us consider a transformation of coordinates between the Cartesian Coordinate system 
(x,y) and the oblique coordinate system (u,v) given by the equations: 

 ; 0x au bv y u av     (1) 

With a, b real numbers. The geometry is depicted in Figure 1. 

It is well known that the point ( , )u v  is localized by the vector r x y 
 î  from the origin of 

the Cartesian coordinate. From the transformation (1): 

 ( )r au bv avj  
 î  (2) 

The tangent vectors to u and v are: 

 ;
r r

ai bi aj
u v

 
  

 

 
 (3) 

From the obvious
2 2

ˆ
u v

b
e e

b a
 




 it is clear that the coordinates (u, v) are not orthogonal. 

The unit vectors of the Cartesian frame can be written in the form of column vectors: 

 
1 0

;
0 1

i j
   

    
   

 (4) 

We can describe the oblique frame ( , )u v  in terms of the tangent vectors ai and bi+aj written 

as a column vectors: 

 ;
0

a b
ai bi aj

a

   
     
   

 (5) 

The column vectors  1 0
T

,  0 1
T

 can be combined into a single matrix describing the 

Cartesian Frame: 

Cartesian Frame: 
1 0

0 1

 
 
 
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Fig. 1. Oblique plane 

The column vectors  0
T

a   Tb a  can be combined into a single matrix describing the 
oblique frame: 

Oblique Frame: 
0

a b

a

 
 
 

 

The matrix 
a b

a a

 
 
 

 is the transformation matrix that describes the Oblique Frame relative to 

the Cartesian Frame. 

The matrix 
a b

a a

 
 
 

 can be decomposed as: 

 
1 0 0 1

0 0 1 0 0

a b
a b

a

     
      

     
 (6) 

Where 
1 0

1
0 1

 
 

 
 is the unitary matrix and 

0 1

0 0


 
 

 
 is a matrix with the following 

properties: 

a.   is nilpotent: 

2
2 0 1 0 1 0 1 0 0

0
0 0 0 0 0 0 0 0


      

         
        

b.  is a ninety degree rotation operator  

0 1 1

0 0 0
j i

  
   
  
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Finally expression (6) is written in the form: 

 
0

a b
a b

a


 
  

 
 (7) 

Equation (7) is easily extended to 3D: 

1 0 0 0 0 1

1 0 1 0 ; 0 0 0

0 0 1 0 0 0


   
       
   
   

 

Study in 1903 called the expression a b   “dual number” because it is constructed from the 

pair of real numbers (a, b). A dual number is usually denoted in the form: 

 â a b   (8) 

The algebra of dual numbers has been originally conceived by William Kingdon Clifford. 

Elementary operation of addition is defined as:  0 0
ˆˆ ;a a a b b b      

    0 0
ˆâ b a b a b      (9) 

Multiplication is defined as: 

 0 0 0 0
ˆˆ ( )( ) ( )ab a a b b ab ab a b         (10) 

Division is defined as: 

 0 0 0 0 0
2

0 0 0

ˆ

ˆ
a a a a b b a b aba a

b b b b b b b bb

   
  

     
     

    
 (11) 

Division by a pure dual number 0( )a  is no defined. It immediately follows that: 

 1
0 0

ˆ ( )n n n na a a a na a       (12) 

 0ˆ
a

a a
a a

   (13) 

A function F  of a dual variable 0x̂ x x  can be represented in the form: 

 0 0
ˆ( ) ( , ) ( , )F x f x x g x x   (14) 

Where f and g are real functions of real variables x & 0x . The necessary and sufficient 

conditions in order that F be analytic are: 

 
0 0

0 ;
f f g

x x x

  
 

  
 (15) 
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From these it immediately follows the Taylor Series expansion: 

 0 0

( )
ˆ( ) ( ) ( )

f x
f x f x x f x x

x
 


   


 (16) 

Because 2 0  , 3 0  , 4 0   and so on, all formal operation of dual number are the same 
as those of ordinary algebra. 

2.1 The dual angle 

The dual angle represents the relative displacement and orientation between two lines 

1L and 2L  in the 3D space (Figure 2). 

 

 

Fig. 2. Geometric representation of a dual angle. 

