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1. Introduction 

Human oral squamous cell carcinoma (HOSCC) is the most common malignant neoplasm 
arising in the mucosa of the upper aerodigestive tract. It is an aggressive tumor that is 
difficult to treat with conventional therapies, including chemotherapy, radiation, and 
surgery. Because surgical treatment often affects profoundly the quality of life and activities 
of daily living of the affected patients with HOSCC, and thus new therapeutic strategies are 
necessary along with the other conventional therapy.  

In recent years considerable progress has been made in understanding the genetic basis of 
the development of HOSCC. It is well established that an accumulation of genetic alterations 
is the basis for the progression from a normal cell to a cancer cell, referred to as multi-step 
carcinogenesis (Califano et al., 1996). Progression is enabled by the increasingly more 
aberrant function of genes that positively or negatively regulate aspects of proliferation, 
apoptosis, genome stability, angiogenesis, invasion and metastasis (Hanahan et al., 2000). 
Gene function can be altered in different ways: tumor suppressor genes may be inactivated 
by mutation, deletion or methylation and oncogenes can be activated by mutation or 
amplification. A description of these alterations and how these are detected has previously 
been described (van Houten et al., 2000, Reid et al., 1997, Braakhuis et al., 2002). Oral cancers 
are characterized by a multitude of these genetic alterations and ongoing research is 
focusing on identifying the critical genetic events and the order in which they occur during 
carcinogenesis. Frequently occurring genomic alterations are supposed to contain the genes 
that are the most important for the development of a certain type of cancer (Albertson et al., 
2003). Common alterations for oral cancer are inactivation of TP53 (located at 17p13), gain of 
chromosomal material at 3q26 and 11q13, and losses at 3p21, 13q21 and 14q32 (Gollin, 2001, 
Forastiere et al., 2001). For most of these regions the putative tumor suppressor genes or 
oncogenes still need to be identified. In general, loss of chromosomal material (allelic losses) 
at 3p, 9q and 17p was observed in a relatively high proportion of dysplastic lesions and 
therefore these alterations were interpreted to be early markers of carcinogenesis. Several 
studies suggest, however, that early genetic changes do not necessarily correlate with 
altered morphology.  
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Although recent improvements in the diagnosis and treatment of malignant tumors have 
extended the average length of patients’ lives, the incidence of multiple primary malignant 
tumors is increasing (Licciardello et al., 1989). In particular, it has been reported that 
patients with head and neck cancer often develop multiple primary neoplasms (Sakashita et 
al., 1996). This phenomenon has been attributed to ‘field cancerization’, a concept based in 
the hypothesis that prolonged exposure to certain risk factors, such as tobacco products, 
leads to the independent transformation of multiple epithelial cells at several distinct 
anatomic sites (Slaughter et al., 1953). In addition, it is now becoming clear that the tumor 
microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable 
participant in the neoplastic process, fostering proliferation, survival and migration. Recent 
data have expanded the concept that tumor microenvironments including hypoxia, and 
inflammation that are the critical components of tumor progression. Many cancers arise 
from sites of infection, chronic irritation and inflammation. Many tumors also contain 
hypoxic microenvironments, a condition that is associated with poor prognosis and 
resistance to treatment (Helmlinger et al., 1997).  

On the other hand, as is obvious, host has defense mechanisms against various 
carcinogenesis events like above. Host professional antigen-presenting cells (APCs) appear 
to play an important role in the presentation of tumor antigens and the induction of specific 
immune responses to tumors, a role that was initially attributed entirely to the tumor cells 
themselves (Huang 1994, Rock et al., 1993). However, despite their expression of these 
distinct APCs, attempts by the immune system to eliminate a tumor are often ineffective. It 
has recently been reported that in cancer patients the tumor cells themselves may also evade 
immune attack by expressing immunosuppressive cytokines.  

Thus, oral carcinogenesis is a highly complex multifactorial process that takes place when 
epithelial cells are affected by several genetic alterations. The use of molecular biology 
techniques to diagnose oral cancerous lesion might be markedly improved the detection of 
alterations that are invisible under the microscope.  

