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1. Introduction 

It is believed that Gough and Whitehall (1962) first introduced parallel robots with an 
application in tire-testing equipments, followed by Stewart (1965) , who designed a parallel 
mechanism to be used in a flight simulator. With ever-increasing demand on the robot’s 
rigidity, redundant mechanisms, which are stiffer than their non-redundant counterparts, 
are attracting more attention. 
Actuation redundancy eliminates singularity, and greatly improves dexterity and 
manipulability. Redundant actuation increases the dynamical capability of a PM by 
increasing the load-carrying capacity and acceleration of motion, optimizing the load 
distribution among the actuators and reducing the energy consumption of the drivers. 
Moreover, it enhances the transmission characteristics by increasing the homogeneity of the 
force transmission and the manipulator stiffness (Yi et al., 1989). From a kinematic 
viewpoint, redundant actuation eliminates singularities (Ropponen & Nakamura, 1990) 
which enlarge the usable workspace, as well. The kinematic analysis on general redundantly 
actuated parallel mechanisms was investigated by Müller (2005).  
A number of redundantly full-actuated mechanisms have been proposed over the years and 
some of them which are more significant are listed in this section. The spatial octopod, which 
is a hexapod with 2 additional struts, is one of them (Tsai, 1999). A 5-DOF 3-legged mechanism 
was proposed by Lu et al. (2008), who studied its kinematics, statics, and workspace. Staicu 
(2009) introduced a new 3-DOF symmetric spherical 3-UPS/S parallel mechanism having 
three prismatic actuators. As another work of Lu et al. (2009), they introduced and used 
2(SP+SPR+SPU) serial–parallel manipulators. Wang and Gosselin (2004) addressed an issue of 
singularity and designed three new types of kinematically redundant parallel mechanisms, 
including a new redundant 7-DOF Stewart platform. They concluded that such manipulators 
can be used to avoid singularities inside the workspace of non-redundant manipulators. 
Choi et al. (2010) developed a new 4-DOF parallel mechanism with three translational and 
one rotational movements and found this mechanism to be ideal for high-speed machining. 
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Gao et al. (2010) proposed a novel 3DOF parallel manipulator and they increased the 
stiffness of their system, using an optimization technique. Lopes (2010) introduced a new 6-
DOF moving base platform, which is capable of being used in micro robotic applications 
after processing serial combination with another industrial manipulator. It is in fact a non-
redundant parallel mechanism with 6 linear actuators.  
Deidda et al. (2010) presented a 3-DOF 3-leeged spherical robotic wrist. They analyzed 
mobility and singularity. Tale Masouleh et al. (2011) investigated the kinematic problem of a 
5-DOF 5-RPUR mechanism with two different approaches, which differ by their concepts of 
eliminating passive variables. Zhao and Gao (2010) investigated the kinematic and dynamic 
properties of a 6-DOF 8-PSS redundant manipulator. They presented a series of new joint-
capability indices, which are general and can be used for other types of parallel 
manipulators. 
Li et al. (2007) worked on the singularity-free workspace analysis of the general Gough–
Stewart platform. In a similar line of work, Jiang and Gosselin (Jiang & Gosselin, 2009a;b;c) 
determined the maximal singularity-free orientation workspace at a prescribed position of 
the Gough–Stewart platform. Alp and Ozkol (2008) described how to extend the workspace 
of the 6-3 and 6-4 Stewart platforms in a chosen direction by finding the optimal 
combination of leg lengths and joint angles. They showed that the workspace of the 6-3 
Stewart platform is smaller than that of the 6-4 one. 
Mayer and Gosselin (2000) developed a mathematical technique to analytically derive the 
singularity loci of the Gough-Stewart platform. Their method is based on deriving an 
explicit expression for the determinant of the jacobian matrix of the manipulator. 
To demonstrate the redundancy effects, Wu et al. (2010) compared a planar 2-DOF 
redundant mechanism with its non-redundant counterpart. Arata et al. (2011) proposed a 
new 3-DOF redundant parallel mechanism entitled as Delta-R, based on its famous non-
redundant counterpart, Delta, which was developed by Vischer & Clavel (1998).  
Sadjadian and Taghirad (2006) compared a 3-DOF redundant mechanism, hydraulic 
shoulder, to its non-redundant counterpart. They concluded that the actuator redundancy in 
the mechanism is the major element to improve the Cartesian stiffness and hence the 
dexterity of the hydraulic shoulder. They also found that losing one limb reduces the 
stiffness of the manipulator significantly. 
The rest of the chapter is organized as follows. In Section 2, in addition to introduction and 
comparison of non-redundant 3-legged and redundant 4-legged UPS PMs, four different 
architectures of the Gough-Stewart platforms are depicted. The kinematics of the 
abovementioned mechanisms are reviewed in Section 3. The jacobian matrices using the 
screw theory is derived in Section 4. In Sections 5 and 6, the performances of the redundant 
and non-redundant mechanisms are studied and compared with four well-known 
architectures of hexapods. Finally we conclude in Section 7. 

