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1. Introduction  

Biology offers a diversity of problems, leading to many computational biology workflows, 

including tasks where network visualization is helpful to interpret and analyse data. High-

throughput screening techniques generate large amounts of data useful for the 

comprehension of the biological mechanisms underlying different diseases. The need for 

agile tools to handle such data and analyse it correctly has become continuously more 

evident. 

Individual network visualization systems differ greatly in terms of the features and 

standards they support, and consequently the analyses they enable. Importantly, users have 

a broad range of skills and expectations, ranging from biology to computational biology. As 

a result, network visualization tools must satisfy diverse requirements and thus offer 

different user interfaces and features. In this role, they are also fundamental in helping 

scientists in different fields integrate their knowledge and their data in an interdisciplinary 

approach to research. 

The number of ‘-omics’ disciplines that use high-throughput techniques and that can benefit 

from a network approach are increasing. The diverse data that can be represented as a graph 

includes physical protein-protein interactions (PPIs), metabolic networks (Swainston et al., 

2011), genetic co-expression (Helaers et al., 2011), gene regulatory networks (Longabaugh, 

2012), microRNA-target (Shirdel et al., 2011) and drug-target associations (Morrow et al., 

2010). In this chapter we focus on physical PPIs. 

Proteins are key players in virtually all biological events that take place within and between 

cells and often accomplish their function as part of large molecular machines, whose action 

is coordinated through intricate regulatory networks of transient PPIs. The understanding of 

the interrelationships between molecules is the basis for an understanding of the behaviour 

of biological systems (Stein et al., 2011).  
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The analysis of the full proteome is possible with techniques such as mass spectrometry and 

protein microarray, which can be integrated with targeted approaches such as yeast-2-

hybrid screen, immune precipitation and affinity purification. So far, PPI discovery methods 

are not accurate enough to be used alone, but the combination of different techniques can 

help to build an accurate interactome map (Remmerie et al. 2011). Still, this kind of analysis 

can only indicate that two proteins interact but does not reveal the molecular details or the 

mechanism of binding captured in high resolution three-dimensional (3D) structures, in 

which individual residue contacts are resolved and the interaction interfaces characterized. 

Moreover, they do not capture transient interactions and post translational modifications 

(PTMs) that can be addressed by techniques such as immobilized metal affinity 

chromatography (IMAC) mass spectrometry for protein phosphorylation analysis. 

It becomes evident that the analysis of protein interactions is already a huge field with a 

plethora of data coming from different sources that can be improved by computational 

techniques and integrative network visualization and analysis. It is even more interesting to 

integrate PPI data with protein-target interaction data to have a wider view of the 

environmental context that influences network operations.  

In this context, a pathway-centric analysis can help to elucidate the role and the importance 
of proteins in the context of the cell environment, specifically when the pathways can be 
related to the process/disease being studied. However, it is mandatory to be aware of the 
limits of this analysis, due to the cross-talk among pathways: a singular protein, in fact, can 
be associated or interact with multiple pathways so none of the pathways can be considered 
a single actor but rather a piece of a bigger puzzle (Kreeger & Lauffenburger, 2010). 

Another intriguing aspect that protein-target interactions can describe is the relationship 

between protein exogenous molecules like drugs or toxins (Yu, 2011). The analysis of 

networks generated from drug-target and protein-target interactions can highlight different 

molecules that can be responsible of the response or resistance to a certain drug as well as 

alternative drugs that can target disease specific proteins. 

2. Network visualization tools 

There are dozens of applications available for the visualization of biological networks, each 

with its own focus, work-flow and tools (Pavlopoulos et al., 2008; Gehlenborg et al., 2010). 

We will describe some of the most common features and workflows involved in using these 

applications, with brief discussion of NAViGaTOR (Brown et al., 2009; McGuffin and 

Jurisica, 2009; Djebbari et al., 2011), Cytoscape (Smoot et al., 2011), VANTED (Björn et al., 

2006) and VisANT (Mellor et al., 2004), four popular multi-platform biological network 

visualization applications. 