This chapter presents up-to-date evidence on molecular markers into the tumor 
microenvironment that have involved in the proliferation and progression mechanisms of 
the oral cancer. 

2. Role of myelomonocytic cells in tumor microenvironment 

Myeloid cells including monocytes and macrophages are key elements which regulate tissue 
homeostasis and local inflammation/immunity, differentiating into various cell types in 
response to provocative stimuli (Zeh et al., 2005, Demaria et al., 2010).  

Monocytes exist as the second recruited effectors of the acute inflammatory response after 
neutrophils and also migrate to the site of tumor microenvironment, guided by chemotactic 
factors. It is known that monocytes, in the presence of granulocyte–macrophage colony 
stimulating factor (GM-CSF) and interleukin (IL)-4, differentiate into immature dendritic 
cells (DCs) (Talmor et al., 1998). DCs migrate into inflamed peripheral tissue where they 
capture antigens and, after maturation, migrate to lymph nodes to stimulate T-lymphocyte 
activation. Soluble factors such as IL-6 and M-CSF, derived from neoplastic cells, push 
myeloid precursors towards a macrophage-like phenotype (Allavena et al., 2000).  

DCs are the most effective APCs in the induction of primary immune responses (Steinman 
1991, Knight et al., 1993) and are considered to be the best vehicle for the delivery of tumor-
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specific antigens in cancer immunotherapy (Austin 1993, Zitvogel et al., 1996, Mayordomo 
et al., 1995, Hsu et al., 1996). The existence of DCs in cancer-bearing hosts has attracted a 
great deal of interest because of their potential significance for tumor immunity. However, 
despite their expression of these distinct APCs, attempts by the immune system to eliminate 
a tumor are often ineffective. It has recently been reported that in cancer patients the tumor 
cells themselves may also evade immune attack by expressing immunosuppressive 
cytokines such as interleukin IL-10, transforming growth factor (TGF)-1, receptor-binding 
cancer antigen expressed on SiSo cells (RCAS1), IL-23, and vascular endothelial growth 
factor (VEGF), which induce defective immune cell function and a defective host immune 
response (Gabrilovich et al., 1996, Gabrilovich et al., 1998, Buelens et al., 1995, Mitra et al., 
1995, Brooks et al., 1998). Several studies have also described the defective function of APCs, 
including macrophages, DCs, and B cells, in tumor-bearing hosts (Tan et al., 1994, Watson et 
al., 1995, Alcalay et al., 1991, Erroi et al., 1989). A proposed mechanism for the inhibition of 
the activation of high-potency DCs ex vivo is represented in Fig. 1.  

Monocytes, which also differentiate into macrophages in tissues, are next to migrate to the 
site of tissue injury, guided by chemotactic factors. Once activated, macrophages are the 
main source of growth factors and cytokines, which profoundly affect endothelial, epithelial 
and mesenchymal cells in the local microenvironment.  

 

Fig. 1. A proposed mechanism for the DC activation and dysfunctional DC activation during 
the ex vivo. APC: antigen presenting cells, Th: helper T cell, cT: cytotoxic T cell, NK: Natural 
killer cell, DC: dendritic cell, Pc: plasma cell. 
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3. Role of cytokines in tumor microenvironment 

The reciprocal interactions between tumor cells and their microenvironment — extracellular 

matrix (ECM), growth factors, fibroblasts, immune and endothelial cells — play an essential 

role in the earliest stages of transformation to malignant progression and metastasis 

(Nyberg et al., 2008). Particularly, fibroblasts have many prominent roles in the cancer 

progression. In fact, in many carcinomas, the majority of the stromal cells are fibroblasts that 

possess myofibroblastic characteristics and are called cancer-associated fibroblasts. They 

produce ECM molecules, proteases, growth factors, and chemokines that crucially affect the 

carcinoma cell behavior (Kalluri et al., 2006, Orimo et al., 2006). Furthermore, the causal 

relationship between chronic inflammation, innate immunity and cancer is now widely 

accepted, and the similarities in the regulatory mechanisms have been suggested for more 

than a century. Many cancers arise at the site of chronic inflammation and inflammatory 

mediators are often produced in tumors. The frequent use of anti-inflammatory drugs 

reduces the incidence of a variety of human tumors. Although blockading some of these 

mediators has been shown to be efficacious in experimental settings, it is still unclear 

whether the inflammatory reaction at the tumor site promotes tumor growth or simply 

implies the failed attempt of the immune system to eliminate the rising malignancy.  