2. Mechanisms description 

The schematics of the 6-DOF non-redundant,3-legged and redundant 4-legged mechanisms 
are shown in Figs. 1 and 2, respectively. 
The non-redundant 3-legged mechanism was first introduced by Beji & Pascal (1999). The 
redundant 4-legged mechanism has the similar structure, with a single leg added to the 3-
legged system, which keeps symmetry. Each leg is composed of three joints; universal,  
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Fig. 1. Schematic of the non-redundant mechanism. 

 

 
Fig. 2. Schematic of the redundant mechanism. 

prismatic, and spherical (Fig. 3). A rotary actuator and a linear actuator are used to actuate 
each leg. The rotary actuators, whose shafts are attached to the lower parts of the linear 
actuators through the universal joints, are placed on the corners of the fixed platform 
(Abedinnasab & Vossoughi, 2009; Aghababai, 2005). The spherical joints connect the upper 
parts of the linear actuators to the moving platform. 
Rotary actuators are situated on the corners Ai (for i=1, 2, 3, 4) of the base platform and each 
shaft is connected to the lower part of linear actuators through a universal joint (Figs. 1 and 
2). The upper parts of linear actuators are connected to the corners of the moving platform, 
Bi points, through spherical joints (Fig. 3). 
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Fig. 3. Schematic of the universal joint, and the joints variables. 

Cartesian coordinates A (O, x ,y, z) and B (P, u, v, w) represented by {A} and {B} are 
connected to the base and moving platforms, respectively. In Fig.3, is


 represents the unit 

vector along the axes of ith rotary actuator and id


 is the vector along i iA B


 with the length of 

id . Assuming that each limb is connected to the fixed base by a universal joint, the 
orientation of ith limb with respect to the fixed base can be described by two Euler angles, 
rotation i  around the axis is


, followed by rotation i  around in


 , which is perpendicular 

to id


 and is


 (Fig. 3). It is to be noted that i  and id  are active joints actuated by the rotary 
and linear actuators, respectively. However, i  is inactive. 
By replacing the passive universal joints in the Stewart mechanism with active joints in the 
above mentioned mechanisms, the number of legs could be reduced from 6 to 3 or 4. This  
 

 
Fig. 4. Schematics of well-known Stewart platforms. 
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change makes the mechanism to be lighter, since the rotary actuators are resting on the fixed 
platform, which causes higher accelerations to be available due to smaller inertial effects. 
The applications of this type of robots can be found in flight simulators, high precision 
surgical tools, positioning devices, motion generators, ultra-fast pick and place robots, 
haptic devices, entertainment, multi-axis machine tools, micro manipulators, rehabilitation 
devices, etc.  
Advantages of high rigidity and low inertia make these PMs ideal for force feedback control, 
assembly, manufacturing, underground projects, space technologies, and biology projects. 

3. Kinematic analysis 

One of the most important issues in the study of parallel mechanisms is the kinematic 
analysis, where the generated results form the base for the application of the mechanism. 

ia


 represents the vector iOA


 (Fig. 1). [cos sin 0]Ti i ia g  


, in which, 

Re . Re . Re . Re .
1 2 3 445 , 45 , 135 , 135d d d dand            , 

and 

. e . e .
1 2 30 , 120 , 120Non Red Non R d Non R dand          , 

where g and r are the radius of the fixed and moving platforms, respectively. B
ib


 represents 

the position of the ith joint on the platform in the moving frame {B}, B
i i B

b PB
 

. B
ib


 is 

constant and is equal to [cos sin 0]B T
i i ib h  


. We can represent A

B ijR r    , the rotation 

matrix from  B  to A , using Euler angles as 

 
2 3 3 2 1 3 1 3 2 1 3 1

2 3 3 2 1 3 1 3 2 1 3 1

2 2 1 2 1

c c c c c c

c c c

s s s s s s

s s c c

c c

s s

s c

s s s

s

A
BR

           
           