The dual angle is defined as: 

 ˆ S     (17) 

This concept was introduced by Study in 1903.  the primary component of ̂  is the 

projected angle between 1L  and 2L . S the dual component of ̂ is the shortest distance 

between lines 1L & 2L  (as is obvious S  is the length of common perpendicular to plane 1 

and plane 2. Table 1 summarizes some properties: 

 
ˆˆ ˆc a b     0 0ĉ a b a b     

ˆˆ ˆc ab   0 0
ˆâb a a b b     

ˆna 1
0ˆ nn na a na a   

â  
0ˆ

2

a
a a

a
   

ˆâ b 0 0
2

ˆ
a b aba

c
b b




 

 ˆf a     0

( )
ˆ

df a
f a f a a

da
 

Table 1. Basic dual algebra operations 
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In particular a dual angle is an advantageous tool to represent the coordinates of a rigid 
body in the space relative to other rigid body, if two planes are parallel and exists a line in 
each plane, dual angle will be the distance between the planes and the angle produced by 
the projection of one of the lines onto plane, thus a dual angle is used to describe each one of 
a robot’s joints as a cylindrical one, which means that the entire topology is formulated as a 
set of dual angles (Fisher, 1995; Cecchini et al, 2004).  

2.2 Dual vectors 

A dual vector ˆ ( )V V r V  
 

is a vector constrained to lie upon a given line L in 3D space. 

The primary component V


is called the “resultant vector” and comprises the magnitude and 

direction of dual vector V̂ . It is independent of the location frame origin. The dual 

component r V


is called the “moment vector”. The vector r


is the position vector from the 

frame origin to any point on the line L of dual vector V


. r V


is invariant for any choice of 

point on line L , it depends on the choice of the frame origin. (Figure 3).  
 

 

Fig. 3. Dual vector  

Among the important dual vectors are: 

1. Velocity defined as: ˆ ˆ( )V v u    

2. Linear momentum: p̂ p r p  
  

 

3. Force: F̂ F r F  
 

 

4. Angular momentum: L̂ L r L  
 

 

Important dual rotations around and along z, y, x axis are (Figure 4): 

ˆ,

1 0 0
ˆ ˆ ˆ0 cos sin

ˆ ˆ0 sin cos
xR   

 

 
   
    

ˆ,

ˆ ˆcos 0
ˆ 0 1 0

ˆ ˆ0 cos

y

sen

R

sen



 

 

 
 

  
  

  ˆ,

ˆ ˆcos sin 0

ˆ ˆ ˆcos 0

0 0 1
z

R sen

 

 

 
 

  
 
  
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Fig. 4. Dual rotations: A) around and along x, B) around and along y, C) around and along z. 

2.3 Algebra of dual vectors and matrices 

Let: 1
ˆ ( )A a r a  

  
and 2

ˆ ( )B b r b  
 

: 

1 2
ˆ ( )A B a b r a r b      

     
 

Definition of dot and cross products are: 

ˆ ˆ ˆˆ ˆ ˆ ˆcos ; sinA B ab A B ab S    
 

Product of two dual matrices: 

Let    0Â A A     &    0B̂ B B     , the definition of their dual product is: 

    0 0
ˆ ˆ [ ][ ] [ ][ ]A B A B A B A B          

It is similar with the multiplication rule for dual numbers. The inverse of a square matrix is 
defined as: 

 
1ˆ ˆA A I


         

   1 1 1 1
0

ˆ [ ] [ ][ ]A A A A A
         

3. Denavit – Hartenberg parameters 

Mechanisms analysis is facilitated by fixing a coordinate system on each link in a specific 
manner. With reference to Figure 5, a coordinate frame  1i  is fixed on the distal end of a 
link i joining joints i and 1i  such that: 

1
ˆ
ik  axis coincident with axis of joint 1i   

1ii  axis coincident with shortest distance between axes ˆ
ik & 1

ˆ
ik   

1ii  axis perpendicular to both axes 1ii  & 1
ˆ
ik   
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The origin of frame  1i  is located at the intersection of axes 1
ˆ
ik  and 1ii  . Frame { }i is 

fixed on the previous link 1i  . Translation iS is the distance from point i , the origin of 
frame { }i to the line segment whose length ia is the shortest distance between joint axes ˆ

ik  
and 1

ˆ .ik  That line segment of shortest distance between join axes intersects axis 1
ˆ
ik  at point 

1i  , the origin of frame { 1}i  fixed on the distal end of link i . The projected angle 
between axes ˆ

ik and 1
ˆ
ik   represent the twist i of link i . The values , , ,a S  are the well-

known Denavit-Hartenberg parameters. 
 

