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1. Introduction 

Myeloid cells are abundant in solid tumors and early infiltrate neoplastic lesions since the 
first stages of tumourigenesis, usually preceding other leukocytes (e.g. lymphocytes). (Clark 
et al., 2007) In the last decades there has been growing evidence that infiltrating T 
lymphocytes (CD3+ CD8+CD45RO+) are associated with favourable prognosis in human 
colorectal cancer (Laghi et al., 2009; Pages et al., 2005) melanoma, ovarian and breast cancer 
(Clemente et al., 1996; Mahmoud et al., 2011; Vesely et al., 2011; Zhang et al., 2003) In 
marked contrast, cells of the innate immunity, like myeloid cells, are most frequently 
associated with poor clinical outcomes. A number of studies have demonstrated that tumor-
associated myeloid cells (TAMCs) have the ability to support tumor cell proliferation and 
invasion, activate the neo-angiogenic switch, and suppress anti-tumor immune responses. 
(DeNardo et al., 2009; Mantovani et al., 2004a; Martinez et al., 2009; Pollard, 2004; Qian and 
Pollard, 2010; Talmadge et al., 2007) Thus, in a simplified scheme, adaptive immunity is 
usually protective and limit tumour progression, while innate immunity favours disease 
development. However, research in recent years have added a further level of complexity, 
as components of the adaptive immunity (e.g. IL-4-producing CD4 T cells and antibody-
producing B cells) have been shown to activate innate immune cells in a pro-tumour 
manner. (DeNardo et al., 2009; Wang and Joyce, 2010)  Therefore, the dynamic interplay 
between tumor-infiltrating cells of the innate and adaptive immunity is of paramount 
importance for the outcome of tumour progression or regression. 

Tumor-associated myeloid cells (TAMCs) include at least four different myeloid 
populations (Figure 1): 1) tumor-associated macrophages (TAMs), considered crucial 
orchestrators of cancer-related inflammation (Mantovani et al., 2008), promoting 
angiogenesis, immunosuppression, tissue remodelling and metastasis (Sica, 2010); 2) the 
angiogenic monocytes expressing the tunica internal endothelial kinase 2 (Tie2), the 
angiopoietin receptor, playing a key role in tumor angiogenesis (De Palma et al., 2005); 3) 
the Ly6G and Ly6C subsets of an heterogeneous population of immature myeloid cells, 
called myeloid-derived suppressor cells (MDSCs) for their ability to suppress T cells  
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Fig. 1. Pathways of differentiation and accumulation of TAMCs. In the bone marrow 
hematopoietic stem cell (HSC) differentiate into common myeloid progenitors (CMPs), which 
can subsequently differentiate into different subsets of circulating myeloid cells: monocytes 
(Mo), Tie2-expressing monocytes (TEM), neutrophils (PMN), and granulocytic and monocytic 
myeloid-suppressor cells (G-MDSC and M-MDSC). Tumors secrete factors which sustain 
myelopoiesis, and promote both the recruitment and pro-tumor differentiation of circulating 
myeloid cells. TAMs are recruited into the tumor site by chemotactic factors (eg. CCL2, CSF-1) 
and represent the prominent phagocytes population orchestrating cancer-related 
inflammation. TEMs derive from circulating Tie2+ monocytes and are recruited in tumors by 
hypoxia-inducible chemoattractants, such as Ang2 and CXCL12. Tumor-associated 
neutrophils (TANs) stem from circulating neutrophils and are recruited in tumors by 
chemokines (e.g. CXCL8). TANs participate in tumor promotion by the expression of crucial 
pro-angiogenic factors. During tumour progression an heterogeneous population of myeloid 
cells (G-MDSC and M-MDSC) accumulate in blood and lymphoid organs. MDSCs may be 
recruited by selected chemoattractants (CCL2, S-100, VEGF, C5a) into the tumor 
microenvironment, where they contribute to suppression of the adaptive immunity.  
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functions, which accumulate mainly in blood and lymphoid organs during tumor 
progression, but may also be recruited to the tumor site (Sica and Bronte, 2007); 4) tumor-
associated neutrophils (TANs) that, despite their short half-life, have been recently proven 
to participate in tumor promotion by the expression of crucial pro-angiogenic factors 
(Fridlender et al., 2009). 

TAMCs originate in the bone marrow where hematopoietic stem cells (HSCs) differentiate 
into common myeloid precursors (CMPs), which subsequently give rise to different subsets 
of circulating cells: immature myeloid cells (IMCs) that can be further subdivided in a 
granulocytic (CD11b+/Ly6G+) and a monocytic (CD11b+/Ly6C+) subpopulation, monocytes 
(CD11b+/Gr1+/F4/80+/CCR2+), Tie2-expressing monocytes (CD11b+/Gr1low/-/Tie2+) and 
neutrophils (CD11b+Ly6G+) (Mantovani et al., 2009). Tumors secrete factors which sustain 
myelopoiesis, promote the recruitment of circulating cells into the tumor mass, and orientate 
their functional differentiation to their own advantage (Mantovani et al., 2009; Sica and 
Bronte, 2007). In addition, Dendritic cells (DCs) also belong to the family of myeloid cells 
stemming from CMPs. Cells with dendritic characteristics are scarcely present in neoplastic 
tissues (Murdoch et al., 2008). Tumor-associated DCs generally show an immature 
phenotype and are poor inducers of effective responses to tumor antigens. The properties of 
these cells have been extensively reviewed elsewhere (Ma et al., 2011; Palucka et al., 2010) 
and are not discussed here. 