Neutrophils (and sometimes eosinophils) are the first recruited effectors of the acute 

inflammatory response. Monocytes, which differentiate into macrophages in tissues, are 

next to migrate to the site of tissue injury, guided by chemotactic factors. Once activated, 

macrophages are the main source of growth factors and cytokines, which profoundly affect 

endothelial, epithelial and mesenchymal cells in the local microenvironment. Mast cells are 

also important in acute inflammation owing to their release of stored and newly synthesized 

inflammatory mediators, such as histamine, cytokines and proteases complexed to highly 

sulphated proteoglycans, as well as lipid mediators. Thus, we have considered that various 

cytokines play the very important role by forming the cytokine cascades in the tumor 

microenvironment of the oral cancer. 

3.1 Receptor-binding Cancer Antigen expressed on SiSo cells (RCAS1) 

RCAS1 is a type II membrane protein isolated as a human tumor-associated antigen by a 

mouse monoclonal antibody (22-1-1 antibody) against a human uterine adenocarcinoma cell 

line, SiSo (Sonoda et al., 1995). RCAS1 acts as a ligand for a putative receptor present on 

immune cells such as T, B and NK cells and inhibits the growth of receptor-expressing cells, 

further induces apoptotic cell death (Nakashima et al., 1999). These observations suggest a 

role of RCAS1 in the immune escape of tumor cells. A variety of cancer tissues have been 

screened (Sonoda et al., 1996, Sonoda et al., 1998, Iwasaki et al., 2000, Izumi et al., 2001, 

Kubokawa et al., 2001, Noguchi et al., 2001, Takahashi et al., 2001, Hiraoka et al., 2002, 

Nakakubo et al., 2002, Fukuda et al., 2004) and were found to be positive for RCAS1 

expression, including human uterine, ovarian, esophageal SCCs, pancreatic 

adenocarcinomas, hepatocarcinomas, skin SCCs, gastric adenocarcinomas, lung cancer cells 

and HOSCCs, but not in normal tissues. 

We investigated whether tumor cells which are expressing RCAS1, induce apoptosis in its 

receptor-positive cells, PBLs. The apoptotic index (AI) of TILs was also examined in HOSCC 
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tissues. The correlations between RCAS1 expressions and clinicopathological variables in 

HOSCC and adenoid cystic carcinoma (ACC) tissues were examined, respectively. As the 

results, it was demonstrated that RCAS1 was frequently expressed both in HOSCC and 

ACC, in vitro and vivo, and its function on KB cells clearly led apoptosis to PBLs in vitro 

(Fukuda et al., 2004). Our results indicated that RCAS1 expression plays a key role in the 

immune escape mechanism of oral cancer, thus that RCAS1 expression could be used as a 

predictor of poor prognosis in patients with oral cancer. Further investigation of the role of 

RCAS1 will be required to clarify RCAS1-mediated tumor survival and to establish a 

strategy of RCAS1-based oral cancer therapy. 

3.2 Interleukin (IL)-12 & IL-23 

The causal relationship between chronic inflammation, innate immunity and cancer is now 

widely accepted, and the similarities in the regulatory mechanisms have been suggested for 

more than a century (Balkwill et al., 2001, Coussens et al., 2002). Many cancers arise at the 

site of chronic inflammation and inflammatory mediators are often produced in tumors 

(Coussens et al., 2002, Balkwill et al., 2005). The frequent use of anti-inflammatory drugs 

reduces the incidence of a variety of human tumors (Zha et al., 2004). Although blockading 

some of these mediators has been shown to be efficacious in experimental settings, it is still 

unclear whether the inflammatory reaction at the tumor site promotes tumor growth or 

simply implies the failed attempt of the immune system to eliminate the rising malignancy.  