 

Fig. 5. Denavit and Hartenberg parameters (Pennestrí & Stefanelli, 2007) 

A dual matrix rotation that represent the necessary motions of frame { }i in terms of an 

attached { 1}i   frame is the composition of rotation ˆ( )x iR   and rotation ˆ( )z iR  , i.e. 

   1
ˆ ˆ,,

ˆ ˆ ˆˆ ˆcos cos sin sin sin

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆsin cos cos sin cos

ˆ ˆ0 sin cos

i i i i i

i
i x i i i i iz

i i

M R R 

    

    
 



 
 

   
 
  

 (18) 

So the open chain dual equation is: 

 0 1

1

ˆ ˆ
n

i
n i

i

M M



  (19) 

According with Funda the dual rotation matrix 0 0 0ˆ
n n nM T D   

The above expression is useful for modeling prismatic, rotational and cylindrical joints, this 
represents a main advantage respecting to real numbers, to represent the relative position of 
a point respecting an inertia frame an alternative is establishing the representation of 

Denavit and Hartenberg trough the dual angles  , : 

4. Dual Jacobian matrix 

If a point P on a body j is moving with respect to a body I (Fig. 6), the velocity can be 

expressed in terms of inertial frame R  ,
ˆR P

j iV . 
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Fig. 6. Dual velocity scheme.  

When the dual velocity needs to be represented in terms of frame Q , a rotation from 
frame R  is done: 

 , ,
ˆ ˆQ P Q P P

j i p j iV T V  (20) 

The relative velocity of a link k with respect to link i  ,
ˆ

k iV  in dual form is established as: 

 , , ,
ˆ ˆ ˆ

k i j i k jV V V   (21) 

 

 

Fig. 7. Relative dual velocity theorem in a kinematic chain. 

From dual velocities theorem, the vector of dual velocities in the end of n link in terms of 
the n frame can be found as: 

 0 0 1 1
,0 1 , 1

1

ˆ ˆ ˆ
n

n n i i
n n i i i

i

V T M V 
 


   (22) 

Where 0
nT is the primary component of the dual matrix(19). 

The generalized dual Jacobian matrix is obtained by applying the relative velocity theorem in 
dual form.  The differential motions, whether axial or radial, are expressed in a matrix formed 
by the dual homogenous matrices, in contrast with the conventional Jacobian matrix that is 
obtained from specific columns of homogeneous transformation matrix (Sai-Kai, 2000). 

 

0 0
1,0

1 1
0 0 2,1

,0 0 1 2 1

1 1
, 1

ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ...

ˆ

x x
n n n n n
n y y n n

z z
n n

n n

V
V

V
V V T M M M M

V
V

 
 

 


 


 
                        
  


 (23) 
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The block matrix 0 1 2 1
ˆ ˆ ˆ ˆ...n n n n

nM M M M  
  is called Dual Jacobian matrix (Brodsky). 

5. Dynamic analysis: Dual force 

One of the most important features of dual number formulation is the capability of 

generalization for a great variety of robot topologies, without modifying the main program, 

this is an advantage when compared to typical homogenous matrices wherein is required to 

specify in dynamical model whether a joint is rotational or prismatic. 

In dual algebra, if a force and a momentum act with respect a coordinate system, they can be 

represented in an expression called dual force: 

 F̂ F  
 

 (24) 

A clear example would be a screwdriver where is necessary to apply a force axially and 
around to screw. 
 

 

Fig. 8. Example of dual force 

If a dual force is applied on a point “B” different to the origin point “A”, the effect on the 

point “B” will be determined by a coordinate transformation. Then a dual force applied on 

“A” in terms of the frame “B” is given by: 

 ˆB B A B A
A A A A AF T F T  

 
 (25) 

5.1 Dual momentum 

Dual momentum concept is introduced due to the acceleration is a dual pseudo-vector, that 

means that it can not be established as a dual vector. 