2. Pro-tumour functions of tumor-associated myeloid cells 

2.1 Tumor-associated macrophages 

TAMs derive from circulating monocytes which are recruited at tumor sites by a number of 
diverse chemoattractants secreted by tumour and stromal cells. For instance the chemokine 
CCL2 was discovered as a tumour-derived factor inducing chemotaxis in 
monocytes.(Bottazzi et al., 1983; Zachariae et al., 1990) Other chemokines these include : 
CCL3, CCL4, CCL5, CXCL12 (Balkwill, 2004; Konishi et al., 1996; Schioppa et al., 2003). Non-
chemokine chemotactic factors are also important, for instance: urokinase plasminogen 

activator (uPa) (Zhang et al., 2011), M-CSF, TGF; fibroblast growth factor, FGF; vascular 
endothelial growth factor, VEGF) (Joyce and Pollard, 2009; Lin et al., 2002; Sica and Bronte, 

2007) and antimicrobial peptides (-defensin-3, BD-3) (Jin et al., 2010). Many of these 
molecules correlate with TAMs infiltration in different types of tumor, while other (eg. uPa, 
BD-3) are specifically associated with certain types of cancer, prostate and gastric cancer 
respectively (Jin et al., 2010; Zhang et al., 2011).  

Once in tumours, monocytes differentiate to macrophages, primarily because of the 
presence of M-CSF produced by tumour cells, and polarize to tumour-educated 
macrophages by exposure to the local milieu rich in immune-suppressive mediators such as 

IL-10, TGF and VEGF. 

Macrophages are versatile cells that are capable of displaying different functional activities, 
some of which are antagonistic: they can be immuno-stimulatory or immune suppressive, and 
either promote or restrain inflammation. (Auffray et al., 2009; Gordon and Taylor, 2005; 
Hamilton, 2008; Mantovani et al., 2004b; Martinez et al., 2009)  Macrophage heterogeneity has 
been simplified in the macrophage polarization concept where the two extreme phenotypes, 
the M1 and M2 macrophages, have distinct features. (Allavena et al., 2008; Goerdt and 
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Orfanos, 1999; Gordon and Taylor, 2005; Mantovani et al., 1992; Pollard, 2009; Stein et al., 1992) 
M1 or classically–activated macrophages are stimulated by bacterial products and Th1 

cytokines (e.g. IFN); they are potent effectors that produce inflammatory and immuno-
stimulating cytokines to elicit the adaptive immune response, secrete reactive oxygen species 
(ROS) and nitrogen intermediates and may have cytotoxic activity to transformed cells. M2 or 
alternatively activated macrophages differentiate in micro-environments rich in Th2 cytokines 
(e.g. IL-4, IL-13); they have high scavenging activity, produce several growth factors that 
activate the process of tissue repair and suppress adaptive immune responses. (Gordon and 
Martinez, 2010; Mantovani et al., 2005; Qian and Pollard, 2010)  

While this M1 vs M2 dual subsets simplification offers a mechanistic model of the functional 
polarization of macrophages, tissue microenvironments are likely to elicit simultaneous 
activation of different signalling pathways with opposite influence on macrophage 
functions, contributing to the extensive heterogeneity in patterns of gene expression seen in 
macrophages (Gratchev et al., 2008; Murray and Wynn, 2011; Ravasi et al., 2002; Riches, 
1995; Stout et al., 2005; Tannenbaum et al., 1988). This in vivo functional skewing of myeloid 
populations is an emerging paradigm of tumor-mediated immunosuppression, where 
myeloid cell plasticity plays as a double-edged sword (Mantovani and Sica, 2010; Sica and 
Bronte, 2007). In early phases, high production of M1 inflammatory mediators (e.g. tumor 
necrosis factor, TNF; reactive oxygen species, ROS) appears to support neoplastic 
transformation (Sica and Bronte, 2007), whereas in established cancers the expression of M2-
like phenotypes with immunosuppressive, pro-angiogenic and tissue remodelling activities 
promotes immune escape, tumor growth and malignancy (Dinapoli et al., 1996; Mantovani 
and Sica, 2010; Movahedi et al., 2010; Pollard, 2004; Saccani et al., 2006; Sica and Bronte, 
2007; Sica et al., 2008; Sica et al., 2000).  

In molecular profiling studies, murine TAMs from fibrosarcoma showed several features of 
M2 macrophages: arginase-I, YM1, FIZZ1, MGL2, VEGF, osteopontin and MMPs, as well as 
an immunosuppressive phenotype : high IL-10, TGF and  low IL-12, RNI and MHC II, 
which correlate functionally to reduced cytotoxicity and antigen-presenting capacity. 
(Biswas et al., 2006; Hagemann et al., 2009; Ojalvo et al., 2010) Similar findings were found 
in human TAMs from ovarian cancer patients.(Allavena et al., 2010)  We compared the 
expression of  upregulated genes in human TAMs with the profiling of in vitro-polarized 
M1 and M2 macrophages. Several genes (e.g. osteopontin, fibronectin, scavenger and 
mannose receptors)  were similarly upregulated in TAMs and in M2 macrophages. By the 
Principal Component Analysis, the global profiling of TAMs fell much closer to that of M2-
polarized macrophages. (Solinas et al., 2010)   