IL-23, a heterodimeric cytokine with many similarities to IL-12, has recently been identified 

as a factor linking tumor-associated inflammation and a lack of tumor immune surveillance 

(Langowski et al., 2006). IL-23 comprises a p19 subunit that associates with the IL-12p40 

subunit (Oppmann et al., 2000), whereas IL-12 is a combination of IL-12p35 and the same IL-

12p40 subunit (Sospedra et al., 2005). Although p19 is expressed in various tissues and cell 

types, it lacks biological activity and only becomes biologically active when complexed with 

p40, which is normally secreted by activated macrophages and DCs (Oppmann et al., 2000). 

IL-23 uses many of the same signal-transduction components as IL-12, including the IL-12 

receptor (R) 1 subunit (IL-12R1), Janus kinase (Jak)2, Tyk2, signal transducer and activator 

of transcription (Stat)1, Stat3, Stat4, and Stat5 (Oppmann et al., 2000, Parham et al., 2002). IL-

23R, composed of the IL-12R1 and the IL-23R subunit, is also expressed in DCs, 

macrophages, and T cells (Parham et al., 2002). Consistent with the structural and biological 

similarities of IL-12 and IL-23, the IL-23R complex shares a subunit with that of IL-12 (IL-

12R1), however, it does not use or detectably bind to IL-12R2 (Oppmann et al., 2000). The 

ability of cells to respond to either IL-12 or IL-23 is determined by expression of IL-12R2 or 

IL-23R, respectively (Parham et al., 2002). Upon engaging IL-23, IL-12R1 and IL-23R 

associate, marking the beginning of the IL-23 signal-transduction cascade, many of whose 

components are now known (Fig. 2).  

Additionally, both cytokines promote the T helper cell type 1 (Th1) costimulatory function 

of antigen-presenting cells (Lankford et al., 2003) (Fig. 3).  

However, IL-23 does differ from IL-12 in the T cell subsets that it targets. IL-12 acts on naive 

CD4+ T cells, whereas IL-23 preferentially acts on memory CD4+ T cells (Lankford et al., 

2003). It has been reported that IL-12 has potent antitumor activity in a variety of murine  
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Fig. 2. Stat4 activation is a common feature of IL-23 and IL-12 signal-transduction pathways. 
IL-23 signal transduction is very similar to that of IL-12, they both use IL-12R1, Jak2, Tyk2, 
Stat1, Stat3, Stat4, and Stat5. This common feature may explain similarities in TH1 function 
among IL-12 and IL-23. 

 

Fig. 3. IL-23 acts on memory CD4+ T cells and DC. IL-23 stimulation leads to IFN- 
production and proliferative response in memory but not naive CD4+ T cells. IL-23 differs 
from IL-12, which acts on naive cells but has negligible effects on murine memory cells. IL-
23 and IL-12 share a similar function in promoting TH1 costimulation by inducing IL-12 and 
IFN- production by DC. MHCII, major histocompatibility complex class II. 
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tumor models, causing regression of established tumors (Brunda et al., 1993, Nastala et al., 
1994, Cua et al., 2003) and inhibiting the formation of experimental metastases (Brunda et 
al., 1993, Nastala et al., 1994) and spontaneous metastases (Murphy et al., 2003, Becher et al., 
2003). On the other hand, it has recently been reported that genetic deletion or antibody-
mediated elimination of IL-23 in mice leads to increased infiltration of cytotoxic T cells into 
the transformed tissue, rendering a protective effect against chemically-induced 
carcinogenesis (Langowski et al., 2006). So far, it has been reported that expression of IL-23 
and its receptors is detectable in activated macrophages, DCs, and keratinocytes in healthy 
skin (Piskin et al., 2006). We have previously reported that IL-23 is a potent and specific 
promoter of nuclear factor-kappaB (NF-B) activation in HOSCC cells, in vitro and in vivo 
(Fukuda et al., 2010). Finally, we noted that IL-23 was secreted not only by DCs and 
macrophages, as shown in previous studies (Sospedra et al., 2005), but also by autologous 
cancer cells. Consequently, we consider the existence of an autocrine mechanism, in which 
tumor growth is promoted by IL-23 produced by autologous cancer cells. From these 
combined data, we believe that IL-23 plays a significant role in the growth and proliferation 
of oral cancer. Thus, IL-23 could be used as a predictor of poor prognosis in patients with 
oral cancer, and its antibody might be able to use as an inhibitor of oral cancer progression. 
Identification of the signaling pathways underlying these events might provide the key to 
elucidating the mechanism of development of oral cancer. Further investigations into the 
role of IL-23 will be required to fully understand IL-23-mediated tumor proliferation and to 
establish an IL-23-based oral cancer therapeutic strategy. 