2.1 Biological networks as annotated graphs 

The most basic mathematical structure common to all of these applications is the graph, a 
collection of objects connected by links, referred to as nodes and edges. These objects are 
abstractions of real-world biological entities, where nodes could represent proteins, genes, 
molecules, drugs, etc. and edges could represent physical protein-protein, metabolic, or 
genetic interactions, microRNA to target associations, correlation, similarity relationships, 
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etc. Edges can be directed or undirected, weighted or not. In a case like gene regulation, 
Gene A may regulate Gene B, but the relationship may not be symmetric, meaning Gene B 
does not regulate Gene A. These models of biological networks have differing levels of 
support across various applications. An application may only support a small subset of 
node and edge types in order to specialize on one particular model, such as VisANT, which 
integrates many specialized tools for tasks such as Gene Ontology (GO) annotation, name 
resolution and online searches. Other applications may be more open-ended to provide 
support for as many models as possible, such as NAViGaTOR, Cytoscape and VANTED. 
The advantage of such a model is versatility, but it comes at the cost of having to manually 
define the nature of each node or edge via annotation. 

To populate a graph within an application, the application must support one or more input 

formats. Often, the most basic level of input is either plain text or spreadsheet files such as 

Excel XLS format. For more graph-specific data, such as layout, GML can be used. To 

support more complex and structured biological data, several community standards exist: 

PSI-MI, BioPAX, and SBML. 

Adding new nodes and edges to an existing graph can generally be done manually or by 

adding additional interactions from a supported database or file format. Some applications 

may have a workspace that supports concurrent, multiple graphs, which can then be 

combined or compared in various ways. Cytoscape and NAViGaTOR both support this type 

of workspace. 

Once the graph is loaded within an application, a researcher may wish to add additional 

annotations, such as gene or protein expression, experimental confidence measures or Gene 

Ontology (The Gene Ontology Consortium, 2000) to their graph objects. Data from in-house 

sources must generally conform to the application used; generally, this is in the form of 

spreadsheets or text data with varying degrees of format flexibility. The researcher can also 

call upon more specialized data from public databases, such as UniProt, Entrez, KEGG or 

Genbank, either through the import of files or from direct access to the database through the 

application or a plug-in. 

The amount of biological networks available to the researcher is ever expanding, and the 

size of the networks involved in many types of analysis is in order of thousands of nodes 

and edges. For example, the yeast interactome comprises 23,918 interactions according to 

DIP and 152,877 known and predicted interactions in I2D, the Interologous Interaction 

Database (http://ophid.utoronto.ca/i2d), an integrated database of PPIs from curated 

databases, experimental sources and predicted interactions (Niu et al., 2010; Brown and 

Jurisica, 2007; Brown and Jurisica 2005). While the researcher may only be interested in a 

small portion of the network in question, the scalability of an individual application and its 

analysis methods to networks of such size can be a considerable advantage. 

2.2 Network visualization 

Part of the challenge of visualizing a network is the laying out of the graph in a 

comprehensible manner. For smaller graphs, manual editing of node positions may be 

sufficient. With the aforementioned instances of graphs in the order of thousands of 

interactions, more robust tools are available with which to lay out a graph. Automated 
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graph layout algorithms, such as the force-directed and hierarchical, make the process 

easier, but often produce messy, uninterpretable graphs. Manual control over the placement 

of nodes and specialized tools for doing so are often necessary, from simple movement of 

single nodes to alignments in circles and lines to manipulate groups of nodes. 

Algorithms for graph analysis are generally included in each application. Here, the number 

and type of analyses available are wildly variable. Algorithms can be used to find important 

graph properties, such as node degree, centrality, shortest paths, cliques and clusters. In 

addition, diverse biology-specific algorithms exist such as GeneMANIA (Montojo et al., 

2010). Some applications may be designed specifically for one type of analysis while others 

contain a variety of analysis methods and in some cases allow for the addition of third party 

methods through plug-ins (NAViGaTOR, Cytoscape) or scripting languages (VisANT). 