However, TAMs heterogeneity is starting to emerge, likely depending on the tumour type 
and micro-environmental cues. (Lewis and Pollard, 2006; Movahedi et al., 2010) Notably, 
murine TAMs showed also the expression of typical M1 factors such as IFN-inducible 
chemokines (CCL5, CXCL9, CXCL10, CXCL16). (Biswas et al., 2006; Stout and Suttles, 2005) 

TAMs influence fundamental aspects of tumour biology, as shown in figure 2. Among the 
well documented pro-tumour functions of TAMs is the production of trophic and activating 

factors for tumour and stromal cells (e.g.EGF, FGF, VEGF, PDGF, TGF). These growth 
factors directly promote the proliferation of tumour cells and increase the resistance to 
apoptotic stimuli (Ingman et al., 2006; Kalluri and Zeisberg, 2006; Mantovani et al., 2008; 
Moussai et al., 2011) The cytokine IL-6, released by TAMs, is important to sustain the  
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Fig. 2. Pro-tumour functions of Tumour-Associated Myeloid Cells (TAMCs). Different 
types of TAMCs promote the progression of tumors. TAMs rescue neoplastic cells from 
apoptotic stimuli and stimulate their proliferation, by producing several growth factors and 
cytokines (e.g.EGF, IL-6). TAMs, TEMs and TAN activate angiogenesis, via VEGF, MMPs 
and other angiogenic factors. TAMs have an intense proteolityic activity and degrade the 
extra-cellular matrix, but also produce matrix proteins, such fibronectin (FN1). TAMs favour 
tumour cell intravasation and dissemination to distant sites. TAMs and MDSC induce 

immune suppression by producing suppressive mediators such as IL-10 and TGF,  
arginase 1 and nitric oxide (NO).  

survival and proliferation of malignant cells in tumours of epithelial and hematopoietic 

origin. (Bollrath et al., 2009; Fukuda et al., 2011; Grivennikov et al., 2009; Lesina et al., ; 

Ribatti and Vacca, 2009)  TAMs are also a major source of proteolytic enzymes that degrade 

the ECM, thus favouring the release of matrix-bound growth factors. (Joyce and Pollard, 

2009; Mantovani et al., 2008)  

TAMs a key effectors of the “angiogenic switch" where the balance between pro- and anti-
angiogenic factors, commonly present in tissues, tilts towards a pro-angiogenic outcome. 
(Baeriswyl and Christofori, 2009; Du et al., 2008; Murdoch et al., 2008; Zumsteg et al., 2009) 
In hypoxic conditions the transcription factor HIF-1alpha induces in TAMs the production 
of VEGF and of the angiogenic chemokine CXCL8. (Lewis et al., 2000)  

TAMs are probably the most active contributors to the incessant matrix remodelling present 
within tumours, as they produce several MMPs and other proteolytic enzymes. (Mason and 
Joyce, 2011) Tumour cells exploit the ECM degradation mediated by TAMs to invade 
locally, penetrate into vessels and disseminate to give distant metastasis. (Wyckoff et al., 
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2007) TAMs aiding cancer cell invasion have been directly visualized in experimental 
tumours in vivo by multiphoton microscopy: by using fluorescently labelled cells Wyckoff 
and colleagues showed that tumour cell intravasation occurs next to perivascular 
macrophages in mammary tumours. (Pollard, 2008; Wyckoff et al., 2007)  Further, it has 
been recently shown that cathepsin protease activity, by IL-4-stimulated TAMs, promotes 
tumour invasion.(Gocheva et al., 2010) IL-4 is produced by tumour-infiltrating CD4 T cells 
and there is mounting evidence of its relevance in the polarization of macrophages with pro-
tumour functions. (DeNardo et al., 2009; Wang and Joyce, 2010) The chemokine CCL18 
produced by TAMs has been recently shown to play a critical role in promoting breast 
cancer invasiveness by activating tumour cell adherence to ECM. (Chen et al., 2011) 

We recently found that human TAMs and in vitro tumour-conditioned macrophages 

express high levels of the Migration Stimulation Factor (MSF), (Solinas et al., 2010) a 

truncated isoform of Fibronectin. (Schor et al., 2003) Macrophage-secreted MSF displays 

potent chemotactic activity to tumour cells in vitro,(Solinas et al., 2010) confirming that the 

pro-invasive phenotype of cancer cells is modulated by macrophage products released in 

the tumour-micro-environment.  

Further support to the concept of a reciprocal interaction between tumour cells and TAMs 

was provided by a recent paper where SNAIL-expressing keratinocytes became locally 

invasive after macrophage recruitment elicited by M-CSF. (Du et al., 2010)  

In line with the above experimental evidence, high numbers of infiltrating TAMs have been 

significantly associated with advanced tumours and poor patient prognosis, in the majority 

of human tumours.(Bingle et al., 2002; Mantovani et al., 2008; Pollard, 2004; Qian and 

Pollard, 2010)  There are, however, notable exceptions to this pro-tumour phenotype, 

probably dictated by their functional polarization. One such exception is human colorectal 

cancer, where some studies reported that TAMs density is associated with better 

prognosis.(Forssell et al., 2007; Ohno et al., 2003; Sconocchia et al., 2011) The localization of 

TAMs within colorectal cancers appears of primary importance: the number of peritumoural 

macrophages with high expression of costimulatory molecules (CD80 and CD86), but not of 

those within the cancer stroma, was associated with improved disease-free survival.(Ohtani 

et al., 1997; Sugita et al., 2002) 