  ˆB B B
A p p

A

H P H 
 

 (26) 

The terms &B B
p pP H
 

 are the linear and angular momentum of a particle “p” on a body “A” 

respectively, in terms of frame “B”. 
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B B B B B B B
A A A A AP m V S              

B B B B B B B B B
A A A A AH S V J                  

5.2 Dual inertial force 

According with (Pennock & Meehan, 2000) the dual inertial forces on a rigid body are the 
derivative of the dual momentum: 

  ˆ ˆB B
A A

d
f H

dt
  (27) 

ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ0ˆ

B B B B B B
Ai Ak Aj Ai

B B B B B B B
A Aj Ak Ai Aj

B B B B BB Aj Ai AkAk

H V V H

f H V V H

V V HH

                               






 

ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

B B B B B B B
B Ai Ak Aj Aj Ak

Ai

B B B B B B B B
Aj Aj Ai Ak Ak Ai

B B B B B B B B
Ak Ak Aj Ai Ai Aj

H V H V Hf

f H V H V H

f H V H V H

                       






 

5.3 Dynamic equilibrium 

Extending the D’Alembert principle to dual numbers for dynamic equilibrium 

 ˆˆ ˆB A B B
A A B AM F F f   (28) 

6. Example: Robot with cylindrical joints 

The robot shown in the Figure 9 is a clear example where the dual numbers can be 
employed: 
 

2

1
1d

2d

 

Fig. 9. Assignment of reference systems and Denavit-Hartenberg parameters. 
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i i  iS  ia  i  

1 1  1d  1l  90° 

2 2  2d  2l  0° 

Table 2. Denavith and Hartemberg parameters of 2C robotic arm. 

From Table 2, the dual angles ˆ ˆ&  are constructed as: 

1 1 1
ˆ d     2 2 2

ˆ d     1 1 1
ˆ a     2 2 2

ˆ a     

It is observed that different topologies can be solved from the assigned values to 

1 , 1d , 2 , 2d ; for example if 1 is 0 the robot will change the original topology CC to PC 

then nine different robots can be solved from the same aforementioned equations. 

 
 

1d
2

1d
2d

22d

2
1d

1d

1d
2d

2

2

2d 2d

1

11

1

1
 

 

Fig. 10. Possible topologies for different values of 1 2&  . 
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1 1 1 1 1 2 2 2 2 2

0
2 1 1 1 1 1 2 2 2 2 2

1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆcos cos sin sin sin cos cos sin sin sin

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆsin cos cos sin cos sin cos cos sin cos

ˆ ˆ ˆ ˆ0 sin cos 0 sin cos

M

         

         
   

    
   

     
   
        

For the inverse solution: 

0
2

ˆ
x x x

y y y

z z z

z y y z z y y z z y y z

z x x z z x x z z x x z

y x x y y x x y y x x y

n o a

M n o a

n o a

p n p n p o p o p a p a

p n p n p o p o p a p a

p n p n p o p o p a p a



 
 

  
 
 

      
 

    
       

 

 
 

1 2 1 2 1
0

2 1 2 1 2 1

2 2

1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 1 2

1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1 2

2 2 2 2 2

ˆ

0

100.5s s s c c s 70s 100.5s c c c s s c 70s

100.5c s c c s s 70c 100.5c c c s s c s 70s

c s 70c 100.5

c c c s s

M s c s s c

s c

d d d d d

d d d d d

d d



 
    
  

       
        
    

 

Dividing elements (2,1) and (1,1) in both matrices: 

1
1

y

x

n
tg

n
   

   
 

 ; 
2

1
2 2

1 z

z

o
tg

o
 

   
 
 

 

The velocities in the cylindrical joints are given by: 

0 0
1,0

1 1

0 0
ˆ 0 0V

v




   
       
        

1 1
2,1

2 2

0 0
ˆ 0 0V

v




   
       
        

Computing the velocities on the end-effector: 

 0 2 0 2 0 0 2 1 1
2,0 2 0 1,0 1 2,1

ˆ ˆ ˆ ˆ ˆV T M V M V   

The above expression can be rewritten in terms of dual Jacobian matrix. 