3.3 Vascular Endothelial Growth Factor (VEGF)  

Oral cancer is an important cause of worldwide morbidity and mortality, with substantial 
economic, physiological, and psychosocial impacts due to its treatment modality and a great 
risk for recurrences and second primary OSCC development. Therefore, it is very important 
to understand the underlying cell biology of such tumors. It is now a well-accepted fact that 
angiogenesis is essential for the growth and metastasis of solid tumors, including oral 
squamous cell carcinoma. The main factor responsible for angiogenesis is VEGF and its 
receptors. The expression of VEGF protein has been found in a wide variety of cancer 
tissues, including human prostate cancer, head and neck squamous cell carcinomas, skin 
squamous cell carcinomas, gastric adenocarcinomas, and lung cancer cells (Weidne et al., 
1993, Gasparini et al., 1993, Srivastava et al., 1998, Maeda et al., 1996, Kajita et al., 2001). It 
has also been shown that VEGF influences the differentiation, maturation, and function of 
DCs as an immunosuppressive cytokine (Gabrilovich et al., 1996, Banchereau et al., 1998). 
Interestingly, dendritic cells found in neoplastic infiltrates are frequently immature and 
defective in T-cell stimulatory capacity. It has been demonstrated that VEGFRs are also 
present on tumor cells themselves and other cells from the tumor microenvironment, in 
addition to tumoral endothelial cells (ECs) (Fukuda et al., 2010).  

Therefore between these cells take place numerous and different interactions mediated via 
paracrine/autocrine pathways that promote angiogenesis, uncontrolled tumor proliferation 
and metastasis. In consequence, estimation of VEGF expression and its receptors became a 
reliable prognostic tool in OSCCS, predicting the poor disease-free survival, poor overall 
survival, and metastatic disease.  

Furthermore, Saito et al. (1998, 1999) reported that the expression of VEGF is inversely 
related to the density of DCs in gastric adenocarcinoma tissue. In our study, it was found 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 

 

208 

that VEGF in the primary oral tumor is expressed more strongly in PN+ cases than in PN- 
cases, thus demonstrating that VEGF is associated with the metastasis to RLNs in oral 
cancer. We also found that in oral cancer the expression of VEGF is inversely related to the 
density of S-100+ and CD1a+ DCs, although it is also positively correlated with the density of 
CD83+ DCs (Kusama et al., 2005). Understanding the distribution and role of VEGF and its 
receptors in the progression of OSCC will be essential to the development and design of 
new therapeutic strategies. 

4. Role of transcriptional factors in tumor microenvironment 

The ancient stress response is the innate immune response, regulated by several 
transcription factors, among which NF-kappaB plays a central role. The hypoxic response is 
also ancient stress response triggered by low ambient oxygen (O2) and controlled by 
hypoxia inducible transcription factor-1, whose a subunit is rapidly degraded under 
normoxia but stabilized when O2-dependent prolylhydroxylases (PHDs) that target its O2-
dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which 
controls genes involved in energy metabolism and angiogenesis, is regulated post-
translationally. So, NF-kappaB and hypoxia-inducible factor-1 were selected as the typical 
transcriptional factors in this section.  