Specific TAMs subsets identified by surface markers may have predictive values: in lung 

adenocarcinoma, the number of TAMs CD204+ (scavenger receptor) showed a strong 

association with poor outcome while the total CD68+ population did not. (Ohtaki et al., 

2010) 

Macrophage-related gene signatures have been identified in human tumours such as 

ovarian and breast cancer, soft tissue sarcoma and follicular B lymphoma; (Beck et al., 2009; 

Finak et al., 2008; Ghassabeh et al., 2006; Lenz et al., 2008) in classic Hodgkin's lymphoma, 

tumours with increased number of CD68+ TAMs were significantly associated with 

shortened progression-free survival. (Steidl et al., 2010) 

Recent addition to the molecular repertoire of TAMs includes semaphorin 4D (Sema4D) 

(Sierra et al., 2008) and growth arrest-specific 6 (Gas6) (Loges et al., 2010), which are 

respectively involved in promoting tumor angiogenesis and cancer cell proliferation.  
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2.2 Tie2-expressing onocytes/macrophages (TEMs)  

Tie2-expressing monocytes/macrophages (TEMs) are a small subset of myeloid cells 

characterized by the expression of the angiopoietin receptor Tie2 and powerful pro-

angiogenic activity (De Palma and Naldini, 2009; De Palma et al., 2005; Murdoch et al., 2007; 

Venneri et al., 2007). They derive from circulating Tie2-expressing monocytes which are 

recruited in tumors by hypoxia-induced endothelial-derived chemotactic factors, such as 

Ang-2 and CXCL12 (Coffelt et al., 2011; Murdoch et al., 2007; Venneri et al., 2007; Welford et 

al., 2011b) The CXCL12-CXCR4 axis is a well known circuit driving accumulation of TAMs 

in hypoxic areas of solid tumors (Schioppa et al., 2003). In addition, it has been 

demonstrated that pharmacological inhibition of CXCR4 is associated with a significant 

reduction of TEM recruitment into mammary tumors (Welford et al., 2011b). Both ablation 

and adoptive transfer studies have demonstrated that TEMs are crucial promoters of tumor 

angiogenesis (De Palma et al., 2005; De Palma et al., 2003; Venneri et al., 2007). In two 

models of mammary tumours and orthotopic human gliomas, Ganciclovir-driven ablation 

of Tie2+ monocytes induced a significant reduction of both tumour mass and vasculature, 

demonstrating their importance in tumour angiogenesis and growth (De Palma et al., 2005; 

De Palma et al., 2003; Venneri et al., 2007). In line, adoptive transfer studies demonstrated 

that subcutaneous co-injection of tumor cells with TEMs increases tumor vascularization 

(De Palma et al., 2005).  

Strikingly, gene expression analysis highlighted that TEMs are highly related to TAMs, but 

express a more pronounced M2-skewed gene signature, with higher expression of M2 genes, 

including arginase 1 (Arg1), scavenger receptors (CD163; Mannose receptor 1, Mrc1; 

Macrophage scavenger receptor 2, Msr2; stabilin-1) and lower levels of pro-inflammatory 

molecules (IL-1; prostaglandin endoperoxide synthase 2/cyclooxygenase 2, PTGS2/COX2; 

IL-12; TNF; inducible nitric oxide synthase, iNOS; CCL5; CXCL10; CXCL11) (Pucci et al., 

2009). These results suggested that Tie2+ monocytes could be a distinct lineage of myeloid 

cells, committed to execute physiologic pro-angiogenic and tissue-remodeling programs, 

which can be co-opted by tumors (Andreu et al., 2010). Noteworthy, human Tie2+ 

circulating monocytes express high levels of pro-angiogenic genes (e.g. VEGF-A; Matrix 

metallopeptidase 9, MMP9; COX2; wingless-related MMTV integration site 5A, WNT5A) 

and are powerful inducers of endothelial cells activation (Coffelt et al., 2010). In agreement, 

sub-cutaneous tumors growing in Ang-2-overexpressing mice showed increased number of 

TEMs associated with enhanced microvessels density (Coffelt et al., 2010). Tie2 engagement 

by Ang-2 in both mouse and human TEMs not only elicits a chemotactic response but also 

enhances their pro-tumoral activities (Coffelt et al., 2010). It was also recently demonstrated 

that Ang-2 levels in 4T1 mammary tumors correlates with both TEM-derived IL-10 and Treg 

infiltration, resulting in suppression of T cells proliferation (Coffelt et al., 2011). In contrast, 

Ang-2 inhibited the expression of M1 cytokines (IL-12 and TNF) in TEMs exposed to 

hypoxia (Murdoch et al., 2007).  

2.3 Myeloid-Derived Suppressor Cells (MDSCs) 

MDSCs represent an heterogenous population of cells whose common characteristics are an 

immature state and the ability to suppress T-cell responses both in vitro and in vivo 

(Gabrilovich and Nagaraj, 2009; Ostrand-Rosenberg and Sinha, 2009).  
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MDSC recruitment and expansion are regulated by several cytokines, chemokines and 
transcription factors (Sica and Bronte, 2007). It has been demonstrated that among 
chemokine receptors, CCR2 plays a pivotal role in the recruitment and turnover of MDSC to 
the tumour site (Sawanobori et al., 2008). Furthermore, the C5a complement component, 
which interacts with a G protein-coupled receptor, has been shown to play a role in MDSC 
recruitment and activation in a cervix cancer model (Markiewski et al., 2008). Some factors 
which are found in the tumour microenvironment, such as pro-inflammatory S-100 proteins, 
are also crucial for MDSC recruitment. Sinha and co-workers demonstrated that MDSCs can 
produce S-100 proteins by themselves, providing evidence for an autocrine loop that 
promotes MDSC recruitment (Cheng et al., 2008; Sinha et al., 2008). 