0 0
1,00 2 0 2 2

2,0 2 0 1 1 1
2,1

ˆ
ˆ ˆ ˆ

ˆ

x x

y y

z z

V V
V V T M M

V
V

 
 

 

                      
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1 2 1 2 1
1 10 2 0 1

2,0 1 2 1 2 1 2 2

2 2

2 2

0

0

ˆ ˆ ˆ
0

0
0

T T

c c c s s
v

V s c s s c M M

s c

v

 

 

 
 
                    
 

    

Dual velocities: 

1 1 1 0 0
1,0 0 1,0 1 1 1

1 1 1

0
ˆ ˆ ˆ ˆsin ( )

ˆcos ( )

V M V v

v

  
  

 
    
    

2 2 2 1 1
2,0 1 2,0 2 2 2

2 2 2

0
ˆ ˆ ˆ ˆsin ( )

ˆcos ( )

V M V v

v

  
  

 
    
    

6.1 Dynamic analysis 

Once obtained the velocities, the next step for solving the dynamic equations is,  according 
with Fisher, to compute the dual momentum, being for each link: 

 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1,0 1 1,0 1 1,0 1 1,0Ĥ m V S S V I                               

  
 

 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2,0 2 2,0 2 2,0 2 2,0Ĥ m V S S V I                               

  
 

Derivating the above expressions: 

   

   

1 1 1 1 1 1
0 1 1,0 1 1,0

1 1 1 1 1 1
1 1,0 1 1,0

ˆ d d
H m V S

dt dt

d d
S V I

dt dt



 

            

                   

 

 
 

1 1
0 0

1 1
0 0

1 1
0 0

1 1 1 1 1 1 1
0 1,0 0 1,0 0

1 1 1 1 1 1 1
0 1,0 0 1,0 0

1 1 1 1 1 1 1
0 1,0 0 1,0 0

1 1 1 1 1 1 1 1 1 1 1 1 1
0 1,0 0 1,0 0 1,0 0 1,0 0

1

i i

j j

k k

i k j j k

j i k k i

k j i i j

i k j k j j k j k

f t

f t

f t

P P P

P P P

P P P

H H V P H V P

H







 

 

 

 



 
 

 
 

  
  
 
   
 
   

   











 1 1 1 1 1 1 1 1 1 1 1 1
0 1,0 0 1,0 0 1,0 0 1,0 0

1 1 1 1 1 1 1 1 1 1 1 1 1
0 1,0 0 1,0 0 1,0 0 1,0 0

j i k i k k i k i

k j i j i i j i j

H V P H V P

H H V P H V P

 

 

 
 
    
 
     


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2 2
1 1

2 2
1 1

2 2
1 1

2 2 2 2 2 2 2
1 2,0 1 2,0 1

2 2 2 2 2 2 2
1 2,0 1 2,0 1

2 2 2 2 2 2 2
1 2,0 1 2,0 1

2 2 2 2 2 2 2 2 2 2 2 2 2
1 2,0 1 2,0 1 2,0 1 2,0 1

2

i i

j j

k k

i k j j k

j i k k i

k j i i j

i k j k j j k j k

f t

f t

f t

P P P

P P P

P P P

H H V P H V P

H







 

 

 

 



 
 

 
 

  
  
 
   
 
   

   











 2 2 2 2 2 2 2 2 2 2 2 2
1 2,0 1 2,0 1 2,0 1 2,0 1

2 2 2 2 2 2 2 2 2 2 2 2 2
1 2,0 1 2,0 1 2,0 1 2,0 1

j i k i k k i k i

k j i j i i j i j

H V P H V P

H H V P H V P

 

 

 
 
    
 
     



 

From dynamic equilibrium: 

  0B A B B B A B A B B
A A B A A A A A B AM F F f M T D F T t      

     
 

0B A B B
A A B AM F F f  

 
 

0B A B A B B
A A A A B AM T D F T t   

   
 

 12 2 2
2 1 1F M f


   


 

 11 1 2 1
1 0 2 0F M F f


   

 
 

 12 2 2 2 2
2 1 1 1 2T M t D F


   