How an application chooses to visualize a graph is also variable. Nodes can be represented as 
anything from basic geometric shapes with variable size, color and transparency to application 
specific or user supplied bit-mapped images (Cytoscape, VANTED) or even other data 
visualizations such as bar charts (VANTED, VisANT). Edges can be straight, curved, 
displayed with various dot or dash schemes and can have variable widths, colors and 
transparencies. To make certain attributes readily visible, it is also possible in some instances 
to map an attribute to a visual property, such as color or size. All four of our example 
applications have different implementations of such mapping; the utility of a specific 
implementation is dependent upon the needs and competencies of the individual researcher. 

Once the graph satisfies the requirements envisioned by the researcher, its state must be 
stored or exported. Proprietary formats are generally the norm for most programs, as 
visualization and data are often application specific and must be stored for later editing. 
Export formats often take the form of community standards (PSI-MI, BioPAX) and graphical 
exports. Graphical export is generally the final stage before publication. Usually, this can be 
done in bitmap (JPEG, TIFF, PNG, etc.) or vector (SVG, PDF, etc) formats, the latter being 
preferable for publication, as it can be resized and manipulated without loss of quality. 

2.3 NAViGaTOR 

NAViGaTOR (Network Analysis, Visualization and Graphing Toronto; 
http://ophid.utoronto.ca/navigator) is a network and graph visualization application with 
an emphasis on large graphs with integrated data (Brown et al., 2009). Data can be imported 
using diverse formats, ranging from community standards such as PSI-MI XML (Kerrien et 
al., 2007), BioPAX (Demir et al., 2010) or GML (Himsolt, 1996), to user-defined text files. 
Though the application is geared towards protein-protein interactions, the graph 
implementation within NAViGaTOR is not PPI specific, and can be used to model many 
types of real world or theoretical objects. Nodes and edges can have data associated with 
them, from simple numeric or text data to structured XML. Once imported, graphs can be 
combined from within a multi-graph workspace using combinations of cut, copy and paste 
operations. Additional data for the annotation of existing graphs can be imported using 
compatible files or online resources, such as I2D, cPath, or the one of the many online 
databases implementing the PSICQUIC web service. 

Graphs generated by the above methods can quickly increase in size to thousands of nodes 
and edges. NAViGaTOR was designed with networks of this size in mind. While graphs this 
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size do create a demand for both memory and processing power to render, layout and 
navigate, the conservation of important paths and data is important to end-user analysis, 
particularly since most graphs of interest are subsets of a much larger interaction networks. 
NAViGaTOR approaches the problem of limited computing resources through the 
combination of a powerful OpenGL rendering engine through JOGL, and a suite of efficient 
layout, search and analysis tools. The JOGL rendering system gives the application access to 
the graphic processing power of the OpenGL compliant hardware of most graphics cards, 
allowing the application to use the CPU for more intensive graph operations. 

NAViGaTOR supports several layout algorithms tailored for large graphs, including GRIP 
(Graph Drawing with Intelligent Placement) and several variants of the force directed 
algorithm. These algorithms come in both single and multi-threaded modes to take 
advantage of computers with multi-core CPUs. 

When the structure and data contained within a graph are sufficient, the user can then 
interact with the graph, identifying significant nodes, edges or subsets of the graph using a 
variety of searches, spreadsheet tables and algorithms. Online or file supported databases 
can also be used to indicate known pathways and complexes within the data. 

Users can highlight interesting structures within a graph with a variety of methods. Nodes 
and edges can be assigned visual properties to differentiate them from each other. Nodes 
can be given different colors, sizes, and highlighting styles. Edges can be given different 
colors, widths and styles and have the option to be rendered as user adjustable curves. 
Transparency can be used on both nodes and edges to either increase or decrease the 
visibility of graph objects. 

The user can save the file in native NAViGaTOR format, GML, PSI-MI or delimited plain 
text. In addition, for presentation or publication purposes, the graph can be exported to one 
of several graphical formats, including JPEG, PNG, TIFF, SVG and PDF.  