    

 
  

 





 

 

, (1) 

where 1 1s sin   and 1 1c cos  , and so on. 1 , 2 , and 3  are three Euler angles 

defined according to the z y x  convention. Thus, the vector B
ib


 would be expressed in 

the fixed frame {A} as  

 A
i B i B

b R PB
 

. (2) 

Let p


and ir


 denote the position vectors for P  and iB  in the reference frame A , 

respectively. From the geometry, it is obvious that 

 i ir p b 
 

. (3) 

Subtracting vector ia


 from both sides of (3) one obtains 

 i i i ir a p b a   
   

. (4) 
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Left hand side of (4) is the definition of id


, therefore 

 2 ( ) ( )i i i i id p b a p b a     
    

. (5) 

Using Euclidean norm, id can be expressed as: 

 
 2 2 2( ) ( ) ( )i i i id x x y y z z     

, (6) 

where, 

 

 
 
 

11 21

12 22

13 23

cos sin cos

cos sin sin

cos sin

i i i i

i i i i

i i i

x h r r g

y h r r g

z h r r

  

  

 

    


   
   

. (7) 

Coordinates ( , , , )i i i i iC A x y z  are connected to the base platform with their ix  axes aligned 

with the rotary actuators in the is


 directions, with their iz  axes perpendicular to the fixed 

platform. Thus, one can express vector id


 in  iC  as 

 

sin

sin cos

cos cos

i

i
C

i i i i

i i

d d


 
 

 
   
  


, (8) 

and from the geometry is clear that 

 i

i

CA
i i C ir a R d 

 
, (9) 

where 
i

A
C R  is the rotation matrix from  iC  to  A , 

 

cos sin 0

sin cos 0

0 0 1
i

i i
A

C i iR

 
 

 
   
  

. (10) 

By equating the right sides of (3) and (4), and solving the obtained equation, i  and i  can 

be calculated as follows: 

 1 cos ( ) sin ( )
sin i i i i

i
i

x x y y

d

 
     

  
 

, (11) 

 1 sin ( ) cos ( )
sin

cos
i i i i

i
i i

x x y y

d

 



    

  
 

. (12) 
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4. Jacobian analysis using screw theory 

Singularities of a PM pose substantially more complicated problems, compared to a serial 
manipulator. One of the first attempts to provide a general framework and classification 
may be traced back to Gosselin and Angeles (1990) ,who derived the input–output velocity 
map for a generic mechanism by differentiating the implicit equation relating the input and 
output configuration variables. In this way, distinct jacobian matrices are obtained for the 
inverse and the direct kinematics, and different roles played by the corresponding 
singularities are clearly shown. 
For singularity analysis other methods rather than dealing with jacobian matrix are also 
available. Pendar et al. (2011) introduced a geometrical method, namely constraint plane 

method, where one can obtain the singular configurations in many parallel manipulators 
with their mathematical technique. Lu et al. (2010) proposed a novel analytic approach for 
determining the singularities of some 4-DOF parallel manipulators by using 
translational/rotational jacobian matrices. Piipponen (2009) studied kinematic singularities of 
planar mechanisms by means of computational algebraic geometry method. Zhao et al. (2005) 
have proposed terminal constraint method for analyzing the singularities based on the 
physical meaning of reciprocal screws. 
Gosselin & Angeles (1990) have based their works on deriving the jacobian matrix. They 
performed this by defining three possible conditions. In these conditions the determinant of 
forward jacobian matrix or inverse jacobian matrix is investigated. They have shown that 
having dependent Plücker vectors in a parallel manipulator is equivalent to zero 
determinant of the forward jacobian matrix and then a platform singularity arises. 
In this section the jacobian analysis of the proposed PMs are approached by using the theory 
of screws. Zhao et al. (2011) proposed a new approach using the screw theory for force 
analysis, and implemented it on a 3-DOF 3-RPS parallel mechanism. Gallardo-Alvarado et 
al. (2010) presented a new 5-DOF redundant parallel manipulator with two moving 
platforms, where the active limbs are attached to the fixed platform. They find the jacobian 
matrix by means of the screw theory. 
A class of series-parallel manipulators known as 2(3-RPS) manipulators was studied by 
Gallardo-Alvarado et al. (2008) by means of the screw theory and the principle of virtual 
work. Gan et al. (2010) used the screw theory to obtain the kinematic solution of a new 6-
DOF 3CCC parallel mechanism. Gallardo-Alvarado et al. (2006) analyzed singularity of a 4-
DOF PM by means of the screw theory. 
Hereafter we derive the jacobian matrices of the proposed mechanisms using screw theory. 