 
 

 11 1 2 1 1 1
1 0 2 0 0 1T M T t D F


    

  
 

7. Conclusions 

The presented method, based on dual-number representation, has demonstrated be a 

powerful tool for solving a great variety of problems, that imply motions simultaneity off 

rotation and translation of rigid bodies in the space; the aforementioned, allows establishing 

dual rotation matrices. Robotics is a field wherein dual numbers have been employed to 

describe the motion of a rigid body, in particular of serial robotic arms. The methodology 

proposed is useful for robotic arms with cylindrical, prismatic and rotational joints. Once 

established the dual angles ̂ and ̂ , if the dual part of ̂   is zero, the mechanism has only 

revolute joints, otherwise if the primary part of ̂  is zero, only exist prismatic joints. So the 

developed methodology can be generalized to different topologies, which is a great 

advantage that allows that only one program solves a great variety of topologies. 
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The dynamic model is treated by using the dual momentum, wherein the inertial forces are 
computed by means of a set of linear equations, thus a 6 n  vector of forces is calculated, 
and in consequence one obtains a complete description of the robotic manipulator. An 
appropriate way of dual numbers programming will yield a suitable software alternative to 
simulate and analyze different serial robotic manipulators topologies. 

8. Acknowledgments 

The authors gratefully acknowledge the support of CONACYT, IPN and ICyTDF for 
research projects and scholarships. They also would like to thank the anonymous reviewers 
for their valuable comments and suggestions. 

9. References 

Al-Widyan, K.; Qing Ma, Xiao & Angeles, J. (2011). The robust design of parallel spherical 
robots. 

Bandyopadhyay, S. (2004). Analytical determination of principal twists in serial, parallel and 
hybrid manipulators using dual vectors and matrices. Journal of Mechanism and 
Machine Theory, Vol. 39, (2004), pp. (1289-1305), ISSN: 0094-114X. 

Bandyopadhyay, S. (2006). Analysis and Design of Spatial Manipulators: An Exact Algebraic 
Approach using Dual Numbers and Symbolic Computation. Ph. D. Thesis, Department 
of Mechanica Engineeriring, Indian Institute of Science. 

Bayro-Corrochano, E. & Kähler, D. (2000). Motor algebra approach for computing the 
kinematics of robot manipulators. Journal of Robotic Systems, Vol. 17, 9, (September 
2000), pp. (495-516), DOI: 10.1002/1097-4563  

Bayro-Corrochano, E. & Kähler, D. (2001), Kinematics of Robot Manipulators in the Motor 
Algebra, In: Geometric computing with Clifford algebras, Springer, ISBN: 3-540-41198-4 
Institute of Computer Science and Applied Mathematics, University of Kiel. 

Brodsky, V. &Shoham, M. (1998). Derivation of dual forces in robot manipulators. Journal of 
Mechanism and Machine Theory, 33: 1241-1248. 

Cecchini, E., Pennestri, E., & Vergata, T. (2004). A dual number approach to the Kinematic 
analysis of spatial linkages with dimensional and geometric tolerances. Proceedings 
of Design Engineering Technical Conferences and Computers and Information in 
Engineering Conference, Salt Lake City, Utah, USA. 

Cheng, H.H. (1994). Programming with dual numbers and its applications in mechanisms 
design. Engineering with Computers, Springer. 

Fischer, I. (2003). Velocity analysis of mechanisms with ball joints. Journal of Mechanics 
Research Communications, Vol. 30, 1, January-February 2003, pp. (69-78), doi: 
10.1016/S0093-6413(02)00350-6    

Fisher, I. S. (1998). Dual Number Methods in Kinematics, Statics and dynamics. (1st Edition),  
CRC Press, ISBN: 9780849391156, U. S. A. 

Fisher, I. S. (1998). The dual angle and axis of a screw motion. Journal of Mechanisms and 
Machine Theory, Vol. 33, 3, (April 1998), pp. (331 - 340), DOI: 10.1016/S0094-
114X(97)00039-6 

Fisher, I. S. (2000). Numerical analysis of displacements in spatial mechanisms with ball 
joints. Journal of Mechanisms and Machine Theory, Vol. 35, 11, (November 2000), pp. 
(1623 - 1640), doi:10.1016/S0094-114X(99)00058-0 

www.intechopen.com



 
Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization 

 

84

Funda, J. (1988). A Computational Analysis of Line-Oriented Screw Transformations in Robotics. 
Technical Report, University of Pennsylvania, U. S. A. 