MDSCs possess several mechanisms for immune suppression: 1) depletion of arginine, 
mediated by Arg1 and iNOS; 2) production of ROS; 3) post-translational modifications of T 
cell receptor (TCR) mediated by peroxynitrite generation; 4) depletion of cysteine; 5) 

production of TGF; 6) induction of Tregs (Bronte et al., 2005; Huang et al., 2006; Movahedi 
et al., 2008; Nagaraj et al., 2007; Srivastava et al., 2010; Terabe et al., 2003; Yang et al., 2006; 
Youn et al., 2008). In healthy individuals, IMCs differentiate in mature granulocytes, 
macrophages or dendritic cells, whereas in pathological conditions they expand into 
MDSCs. MDSCs have been observed in cancer, chronic infectious diseases, and 
autoimmunity. In tumor-bearing mice, MDSCs accumulate within primary and metastatic 
tumors, in the bone marrow, spleen and peripheral blood. In cancer patients, MDSCs have 
been identified in the blood.  

Recent studies have contributed to partially clarify the biology of MDSCs. In mice, two 
major subsets were identified on the basis of their morphology and the expression of Ly6 
family glycoproteins: monocytic MDSCs (M-MDSCs) and granulocytic MDSCs (G-MDSCs). 
M-MDSCs are CD11b+ Ly6G- Ly6Chigh cells with monocyte-like morphology, while G-
MDSCs are CD11b+ Ly6G+ Ly6Clow with granulocyte-like morphology (Ostrand-Rosenberg 
and Sinha, 2009). Cells with similar phenotype, precursors of myeloid cells, are present in 
physiological conditions, but they are devoid of immunosuppressive activity. These cells, 
therefore, should not be named MDSCs (Youn and Gabrilovich, 2010). Other markers of 

MDSC subsets are: IL-4R (CD124), F4/80, CD80, and CSF-1R (CD115) (Sica and Bronte, 
2007). The characterization of MDSCs deeply suffers from the lack of specific markers. 
However, recent characterizations have identified human MDSCs as CD34+ CD33+ CD11b+ 
HLA-DR- cells (Ostrand-Rosenberg and Sinha, 2009). The ability to differentiate into mature 
DCs and macrophages in vitro has been shown to be restricted to M-MDSCs (Youn et al., 
2008). M-MDSC-mediated immune suppression does not require cell-cell contact, but 
utilizes up-regulation of iNOS and Arg1, as well as production of immunosuppressive 
cytokines (Gabrilovich and Nagaraj, 2009). On the contrary, G-MDSCs suppress antigen-
specific responses using mechanisms, including the release of ROS, that require prolonged 
cell-cell contact between MDSC and T cell (Gabrilovich and Nagaraj, 2009). The C5a subunit 
of the complement system appears a key regulator of MDSC functions, by modulating their 
migration and ROS production (Markiewski et al., 2008). 

Several factors produced by tumors have been implicated in the differentiation of MDSCs, 

including granulocyte monocytes-colony stimulating factor (GM-CSF), macrophage- 

monocytes-colony stimulating factor (M-CSF), IL-6, IL-1, VEGF and PGE2 (Gabrilovich and 

Nagaraj, 2009; Marigo et al., 2010). The transcription factor CCAT/enhancer binding protein 
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ǃ (C/EBPǃ) proved to be the key player in the process of MDSC development (Marigo et al., 

2010). It has been proposed that two signals are needed for the expansion and function of 

MDSCs: one factor (e.g. GM-CSF) prevents the differentiation in mature myeloid cells, and a 

second signal, provided by pro-inflammatory molecules such as IFNǄ, activate MDSCs 

(Condamine and Gabrilovich, 2011).  

A remarkable relation exists between MDSCs and TAMs. MDSCs are able to skew TAMs 

differentiation toward a tumor-promoting type-2 phenotype (Sinha et al., 2007). The cross-

talk between MDSCs and macrophages requires cell-cell contact, then MDSCs release IL-10 

to reduce IL-12 production by macrophages. MDSCs from an IL-1 enriched tumor 

microenvironment produce more IL-10 and are more potent down-regulators of 

macrophage-released IL-12 (Bunt et al., 2009). Circulating MDSCs can differentiate into Gr1- 

F4/80+ TAMs in the tumor site (Kusmartsev and Gabrilovich, 2005) and this conversion is 

driven by tumor hypoxia (Corzo et al., 2010).  

Because of their tumor-promoting activities, MDSCs are associated with type-2 immune 

responses, however accumulating evidence shows that MDSCs have characteristics of both 

M1 and M2 macrophages (Sica and Bronte, 2007). As an example, MDSCs express both Arg1 

and iNOS, where these enzyme are differentially expressed by M1 (iNOS) and M2 (Arg1) 

macrophages. A recent study, investigating the molecular mechanisms behind MDSC 

differentiation, demonstrated an essential role of paired-immunoglobulin receptors (PIRs) in 

the differentiation of M1 or M2 MDSCs (Ma et al., 2011). The balance between PIR-A and 

PIR-B modulates MDSC polarization. In support of this, growth of Lewis lung carcinoma 

was significantly retarded in PIR-B-deficient mice (Lilrb3-/-) and PIR-B-deficient M-MDSCs 

expressed high levels of the M1 molecules iNOS.  