4.1 Nuclear Factor (NF)-kappaB  

Transcription factor NF-B has key roles in inflammation, immune response, tumorigenesis 
and protection against apoptosis (Li et al., 2002, Karin et al., 2002, Orlowski et al., 2002). In 

most cells, NF-B is kept inactive in the cytoplasm as a heterodimeric complex composed of 
p50 and p65 (RelA) subunits bound to the inhibitory protein, inhibitor of B (IB) 
(Baeuerle et al., 1988, Baeuerle et al., 1989, Haskill et al., 1991). Insight into the signaling 

mechanisms that lead to IB phosphorylation have identified a high-molecular weight 
protein complex known collectively as the IB kinase (IKK) signalosome and including 
IKK, IKK and IKK also known as NF-B essential modulator (NEMO) (Karin, 1999, 
Mercurio et al., 1997). IKK and IKK have been identified as catalytic subunits, whereas 

IKK is a regulatory subunit (Karin, 1999, May et al., 1999). Generally, after stimulation by 
various reagents, IB is phosphorylated at serine residues 32 and 36 by IKK and IKK, 
together with the scaffold protein NEMO/IKK (Karin, 1999). Serine phosphorylation 

results in polyubiquitination of IB and its subsequent degradation by the proteasome, 
allowing NF-B to translocate to the nucleus and activate its target gene (Karin et al., 2002, 
Karin, 1999, Smahi et al., 2002). 

4.2 Hypoxia Inducible Factor (HIF)-1alpha 

Protection against hypoxia in solid tumors is an important step in tumor development and 
progression. One system in hypoxia protection of tumor cells is represented by the hypoxia-
inducible factor 1 (HIF-1) system which plays a crucial role in biologic processes under 
hypoxic conditions, especially in angiogenesis and carcinogenesis (Maxwell et al., 1997, 
Ryan et al., 1998).  

HIF-1 is a heterodimer, composed of HIF-1ǂ (120 kDa) and HIF-1ǃ (91, 93, 94 kDa) (Wang et 

al., 1995). HIF-1ǂsubunit, is a transcription factor in response to cellular hypoxia, plays an 
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important role in tumor growth and metastasis by regulating energy metabolism and 
inducing angiogenesis (Seagroves et al., 2001). However, under normoxic conditions, HIF-
1ǂ is maintained at low levels due to continuous degradation via the ubiquitin-dependent 
proteosome pathway, and this pathway is inhibited by hypoxia and by p53 or von Hippel-
Lindau tumor-suppressor gene defects, leading to stabilization of the HIF-1ǂ protein 
(Huang et al., 1996, Ravi et al., 2000, Maxwell et al., 1999, Stroka et al., 2001). Therefore, 
hypoxia can lead to a rapid increase in HIF-1ǂ protein levels (Huang et al., 1996, Stroka et 
al., 2001, Wang et al., 1993, Wang et al., 1995). Furthermore, HIF-1ǂ up-regulates a number 
of important factors for tumor expansion, including VEGF, a key factor in tumor 
angiogenesis (Akakura et al., 2001, Carmeliet et al., 1998, An et al., 1998). In several cancers, 
overexpression of HIF-1ǂ protein has been found to be associated with tumor 
aggressiveness and with an unfavorable prognosis (Maxwell et al., 1997, Birner et al., 2000, 
Kuwai et al., 2003). Hypoxia has also been reported to induce wild-type p53 via a different 
pathway than DNA-damaging agents (Graeber et al., 1994). The hypoxic/anoxic induction 
of p53 selects for tumor cells that lack functional p53, and hence evidence diminished 
apoptotic potential (Graeber et al., 1996). Elevated levels of HIF-1ǂ are noted in various 
malignant tumors (Maxwell et al., 1997), but it is unclear whether this is so in oral 
carcinoma. Therefore, we have examined the implications of HIF-1ǂ expression in HOSCC, 
in vitro and in vivo. NanoCulture plate system was used to duplicate hypoxic condition 
within tumor mass of living organisms by the three-dimensional cell culture. As the results, 
we found that HIF-1ǂregulates the expression of VEGF, and that HIF-1ǂmay be regulated 
by p53 in SCC of the oral cavity (Fukuda et al., 2010). 