Gu, Y.L. & Luh, J. Y. S. (1987). Dual-Number Transformation and Its Applications To 
Robotics. 

Keler, M. L. (2000). On the theory of screws and the dual method. Proceedings of A Symposium 
Commemorating the Legacy, Words and Life of Sir Robert Stawell Ball Upon the 
100th Anniversary of a Treatise on the Theory of Screws, University of Cambridge, 
Trinnity College. 

Kiat Teu, K.; Kim, W.; Fuss, F. K. & Tan, J.(2006). The analysis of golf swing as a kinematic 
chain using dual Euler angle algorithm. 

Moon, Y-M. & Kota, S.(2002). Automated synthesis of mechanisms using dual-vector 
algebra. Mechanisms and Machine Theory, (February 2002), pp. (143-166), doi: 
10.1016/S0094-114X(01)00073-8 

Page, A.; Mata, V.; Hoyos, J. V. & Porcar, Rosa. (2007) Experimental depermination of 
instantaneous screw axis in human motions. Error analysis 

Pennestrí, E. &Stefanelli, R. (2007). Linear Algebra and numerical algorithms using dual 
numbers. Journal of Multi-body System Dynamics, Vol. 18, 3, pp. (323-344) 

Pennock, G. R. & Mattson, K. G. (1996). Forward position problem of two PUMA-type 
robots manipulating a planar four-bar linkage payload. 

Pennock, G. R. & Meehan P. J. (2000). Geometric insight into dynamics of a rigid body using 
the theory of screws. 

Sai-Kai, C. (2000). Simbolic computation of Jacobian of manipulators using dual number 
transformations. 

Seilig, J.M. (1999). Geometrical Methods in Robotics. (1st Edition), Springer, ISBN: 0387947280, 
New Jersey, U. S. A. 

Wang, J.; Liang, H-Z. & Sun Z. (2010). Relative Coupled Dynamics and Control using Dual 
Number. Systems and Control in Aeronautics and Astronautics (ISSCAA), 2010 3rd 
International Symposium on 

Yang, J. & Wang, X. (2010). The application of the dual number methods to scara kinematics. 
Ying, N.; Kim, W.; Wong, Y. & Kan, H. K. (2004). Analysis of passive motion characteristics 

of the ankle joint complex using dual Euler angle parameters. Clinical 
Biomechanics, Vol. 19, 2,  (February 2004), pp. (153-160), doi: 10.1016/j.clinbiomech. 
2003.10.005  

www.intechopen.com



Serial and Parallel Robot Manipulators - Kinematics, Dynamics,

Control and Optimization

Edited by Dr. Serdar Kucuk

ISBN 978-953-51-0437-7

Hard cover, 458 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The robotics is an important part of modern engineering and is related to a group of branches such as electric

& electronics, computer, mathematics and mechanism design. The interest in robotics has been steadily

increasing during the last decades. This concern has directly impacted the development of the novel

theoretical research areas and products. This new book provides information about fundamental topics of

serial and parallel manipulators such as kinematics & dynamics modeling, optimization, control algorithms and

design strategies. I would like to thank all authors who have contributed the book chapters with their valuable

novel ideas and current developments.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

R. Tapia Herrera, Samuel M. Alcantara, Jesus A. Meda C. and Alejandro S. Velazquez (2012). Kinematic and

Dynamic Modelling of Serial Robotic Manipulators Using Dual Number Algebra, Serial and Parallel Robot

Manipulators - Kinematics, Dynamics, Control and Optimization, Dr. Serdar Kucuk (Ed.), ISBN: 978-953-51-

0437-7, InTech, Available from: http://www.intechopen.com/books/serial-and-parallel-robot-manipulators-

kinematics-dynamics-control-and-optimization/kinematic-and-dynamic-modelling-of-serial-robotic-

manipulators-using-dual-number-algebra



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