MDSCs contribute to tumor growth also by non-immune mechanisms, including the 

promotion of angiogenesis. MDSCs isolated from murine tumors express high levels of 

metalloproteases, including MMP9 (Murdoch et al., 2008). MMP9 increases the 

bioavailability of VEGF sequestered in the extracellular matrix. Further in the tumor 

microenvironment and in proangiogenic culture conditions, MDSCs acquire endothelial 

markers such as CD31 and VEGF receptor 2 (VEGFR2) and the ability to directly incorporate 

into tumor endothelium (Yang et al., 2004). In agreement, tumor refractoriness to anti-VEGF 

therapy was shown to be mediated by CD11b+GR1+ myeloid cells (Shojaei et al., 2007a; 

Shojaei et al., 2007b). 

2.4 Tumor-Associated Neutrophils (TANs)  

Tumor-associated neutrophils (TANs) have received little interest by immunologists, also 

based on their short life span. However, new evidence contradicts this view, in that 

cytokines like IL-1 or microenvironment conditions such as hypoxia can prolong PMN 

survival (Sica et al., 2011). TANs are present in various tumors, including kidney, breast, 

colon, and lung (Houghton, 2010), and are recruited by locally secreted chemotactic factors. 

As an example, several carcinoma cells produce CXCL8, a prototypic chemoattractant for 

neutrophils (Bellocq et al., 1998). Furthermore, tumor-derived TGF promotes neutrophils 

migration both directly and indirectly, by regulating the expression of adhesion molecules 

in the endothelium (Flavell et al., 2010).  
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Neutrophils are able to produce various cytokines and chemokines that can influence not 
only immune and antimicrobial responses, but other processes such as hematopoiesis, 
wound healing, and angiogenesis (Cassatella et al., 2009; Mantovani, 2009; Piccard et al., 
2011; Zhang et al., 2009). Despite little attention has been paid to TANs, clinical evidence 
indicates that their presence is a negative prognostic indicator. A correlation between TANs 
infiltrate and poor outcome has been described in renal cell carcinoma, bronchoalveolar cell 
carcinoma, and breast cancer (Jensen et al., 2009; Yang et al., 2005). In agreement, preclinical 
studies experimenting PMN depletion confirmed the detrimental nature of TANs (Pekarek 
et al., 1995; Tazawa et al., 2003).  

Neutrophils contribute to tumor growth by promoting angiogenesis, cell proliferation, and 
metastasis (Houghton, 2010). Similarly to macrophages, a recent report described the 
functional plasticity of neutrophils (Fridlender et al., 2009). The authors investigated the 

effects of SM16, a TGF receptor kinase antagonist in murine lung cancer and mesothelioma 
models using syngeneic tumor xenografts and the orthotopic LSL-K-ras tumor model. 
Depletion of neutrophils by a specific anti-Ly6G antibody resulted in a significantly reduced 

effect of SM16, suggesting that neutrophils participate to the antitumor activity of TGF 
blockade, most likely by the production of oxygen radicals. Also, depletion of neutrophils 
affected the activation of CD8+ CTLs. Fridlender and colleagues propose a new paradigm in 

which resident TANs acquire a protumor phenotype, largely driven by TGF, to become 

“N2 neutrophils”. If TGF is blocked, neutrophils acquire an antitumor phenotype to 
become “N1 neutrophils” (Fridlender et al., 2009).  

It was suggested that N1- and N2-type neutrophils are cells with a different degree of 
activation (i.e. fully activated or weakly activated neutrophils, respectively) rather than two 
alternatively activated cell subtypes (Gregory and Houghton, 2011). It is also object of debate 
the existence of two distinct populations, namely N2-polarized TANs and granulocytic 
MDSCs, that seem to overlap for many characteristics. In the absence of specific markers, it 
cannot be determined if N2 neutrophils within the tumors are granulocytic MDSCs recruited 
from the spleen or whether they are blood-derived neutrophils converted to an N2 phenotype 
by the tumor microenvironment. In support to the existence of N2-polarized TANs, Fridlender 

et al. emphasize that TGF-blockade does not alter blood neutrophils, splenic myeloid cells 
(CD11b+), or splenic MDSCs, selectively acting on the intratumor activation of neutrophils. 
Also, TANs characterized in Fridlender’s study have clear features of mature neutrophils, 
while MDSCs mostly exhibit an immature morphology (Mantovani, 2009).  