3. Iterative expansion of a protein interaction network 

The increasing amount of data that can be collected from high-throughput analyses is 
accelerating research in the field of molecular biology; however, data of this type is also 
challenging due to its size. It can be used either for knowledge-based targeted analyses, 
meaning to improve the understanding of the role of an important well-known player in a 
specific field of interest (for example of BRCA1 in breast cancer), or unbiased analyses to 
understand the processes involved in a specific behaviour without a priori knowledge (for 
example, which genes/proteins are responsible for the poor survival of patients with 
pancreatic cancer?) 

For our example, we have a list of potential interactors for a hypothetical protein of interest, 
PRO1, generated by computational PPI prediction. Also at our disposal are two meta 
analyses efforts, specifying the number of ovarian or prostate cancer related studies found 
in which the gene and its interactors were significantly deregulated. All other data will be 
collected from publicly available resources, including a PPI database, and a catalogue of 
drugs and their gene targets. 

For our example, we will start with our experimental data in a tabular format. Data such as 

this can be obtained from any number of sources, from high-throughput experiments to 
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computational predictions. In our case, we have 21,302 predicted PPIs. Our analysis has 

produced a confidence metric associated with each interaction, ranging from 0 to 1.0. This 

confidence metric can be used to reduce the number of interactions we are dealing with to a 

more manageable size by removing lower confidence interactions. Our cut-off for high 

confidence will be 0.892, a value determined by cross validation. This leaves us with only 39 

interactions, a far more manageable number for the next analysis steps. More complex 

filtering can be done through a simple spreadsheet application, such as Excel, or with a 

mathematical application such as R or Matlab. 

At this point, we translate this data into a pair-wise table of PPIs, and import this table into 

NAViGaTOR. While NAViGaTOR supports several formats for loading interactions, we 

have chosen the tab-delimited format to facilitate easy translation from our original data. 

Other interaction data sets can be imported using community standard file formats, such as 

BioPAX, GML, PSI-MI XML and PSI-MITAB. Though these formats are harder to construct, 

they can contain more structured data, and facilitate easier data interchange among diverse 

programs and databases. 

 

 
 

Fig. 1. Example graph containing hypothetical protein PRO1, with interactors loaded from 
experimental data. Tabular view of the data is available as a supplemental material  
(http:// http://www.cs.utoronto.ca/~juris/data/intech12/). 

Loading our pair-wise data, we get a very basic view (Figure 1). The visualization of this 

network at this stage is a spoke diagram with PRO1 in the center, and offers little information 

to the researcher that could not have been seen through a simple spreadsheet. We already 

have data regarding 39 interactions in the form of the confidence metric imported from our 

initial study. This can be mapped to one or more visual attributes using NAViGaTORs filter 

framework. In this case, we can make the highest confidence interactions more visible by 

applying a filter to map confidence to both edge width and transparency (Figure 2). 
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Fig. 2. Example graph with experimental interaction confidence mapped to edge width and 
transparency. 

 

Fig. 3. Example graph enriched with interactions loaded from I2D, and laid out using the 
GRID algorithm. 
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Fig. 4. Example graph laid out hierarchically, with PRO1 in a central position. 

This is better, but still not that much more informative. One way of enriching our isolated 

data is by viewing it in the context of known and predicted interactions. I2D, the 

Interologous Interaction Database (http://ophid.utoronto.ca/i2d; (Brown et al., 2005, Brown 

et al., 2007)), will be our source for these interactions. NAViGaTOR offers an I2D plug-in, 

which enables the researcher to easily add interactions to the existing graph. NAViGaTOR 

also has the PSICQUIC search plug-in, which supports the searching of databases that 

implement the PSICQUIC interface (Aranda et al., 2011). To further support the openness 

and versatility of PPI integration, NAViGaTOR can import additional interactions from the 

same file formats listed above. If a database does not support any of these formats, finding 

or building a representation of the database in tab-delimited format may be an option as 

well. Our interaction search returns 1,367 nodes and 3,192 edges (Figure 3). 