Joint velocity vector in the redundant mechanism, Re .dq
 , is an 8 1  vector: 

 Re .
1 2 3 4 1 2 3 4[ ]d Tq d d d d   

          (13) 

where i  and 
id  are the angular and linear velocities of the rotary and linear actuators, 

respectively. However, joint velocity vector in the non-redundant mechanism, 
Re .Non d

q , 
is a 6 1  vector: 

 Re .
1 2 3 1 2 3[ ]   

      Non d Tq d d d . (14) 
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The linear and angular velocities of the moving platform are defined to be v


 and , 

respectively. Thus, x
  can be written as a 6 1  velocity vector; 

 [ ]T Tx v 
   . (15) 

Jacobian matrices relate q
  and x

  as follow; 

 x qJ x J q
   , (16) 

where xJ  and qJ  are forward and inverse jacobian matrices, respectively. If one defines J  

as follows; 

 1
q xJ J J . (17) 

Thus q
 ,and x

  can be simply related as; 

 q J x
   . (18) 

The concept of reciprocal screws is applied to derive xJ  and qJ  (Tsai, 1998; 1999). The 

reference frame of the screws is point P  of the moving platform. Fig. 5 shows the kinematic 

chain of each leg, where universal joints are replaced by intersection of two unit screws, 1$̂  

and 2$̂ . 
1,

1
1,

$̂
( )

i

i i i

s

b d s

 
  

   


    and 

2,
2

2,
$̂

( )

i

i i i i

s

b d s

 
  

   


    where 1,is


 and 2,is


 are unit vectors 

along the inactive and active joints of each universal joint, respectively. Spherical joints in 

each leg are replaced by intersection of three unit screws, 4$̂ , 5$̂ , and 6$̂ . 
4,

4
4,

$̂
i

i i

s

b s

 
  

  


  , 

5,
5

5,
$̂

i

i i

s

b s

 
  

  


  , and 

6,
6

6,
$̂

i

i i

s

b s

 
  

  


  , where 4, 1,i is s

 
, 6,is


 is the unit vector along the linear 

actuator, and 5, 6, 4,i i is s s 
  

. 3
3,

0
$̂

is

 
  
 
  explains the prismatic joint, as well. It is to be noted 

that 3, 6,i is s
 

. Each leg can be assumed as an open-loop chain to express the instant twist of 

the moving platform by means of the joint screws: 

 
1, 2, 3, 1, 4,

2, 5, 3, 6,

ˆ ˆ ˆ ˆ ˆ$ $ $ $ $

ˆ ˆ$ $

P i i i i i i i i

i i i i

d  

 

   

 

 
 

. (19) 

By taking the orthogonal product of both sides of (19) with reciprocal screw  

3,
1,

3,
$̂

i
r i

i i

s

b s

 
  

  


  , one can eliminate the inactive joints and rotary actuator which yields to 

www.intechopen.com



Exploiting Higher Kinematic Performance –  
Using a 4-Legged Redundant PM Rather than Gough-Stewart Platforms 

 

51 

 
 
 
 

 
 
 

Fig. 5. Infinitesimal screws. 

 
( )T T

i i i
P i

i i

d b d
x d

d d

 
 

  

  
  , 1,2,3,4i  . (20) 

Similarly, if one takes the orthogonal product of both sides of (19) with reciprocal screw 

6,
cos

$̂

cos

i i

i i
r i

i i
i

i i

s d

d

s d
b

d





 
 
    
  




 the resultant is as follows; 

 ( ) ( ) cos
cos cos

T Ti i i i
i P i i i

i i i i

s d s d
b x d

d d
 

 
  

  
  

     . (21) 

Note that in (21), cosi i i is d d  


. 

Finally, using (20) and (21), jacobian matrices Re .d
xJ  and Re .d

qJ  are expressed as; 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4
Re .