3. Therapeutic approaches targeting TAMCs 

The frequent association of TAMCs with poor prognosis makes these cells reasonable 
targets of biological anti-cancer therapies. Further, in the last few years there has been 
increasing evidence that TAMCs are strongly implicated in the failure of conventional 
chemotherapy and anti-angiogenic therapy.(Ferrara, 2010; Welford et al., 2011a) 
Accumulation of myeloid CD11b+Gr1+ cells (including TAMs, MDSC and immature cells) 
in tumours renders them refractory to angiogenic blockade by VEGF antibodies. (Shojaei 
and Ferrara, 2008) This effect was traced to a VEGF-independent pathway driven by the G-
CSF-induced protein Bv8. (Shojaei et al., 2007b) Further, pharmacological inhibition of TEMs 
in tumour-bearing mice markedly increased the efficacy of therapeutic treatment with a 
vascular-disrupting agent.  
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3.1 TAMs and TEMs 

Elimination of TAMs at tumor sites, or inhibition of their survival could result in improved 
prognosis. Earlier and more recent studies of macrophage depletion in experimental settings 
have been successful to limit tumour growth and metastatic spread (Aharinejad et al., 2009; 
Lin et al., 2001; Mantovani et al., 1992), and to achieve better therapeutic responses (De 
Palma et al., 2007; Ferrara, 2010; Gabrilovich and Nagaraj, 2009; Marigo et al., 2008; Welford 
et al., 2011a)  

A number of studies have shown that the bisphosphonate clodronate encapsulated in 
liposomes is an efficient reagent for the depletion of macrophages in vivo. Clodronate-
depletion of TAMs in tumour-bearing mice resulted in reduced angiogenesis and decreased 
tumour growth and metastatization.(Brown and Holen, 2009; Zeisberger et al., 2006)  
Moreover, the combination of clodronate with sorafenib, an available inhibitor of tyrosine 
protein kinases (e.g,VEGFR and PDGFR), significantly increased the efficacy of sorafenib 
alone in a xenograft model of hepatocellular carcinoma. In clinical practice, bisphosphonates 
are employed to treat osteoporosis; current applications in cancer therapy include their use 
to treat skeletal metastases in Multiple Myeloma, prostate and breast cancer. Treatment with 
zoledronic acid was associated with a significant reduction of skeletal-related events and, 
possibly, direct apoptotic effects in tumour cells. (Martin et al., 2010; Morgan et al., ; Zhang 
et al., 2010)  

Our group reported that the anti-tumour agent of marine origin, Trabectedin (Yondelis), 
was unexpectedly found to be highly cytotoxic to mononuclear phagocytes, including 
TAMs. This cytotoxic effect is remarkably selective, as neutrophils and lymphocytes were 
not affected. (Allavena et al., 2005; D'Incalci and Galmarini, 2010)  

A second approach is to inhibit the recruitment of circulating monocytes in tumour tissues.  

The M-CSF receptor (M-CSFR) is exclusively expressed by monocytes-macrophages. In 
patients with advanced tumours, clinical studies are under way to check the feasibility and 
possibly clinical efficacy of inhibitors to the CSF-1R. Among the many chemokines 
expressed in the tumour micro-environment, CCL2 (or Monocyte Chemotactic Protein-1) 
occupies a prominent role and has been selected for therapeutic purposes. Pre-clinical 
studies have shown that anti-CCL2 antibodies or antagonists to its receptor CCR2, given in 
combination with chemotherapy, were able to induce tumour regression and yielded to 
improved survival in prostate mouse cancer models (Li et al., 2009; Loberg et al., 2007; 
Popivanova et al., 2009) 

In the opposite direction, another approach is to exploit the tumor-homing ability of TAMCs: 
after all, they are at the right place at the right time. Indeed, delivery of cytokines and cytotoxic 
proteins to tumors by means of gene modified cells represents a promising strategy to treat 

cancer. It was recently shown that TEMs could be used to deliver interferon-alpha (IFN), a 
potent cytokine with angiostatic and antiproliferative activity (De Palma et al., 2008), thanks to 
the preferential homing of TEMs to the tumors (De Palma and Naldini, 2009). 

A fourth and more recent approach is to 're-educate' TAMs to exert anti-tumour responses 

protective for the host, ideally by using factors able to revert TAMs into M1-macrophages, 

with potential anti-tumour activity. It is becoming accepted that macrophages are flexible 

and able to switch from one polarization state to the other. (Pelegrin and Surprenant, 2009) 
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This was achieved in experimental mouse tumours, by injecting the TLR9 agonist CpG- 

oligodeoxynucleotide (CpG-ODN), coupled with anti-IL-10 receptor.(Guiducci et al., 2005) 

or the chemokine CCL16 (Cappello et al., 2004). CpG-ODN synergized also with an agonist 

anti-CD40 mAb to revert TAMs displaying anti-tumour activity. (Buhtoiarov et al., 2011) A 

remarkable anti-tumour effect of re-directed macrophages has been recently reported in 

human pancreatic cancer with the use of agonist anti-CD40 mAb. (Beatty et al., 2011) Still in 

the same direction, a recent report showed that the plasma protein histidine-rich 

glycoprotein (HRG) known for its inhibitory effects on angiogenesis (Juarez et al., 2002; 

Olsson et al., 2004) is able to skew TAMs polarization into M1-like phenotype by down-

regulation of the placental growth factor (PlGF), a member of the VEGF family. In mice, 

HRG promoted anti-tumour immune responses and normalization of the vessel network. 