At this point, the graph has become more complex, and the force-directed layout is not helpful 

in interpreting it. Several options exist at this point for manually laying out objects in the 

graph. The user can select 'fix' nodes within the graph and either move them manually (which 

would be very labor intensive and inflexible) or lay them out with an array of tools such as 

linear, circular, arc or radial layout. We will use the radial layout method, starting with PRO1 

as our central node and extending to a depth of 2. This gives us a hierarchical arrangement of 
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nodes starting with PRO1 in the centre, with its immediate interactors arranged circularly 

around it, and their interactors in turn arranged around them (Figure 4). 

3.1 Ambiguity of protein names 

When combining data from different sources, the users’ choice of protein nomenclature 

becomes extremely important. Although a researcher knows which genes or proteins they 

are referring to, queries to a database require additional levels of specificity to resolve 

ambiguities in entity names. 

For example, DLC1 has the following SwissProt identifiers: Q96QB1, Q9Y238, P63167, 

Q7Z5R8, Q45XF9, Q86UC6. However, names in literature could be ambiguous and 

confusing, potentially resulting in incorrect interpretation and analyses: 

• DLC1 (ARHGAP7) (KIAA1723) (STARD12) [Rho GTPase-activating protein 7 (Rho-
type GTPase-activating protein 7) (Deleted in liver cancer 1 protein) (Dlc-1) (StAR-
related lipid transfer protein 12) (START domain-containing protein 12) (StARD12) (HP 
protein)] 

• DLEC1 (DLC1) [Deleted in lung and esophageal cancer protein 1 (Deleted in lung 
cancer protein 1) (DLC-1)] 

• DYNLL1 (DLC1) (DNCL1) (DNCLC1) (HDLC1) [Dynein light chain 1, cytoplasmic 

(Dynein light chain LC8-type 1) (8 kDa dynein light chain) (DLC8) (Protein inhibitor of 
neuronal nitric oxide synthase) (PIN)] 

• DLC1 [Deleted in liver cancer 1 variant 2 (Fragment)] 

• DLC1 [DLC1 protein] 

Similarly, many papers refer to SHC – but details about which variant and which species are 

frequently “hidden” in the supplemental information 

(http://www.cs.utoronto.ca/~juris/data/intech12/). Yet, there are at least four variants in 

mouse and human. Sometimes, a radical change in nomenclature is required, such as in case of 

Caspases (Alnemri et al., 1986). Systematic analysis led to redefying various ICE, MACH, 

MCH genes into Caspase1-10 (Alnemri et al., 1986). 

There are many different standards of referring to genes and proteins: UniProt 

(http://www.uniprot.org) (Jain et al., 2009), Ensembl (http://www.ensembl.org) (Flicek et 

al., 2012), EBI IPI (http://www.ebi.ac.uk) (Kersey et al., 2004), Gene Cards 

(http://www.genecards.org) (Safran et al., 2010), NCBI Gene 

(http://www.ncbi.nlm.nih.gov) (Maglott et al., 2010) are just a few examples of databases 

that attempt to systematically characterize and describe genes and proteins. Each database 

has its own focus and strengths, and different interaction or annotation databases may 

choose any one of these standards to organize their data. In this example, and in many other 

case uses of NAViGaTOR, the user may have to import data from one or more databases 

that use different nomenclatures. To facilitate the use of multiple nomenclatures, 

NAViGaTOR can store multiple IDs per node as a text feature, allowing alternative keys for 

node identification. When combining data from two or more databases using different 

formats, the user must translate between these different nomenclatures. This must be done 

very carefully and methodically, as this additional translation step often effects the data 

returned. For example, UniProt stores mappings from its own accession IDs to Ensembl 
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Gene IDs, and Ensembl stores mappings from its own IDs to UniProt. However, 

respectively, they return 55,639 unique UniProt accession IDs for 20,995 unique Ensembl 

gene IDs and 21,735 unique Ensembl gene IDs for 63,370 unique UniProt accession IDs. The 

mapping is clearly different depending on which method is used. There is no definitive 

mapping available in situations such as these: it is up to the individual researcher to choose 

and document the translations used to amalgamate their data in a fashion that is replicable. 