1 1 1

2 2 2

3 3 3

4 4 4

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))

( )

( )

( )

( )

T T

T T

T T

T T

d
Tx T

T T

T T

T T

s d b s d

s d b s d

s d b s d

s d b s d
J

d b d

d b d

d b d

d b d

   

  

  

  










   
   
   
   

  

  

  

  


 
 
 
 
 
 
 
 
 
 
 
 
 
  

, (22) 

and 

 Re . 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 3 4( cos , cos , cos , cos , , , , ).d

qJ diag d d d d d d d d     (23) 

Similarly, jacobian matrices of non-redundant mechanism ( Re .Non d
xJ   and Re .Non d

qJ   ) can be 

expressed as; 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3Re .

1 1 1

2 2 2

3 3 3

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))
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   
 
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 
 
 
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  

  

  

, (24) 

and 

 Re . 2 2 2 2 2 2
1 1 2 2 3 3 1 2 3( cos , cos , cos , , , ).Non d

qJ diag d d d d d d     (25) 

And for the Stewart platform one can have 
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  
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  

, (26) 

and 
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 1 2 3 4 5 6( , , , , , ).Stewart
qJ diag d d d d d d  (27) 

Note that the joint velocity vector in stewart  mechanism, Stewartq
 , is the following 6 1  

vector: 

 1 2 3 4 5 6[ ]Stewart Tq d d d d d d
       . (28) 

Based on the existence of the two jacobian matrices above, the mechanism is at a singular 
configuration when either the determinant of xJ  or qJ  is either zero or infinity (Beji & 

Pascal, 1999). 
Inverse kinematic singularity occurs when the determinant of qJ vanishes, namely; 

 det( ) 0qJ  . (29) 

As it is clear from (25) and (27), the determinant of qJ  in the workspace of this mechanism 

cannot be vanished. Therefore we do not have this type of singularity. 
Forward kinematic singularity occurs when the rank of xJ is less than 6, namely; 

 ( ) 5xrank J  . (30) 

If (30) holds, the moving platform gains 1 or more degrees of freedom. In other words, at a 
forward kinematic singular configuration, the manipulator cannot resist forces or moments 
in some directions. As it can be seen, the redundancy can help us to avoid this kind of 
singularity, which is common in nearly all parallel mechanisms.  

5. Performance indices 

With the increasing demand for precise manipulators, search for a new manipulator with 
better performance has been intensive. Several indices have been proposed to evaluate the 
performance of a manipulator. Merlet reviewed the merits and weaknesses of these indices 
(Merlet, 2006). The dexterity indices have been commonly used in determining the 
dexterous regions of a manipulator workspace. The condition number of the jacobian matrix 
is known to be used as a measuring criterion of kinematic accuracy of manipulators. 
Salisbury & Craig (1982) used this criterion for the determination of the optimal dimensions 
for the fingers of an articulated hand. The condition number of the jacobian matrix has also 
been applied for designing a spatial manipulator (Angeles & Rojas, 1987). 
The most performance indices are pose-dependant. For design, optimization and 
comparison purpose, Gosselin & Angeles (1991) proposed a global performance index, 
which is the integration of the local index over the workspace.  
The performance indices are usually formed based on the evaluation of the determinant, 
norms, singular values and eigenvalues of the jacobian matrix. These indices have physical 
interpretation and useful application for control and optimization just when the elements of 
the jacobian matrix have the same units (Kucuk & Bingul, 2006). Otherwise, the stability of 
control systems, which are formed based on these jacobian matrices, will depend on the 
physical units of parameters chosen (Schwartz et al., 2002). Thus, different indices for 
rotations and translations should be defined (Cardou et al., 2010). 
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5.1 Manipulability 
For evaluation of kinematic transmissibility of a manipulator, Yoshikawa (1984) defined the 
manipulator index, 

 det( )TJ J  . (31) 

The manipulability can geometrically be interpreted as the volume of the ellipsoid obtained 
by mapping a unit n-dimensional sphere of joint space onto the Cartesian space (Cardou et 
al., 2010). It also can be interpreted as a measure of manipulator capability for transmitting a 
certain velocity to its end-effector (Mansouri & Ouali, 2011). To have a better performance 
for a manipulator, It is more suitable to have isotropic manipulability ellipsoid (Angeles & 
Lopez-Cajun, 1992). The isotropy index for manipulability can be defined as: 

 Min
iso

Max




 , (32) 

where Max  and Min are maximum and minimum of singular values of jacobian matrix (J), 

respectively. The isotropy index is limited between 0 and 1. When the isotropy index is 
equal to 1, it indicates the ability of manipulator to transmit velocity uniformly from 
actuators to the end-effector along all directions. Inversely, when the isotropy index is equal 
to zero, the manipulator is at a singular configuration and cannot transmit velocity to the 
end-effector. 