4.3 p53 

The p53 gene is a highly characterized tumor suppressor that encodes a protein with a 
molecular weight of 53 kilo Daltons. The p53 gene is also known as a transcription factor 
that can arrest the cell cycle at the late G1 phase in cells with sub-lethal damage in their 
genome until their complete repair, or induce apoptosis in cases of irreparable injury, and 
further activate the transcription of specific genes (El-Deiry et al., 1992, Cordon-Cardo, 1995). 
Hence, among the genetic changes involved, inactivation of the p53 tumor suppressor gene 
by point mutation and allele loss is considered to be the most common event underlying 
malignancies of every organ (Hollstein et al., 1991). These alterations also seem to be related 
to the multi-step processes of oral carcinogenesis (Crosthwaite et al., 1996, Stoll et al., 1998). 
Mutations of p53 must occur during early stages in the development of head and neck SCCs 
because they are already present in premalignant lesions (Shin et al., 1994). Mutations of p53 
gene are not necessarily the critical, sole, nor the consistent culprit in oral SCCs patients, 
however, between 30% and 50% of SCCs of this region have been reported to harbor p53 
gene alterations (Somers et al., 1992, Caamano et al., 1993, Nylander et al., 2000). By contrast, 
other markers are less suitable due to their lack of stability, variability, or difficulties with 
technical requirements for their detection. The genes that occur high frequent alterations 
more than p53 have not been found so far. Furthermore, it has been described that cancer 
with the mutated p53 gene is resistant to radio-/chemotherapy and the patient has poor 
prognosis than cancer patient with the wild-type p53 gene (Obata et al., 2000). Therefore, 
analysis of mutations in this particular gene gives a good indication of clonal expansion of 
malignancies and important prognostic information. Because the wild-type form of p53 has 
a half-life of only 6 to 30 minutes, the protein cannot be generally detected by 
immunohistochemistry; however, if the DNA is damaged, p53 protein accumulates and  
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p53 gene alteration: 14/33 cases (42.4%) 

Table 1. The correlations between p53 expression, p53 gene alteration and 
clinicopathological variables in 40 cases of oral squamous cell carcinomas. 
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becomes detectable (Langdon et al., 1992). So, to assess the frequency of p53 mutations in 
HOSCCs and the correlations between p53 immunohistochemical detections and p53 gene 
alterations, we examined them by use of the formalin-fixed, paraffin-embedded specimens 
from 40 patients with oral SCC treated in the Department of Oral and Maxillofacial Surgery, 
Meikai University Hospital, Saitama, Japan, from 1970 to 2001. Diagnosis of oral lesions was 
based on histological examination of hematoxylin and eosin-stained slides. Of the 40 SCC 
patients, there were 34 men and 6 women, whose ages ranged from 48 to 92 years, with a 
mean age of 66.2 years. A majority of the patients were over 50 years of age. All specimens 
were obtained from surgical biopsies that no patients had undergone chemotherapy or 
radiotherapy preoperatively. As the results of immunohistochemistry using MAb p53 
antibody, 22 of 40 cases (55%) were positive. Then the alterations in exons 5 to exon 8 of the 
p53 gene were analyzed by PCR-SSCP and direct sequencing. The p53 point mutations were 
detected in 14 of 33 cases (42.4 %) (Table 1). However, it had no correlations between p53 
immunoreactivity, the detection of p53 gene alterations and clinico-pathological variables. 
These findings support those of previous reports (Kärjä et al., 1997).  

It has recently been reported that in combination with an overexpression of p53 protein, 

HIF-1 protein overexpression tends to indicate a dismal prognosis (Sumiyoshi et al., 2006). 
In addition, it has also described that p53 inhibits expression of the p65 subunit of NF-κB 
and its gene product Bcl-2 (Amin et al., 2009). For these reasons, it has been suggested that 
there is close relationship between p53 and tumor microenvironment. 

5. Conclusions 

The efficient elimination of cancer cells via immunodefense mechanisms remains the most 
ideal therapy. However, it is important to recognize that the dysfunctional immune state 
that exists in cancer patients will result in a poor response to vaccination procedures. 
Therefore, in order to enable an immunotherapy challenge, it is necessary to restore the 
increased levels of immunosuppressive factors, such as IL-10, IL-23, RCAS1, VEGF and/or 

TGF-1, in the tumor microenvironment of cancer patients to normal levels. In addition, 
whether DCs function normally and efficiently remains an important key for the induction 
of anticancer immunity.  

Further investigation will be required to establish a strategy of basic molecular-mechanism-
based and clinical studies to determine the most effective oral cancer therapy, which should 
be tailor-made for the individual patient. 
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