(Rolny et al., 2011) 

Direct activation with IFNǄ, a prototypical M1-polarizing cytokine, has been shown to re-

educate TAMs (Duluc et al., 2009) and there is evidence for antitumor activity of this 

molecule in minimal residual disease (Mantovani and Sica, 2010). Inhibition of STAT3 

activity, required for IL-10 biological functions and gene transcription, restored production 

of pro-inflammatory mediators (IL-12 and TNF-) by infiltrating leukocytes and promoted 

tumour inhibition (Kortylewski et al., 2005). Recent results suggest that SHIP1 functions in 

vivo to repress M2 macrophage skewing. Consistent with this, Ship1−/− mice display 

enhanced tumor implant growth (Rauh et al., 2005). In agreement, inhibition of the M2 

polarizing p50 NF-B activity resulted in restoration of M1 inflammation and tumor 

inhibition in different cancer mouse models (fibrosarcoma, melanoma)(Saccani A. et al 

Cancer Res 2006) (Porta et al., 2009) 

3.2 MDSC 

The translational potential of MDSC research is dual. The immunosuppressive activity of 

MDSCs could be exploited to inhibit immune responses in autoimmune diseases and organ 

transplantation. Conversely, elimination of MDSCs could be essential in cancer patients 

undergoing active (vaccination) or passive (adoptive transfer of ex-vivo expanded anti-tumor 

T cells) immunotherapy. A possible approach to contrast MDSC pro-tumoral activities 

consists in the promotion of MDSC differentiation into mature cells devoid of suppressive 

activity. Vitamin A represents an interesting candidate to restore immunosurveillance. In 

fact, Vitamin A metabolites stimulate the differentiation of myeloid progenitor cells into 

DCs and macrophages and reduce MDSC accumulation (Gabrilovich et al., 2001; 

Kusmartsev et al., 2003). A clinical trial testing the effects of all-trans-retinoic acid (ATRA) in 

patients with metastatic renal cell carcinoma showed the efficacy of this compound in 

reducing MDSCs in peripheral blood. The decrease in MDSC number correlated with 

improved-antigen-specific T cell responses (Mirza et al., 2006). It has been reported that 

some chemotherapeutic drugs, such as gemcitabine, are able to eliminate MDSCs, without 

affecting T cells, B cells, NK cells, and macrophages (Ko et al., 2007; Suzuki et al., 2005). 

Another strategy is aimed to inhibit MDSC suppressive function. Compounds under 

investigation for this ability belong to COX2 inhibitors, phosphodiesterase 5 (PDE5) 

inhibitors, and NO-releasing non-steroidal anti-inflammatory drugs (NSAIDs) (Gabrilovich 

and Nagaraj, 2009). Preclinical evidence supports the use of IL-1 antagonists in treating 
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human metastatic disease. Blocking IL-1 activity, mainly IL-1ǃ, reduces both metastasis and 

tumor growth (Dinarello, 2010). Recently, it was shown that the effect is also mediated by 

the decrease of MDSC accumulation and suppressive activity (Ostrand-Rosenberg and 

Sinha, 2009). It has also been reported that CD11b+ Gr1+ cells enhance tumor refractoriness 

to anti-VEGF antibody (bevacizumab) treatment (Shojaei et al., 2007a). In this situation, 

MDSCs release the pro-angiogenic protein Bv8 that surrogates VEGF in the stimulation of 

tumor angiogenesis (Shojaei et al., 2007b). Because Bv8 is also important in MDSC 

mobilization and homing to the tumor site, this is an interesting candidate for cancer 

therapy.  

3.3 TANs 

TAN depletion represents a potential therapeutic approach for cancer cure (Tazzyman et al., 
2009). However, since oncologic patients are already immunocompromized individuals, a 
complete ablation of neutrophils is not desirable. Alternatively, given that activated 
neutrophils can kill tumor cells through the release of toxic substances, it would be of 
interest to modulate TAN phenotype, with a switch from N2- towards N1-polarization. 
Nevertheless, this plan would lead to the generation of highly cytotoxic cells and could 
result in excessive tissue damage, potentially lethal. A more manageable therapeutic 
strategy can target neutrophils recruitment to tumors. Inhibition of CXCR2-mediated PMN 
chemotaxis with a specific antibody or a CXCR2 antagonist has been successfully tested in 
pre-clinical experimentation (Gregory and Houghton, 2011). The description of the pivotal 

role of TGF in the promotion of a protumor phenotype of TAN suggests that therapies 
contrasting this cytokine could contribute to re-educate neutrophils in the tumor 
microenvironment (Flavell et al., 2010). Interestingly, a recent study showed that the CCL2-
driven accumulation of TAMs limits the influx of neutrophils in solid tumors by a yet 
unidentified mechanism. If TAMs accumulation is suppressed, neutrophils are recruited to 
the tumor providing a secondary source of MMP-9. Therefore, in the absence of TAMs, 
TANs provide alternative paracrine support for tumor angiogenesis and progression (Pahler 
et al., 2008). Hence, the elimination of TAMs alone may be insufficient to eradicate myeloid 
cell support to tumor growth .  

4. Conclusions 

Recent results indicate that tumour development promotes expansion and functional 

skewing of different myeloid cell populations, leading to accumulation of protumoral 

TAMC populations, which include TAMs, TEMs, MDSCs and TANs. These myeloid cell 

populations display distinct specialized functions, as well as overlapping activities (eg. 

angiogenesis). It is becoming evident that TAMCs appear to constitute a robust pro-tumour 

system and the functional elimination of a single myeloid population may be insufficient to 

eradicate their support to tumor growth. New strategies able to target different myeloid cell 

populations, simultaneously, are therefore desirable. 

New evidence indicates that pathways promoting polarized functions of either 

macrophages (eg. M1 vs M2) or neutrophils (N1 vs N2) may share common constituents. 

(Mantovani, 2009) Understanding of this convergent pathways may offer common target/s 

and strategies to therapeutically affect the pro-tumoral networks established by TAMCs.  
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