5.2 Dexterity 
The accuracy of a mechanism is dependent on the condition number of the jacobian matrix, 
which is defined as follows: 

 1|| ||.|| ||k J J , (33) 

where J is the jacobian matrix and J  denotes the norm of it and is defined as follows: 

 
1

|| || ( )TJ tr JJ
n

 , (34) 

where n is the dimension of the square matrix J that is 3 for the manipulator under study. 
Gosselin (1992) defined the local dexterity ( ) as a criterion for measuring the kinematics 
accuracy of a manipulator, 

 
1

1

|| ||.|| ||J J
  . (35) 

The local dexterity can be changed between zero and one. The higher values indicate more 
accurate motion generated at given instance. When the local dexterity is equal to one, it 
denotes that the manipulator is isotropic at the given pose. Otherwise, it implies that the 
manipulator has reached a singular configuration pose. 
To evaluate the dexterity of a manipulator over the entire workspace (W Gosselin & Angeles 
(1991) have introduced the global dexterity index (GDI) as: 
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 W

W

dW

GDI
dW







, (36) 

which is the average value of local dexterity over the workspace. This global dexterity index 
can be used as design factor for the optimal design of manipulators (Bai, 2010; Li et al., 2010; 
Liu et al., 2010; Unal et al., 2008). Having a uniform dexterity is a desirable goal for almost 
all robotic systems. Uniformity of dexterity can be defined as another global performance 
index. It can be defined as the ratio of the minimum and maximum values of the dexterity 
index over the entire workspace, 

 Min
iso

Max




 . (37) 

5.3 Sensitivity 

Evaluating of the kinematic sensitivity is another desirable concept in the performance 
analysis of a manipulator. The kinematic sensitivity of a manipulator can be interpreted as 
the effect of actuator displacements on the displacement of the end-effector. Cardou et al. 
(2010) defined two indices ( r , p ) for measuring the rotation and displacement sensitivity 
of a manipulator. They assumed the maximum-magnitude rotation and the displacement of 
the end-effector under a unit-norm actuator displacement as indices for calculating the 
sensitivity of a manipulator. The sensitivity indices can be defined as: 

 || ||r rJ  , (38) 

and 

 
|| ||p pJ 

, (39) 

where rJ  and pJ  are rotation and translation jacobian martices (Cardou et al., 2010), 

respectively, where || ||stands for a p-norm of the matrix. Cardou et al. (2010) suggested 
to use 2-norm and ∞-norm for calculating the sensitivity. 

6. Comparison between 4-legged mechanism and other mechanisms 

In order to investigate the kinematic performance of 4-legged mechanism, the response of 
the mechanisms are compared in several different aspects; reachable points, performance 
indices, and singularity analysis.  

6.1 Reachable points and workspace comparison 
Consider the 3-legged and the 4-legged mechanisms with g=1 m and h=0.5 m, respectively; 
g and h are the radii of the fixed and moving platforms, respectively. 
By assuming a cubic with 1m length, 1 m width and 1 m height located 0.25 m above the 
base platform, we are interested in determining the reachability percentage in which each 
mechanism can successfully reach to the locations within this cubic space.  
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Table 1 shows that adding one leg to the 3-legged mechanism reduces the R.P. (Reachable 
points Percentage) by 5.03%. However, it should be noted that, although the non-redundant 
mechanism has a wider workspace, it has much more singular points than the redundant 
mechanism, and actuator forces and torques are also less in the redundant mechanism. As it 
can be seen from Table 1, RPs in the Stewart platforms are smaller than 3-legged and 4-
legged mechanisms. In the 6-legged Stewart-like UPS mechanisms (Stewart, 1965), the 
workspace is constructed by intersecting of 6 spheres. On the other hand, in the proposed 4-
legged UPS mechanism, the workspace is constructed by intersecting of only 4 spheres.  
 

% RP Mechanism 

76.35 Stewart (6-6) 

74.21 Stewart (3-6) 

73.70 Stewart (6-3) 

63.46 Stewart (3-3) 

84.75 3-legged mechanism 

79.72 4-legged mechanism 

Table 1. Reachable points 

Assuming similar dimensions for the two mechanisms result in a larger workspace for the 4-
legged mechanism. 
To compare the workspace of the proposed 4-legged mechanism with the 3-legged 
mechanism and Steward platforms, the reachable points for them were calculated and 
obtained results are shown in Fig. 6 It is appear that the 3-legged mechanism has the largest 
workspace followed by 4-legged mechanism, 3-6 and 3-3 Steward Platforms. 

6.2 Performance comparison 
To compare the kinematic performance of the proposed 4-legged mechanism with the 3-
legged mechanism and Steward platform, abovementioned performance indices were used. 
The results obtained are shown in Figs. 7 to 10. These figures show how performance indices 
vary on a plate (Z=0.75) within the workspace. 
Fig. 7 depicts the Stewart 3-3 has the higher isotropy index for manipulability comparing 
with Stewart 3-6, 3-legged and 4-legged mechanisms. After Stewart 3-3, the 4-legged 
mechanism presents the better performance. This figure illustrates that adding a leg to a 3-
legged mechanism can significantly improve the manipulability of the mechanism. 
Furthermore, a 4-legged mechanism can have a performance comparable with the Stewart 
platforms or even better. 
Fig. 8 depicts the Stewart 3-3 compared with the other mechanisms under study has the 
higher dexterity index. After Stewart 3-3, again, the 4-legged mechanism presents the better 
performance. This figure also illustrates significant enhancement of the dexterity of the 
mechanism due to the additional leg. Also it shows that, in terms of dexterity, the 4-legged 
mechanism can have a comparable performance against the Stewart platforms or even 
better. 
In the next step of performance comparison of manipulators, displacement and rotation 
sensitivities for mechanisms of our interest are compared. Fig. 9 shows the amount of 
displacement sensitivity indices of the abovementioned mechanisms on the selected plane  
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Fig. 6. Workspaces of Stewart (3-6), Stewart (3-3), 3-legged and 4-legged mechanisms. 

 
 

 
 

Fig. 7. Isotropy index for manipulability of Stewart 6-6, Stewart 3-6, 3 Legged mechanism 
and 4 legged mechanism on the plane z= 0.75 m 
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Fig. 8. Dexterity index of Stewart 6-6, Stewart 3-6, 3-Legged mechanism and 4-legged 
mechanism on the plane z= 0.75 m. 

 

 
 

Fig. 9. Displacement Sensitivity index of Stewart 6-6, Stewart 3-6, 3-Legged mechanism and 
4-legged mechanism on the plane z= 0.75 m. 

 

 
 

Fig. 10. Rotation Sensitivity index of Stewart 6-6, Stewart 3-6, 3-Legged mechanism and 4-
legged mechanism on the plane z= 0.75 m. 
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(Z=0.75). It clearly shows that the 4-legged mechanism has less displacement sensitivity 
index by far. Fig. 10 depicts the 4-legged mechanism has also less rotation sensitivity 
compared with other mechanisms. 
So far from Figs. 7 to 10, the amounts of performance indices are shown on the planes. To 
compare the kinetics performance of manipulators over the entire workspace, the global 
performance Index (GPI) can be evalueated as: 

 W

W

PI dW

GPI
dW





, (40) 

which is the average value of local performance index (PI) over the workspace (W).  
The amounts of GPI for Isotropy Index for Manipulability (IIM), Dexterity (DX), 
Displacement Sensitivity (DS) and Rotation Sensitivity (RS) were calculated and obtained 
results were listed in Table 2. 
Table 2 shows that the 4-legged mechanism has a better IIM within the selected workspace, 
which explicitly indicates a better ability for transmitting a certain velocity to its end-
effector. 
As it is seen from Table 2, the Stewart 3-3 platform has the biggest global DX compared with 
other mechanisms and the 4-legged mechanism has the second (i.e. difference in DX is only 
5.71% less). It represents that the Stewart 3-3 platform and the proposed 4-legged 
mechanism have the better kinematics accuracy. 
Having the lower sensitivity is a demand for industrial mechanisms. By comparing the 
values of DS and RS, which are listed in Table 2, it is obvious the 4-legged mechanism is an 
appropriate candidate.  
Based on the results shown in Table 2, the 4-legged mechanism is recommended for better 
kinematic performances  
 

The lower, the better The higher, the better  

RS DS DX IIM Mechaniasm

3.5791 1.3249 0.1589 0.0429 Stewart (6-6) 

2.5725 1.2070 0.3969 0.1296 Stewart (3-6) 

2.8991 1.2113 0.3449 0.1020 Stewart (6-3) 

2.6077 1.0485 0.5284 0.1978 Stewart (3-3) 

2.3861 0.8538 0.3423 0.1136 3-legged mechanism 

1.8441 0.7279 0.4982 0.2140 4-legged mechanism

Table 2. Performance comparison between 3-legged mechanism, 4-legged mechanism, 
Stewart 6-6, and Stewart 3-6 

6.3 Singularity analysis of 3-legged and 4-legged mechanisms 
Several types of workspace can be considered. For example, the 3D constant orientation 
workspace, which describes all possible locations of an arbitrary point P in the moving 
system with a constant orientation of the moving platform, the reachable workspace (all the 
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locations that can be reached by P), the orientation workspace (all possible orientations of 
the end-effector around P for a given position) or the inclusive orientation workspace (all 
the locations that can be reached by the origin of the end-effector with every orientation in a 
given set) (Abedinnasab & Vossoughi, 2009). 
Out of those types, we have used the inclusive orientation workspace, where for every 
position in a fixed surface, the moving platform is rotated in every possible orientation to 
determine if that configuration is singular or not. After trials and errors, we figured out that 
for a better determination of the singular configurations, the roll-pitch-yaw rotation about 
the global coordinate is the most critical set of rotations compared to the other rotations such 
as the reduced Euler rotations. 
To illustrate the positive effects of redundancy on eliminating singular configurations, we 
have done jacobian analysis in planes in different orientations of the workspace as shown in 
Fig. 11. The results are shown in Figs. 12 and 13. In Figs. 12 and 13, the jacobian determinant 
of center of the moving platforms of 3-legged and 4-legged mechanisms has been calculated. 
The platform is rotated simultaneously in three different directions according to the roll-
pitch-yaw Euler angles discussed above. Each angle is free to rotate up to ±20º. After the 
rotations in each position, if the mechanism did not encounter any singular configuration, 
the color of that position is represented by light gray. If there was any singular configuration 
inside ±20º region and beyond ±10º region, the color is dark gray. At last, if the singular 
configuration was encountered in ±10º rotations, the color is black.  
As seen from Fig. 12, in the 3-legged mechanism, there exist singular configurations in the 
most of the X-Y, X-Z and Y-Z planes (black and dark gray regions). However, in the 4-
legged mechanism, the singular points do not exist at the most of the plane. Figure 13 shows 
the same patterns as in the other planes. Figures 12 and 13 simply illustrate the great effect 
of a simple redundancy; namely, the addition of a leg to the 3-legged mechanism can 
remove vast singular configurations. 
 

 

 
 
 

Fig. 11. (a) Schematic view of planes 1, 2, and 3. (b) Schematic view of planes 4, 5, and 6. 
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Fig. 12. Singularity analysis in planes 1, 2 and 3 for both 3-legged (non-redundant) and 4-
legged (redundant) mechanisms. 
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Fig. 13. Singularity analysis in planes 4, 5 and 6 for both 3-legged (non-redundant) and 4-
legged (redundant) mechanisms. 
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7. Conclusion 

The effects of redundant actuation are studied. The redundant 4-legged and non-redundant 
3-legged parallel mechanisms are compared with 4 well-known architectures of Gough-
Stewart platforms. It is shown that the inverse kinematics of the proposed 3-legged and 4-
legged mechanisms have a closed-form solution. Also the Jacobian matrix has been 
determined using the concept of reciprocal screws. 
From the design point of view, by replacing the passive universal joints in the Stewart 
platforms with active joints in the above mentioned mechanisms, the number of legs could 
be reduced from 6 to 3 or 4. It makes the mechanism to be lighter, since the rotary actuators 
are resting on the fixed platform, which allows higher accelerations to be available due to 
smaller inertial effects. 
It is illustrated that redundancy improves the ability and performance of the non-redundant 
parallel manipulator. The redundancy brings some advantages for parallel manipulators 
such as avoiding kinematic singularities, increasing workspace, improving performance 
indices, such as dexterity, manipulability, and sensitivity. Finally, we conclude that the 
redundancy is a key choice to remove singular points, which are common in nearly all 
parallel mechanisms.  
It is worthy to state that the applications of these robots can be found in flight simulators, 
high precision surgical tools, positioning devices, motion generators, ultra-fast pick-and-
place robots, haptic devices, entertainment, multi-axis machine tools, micro manipulators, 
rehabilitation devices, etc. 
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