Bearing this in mind during the earlier stages of experiment design will make this process 

much easier and less prone to confusion or ambiguity. 

3.2 Associating data with an existing graph 

Though better organized, we still have in excess of 1,000 nodes and 3,000 interactions, and to 
better identify nodes and edges that represent novel research material, we must associate 
more data with those objects. 

 

 
 

Fig. 5. Example graph with numbers of referencing studies in ovarian and prostate mapped 
to node width and height. 
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We can for example integrate PPIs with the gene expression results obtained from our 
literature studies. Each file contains several values associated with each gene, specifying the 
number of studies in which the gene was down-regulated, up-regulated and a total 
representing both (Figure 5). We will also generate a third file representing the total studies 
in which the gene was found to have been significantly deregulated, which simply sums the 
totals for the previous two files. Similarly to the opening of the initial experiment, 
NAViGaTOR requires a unique identifier column to be specified. In this case, because we 
are only concerned with data to be associated with nodes, the program only requires a 
single Node ID column. This process is the same for the prostate, ovarian cancer and 
generated data sets. To visualize this data, we will add another filter, this time mapping the 
total number of significantly deregulated studies in ovarian cancer to node width, and the 
total number of significantly deregulated studies in prostate cancer to its height. It is 
immediately evident which nodes have already been described to be up/down regulated in 
either one or both types of cancer. This can be useful to parallel the information already 
known from one cancer to the other. In addition, we can map the generated total of studies 
to node transparency, making genes with less disease evidence less obtrusive. 

 

 
 

Fig. 6. Example graph with GO Annotation mapped to a color scheme. 
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We can also import structured data, in the form of GO attributes, retrieved from the I2D 

plug-in(Figure 6). We can view this data per individual node in the Node side panel, 

revealing the list of individual GO attributes and their descriptions. To get a graph-wide 

view of these attributes, we will add a filter to map the GO data to one of several categories, 

each with its own colour. The same result can be obtained by applying GO terms or other 

attributes, like pathways to which the node belongs, retrieved from other sources to the 

nodes as features and editing the filter in the desired way. 

3.3 Importing drug-protein interactions 

Finally, we will import a list of drugs and their gene targets as additional interactions. This 

expands our network to 2,707 nodes and 5,257 edges (Figure 7). Through a combination of 

manual layout and radial layout tools, we arrange the drugs in a circle around PRO1, its 

interactors, and their interactors from I2D. The edges connecting drugs to proteins are 

coloured blue to differentiate them from PPIs. To see the impact of individual drugs to this 

network, we map their degree to node size and transparency. Thus, large nodes represent 

drugs that target many of the proteins in the network. The top six of these drugs are labelled 

for convenience. Analogously, some proteins have a high degree of blue edges and connect 

to small nodes, such as ProX. These drugs show strong specificity to ProX. The initial data 

will be available in ASCII tab-delimited format and the final figure in NAViGaTOR 2 XML 

file at http://www.cs.utoronto.ca/~juris/data/intech12/.  

 

Fig. 7. Final graph, with drug interactions included and the size of nodes representing drugs 
derived from number of interactions within the graph. NAViGaTOR 2 XML file for the final 
figure is available in supplemental material 
(http://www.cs.utoronto.ca/~juris/data/intech12/). 
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4. Conclusions  

Integrated databases and resources are only useful when they can be effectively accessed, 
navigated and analyzed. Several biological network visualization tools are currently 
available, providing a diverse range of approaches and algorithms. While many existing 
visualization tools are effective and widely used, there are several critical areas where these 
applications require improvement. Scalability is essential to visualize the tens of thousands 
of known PPIs, which is a challenge for current layout algorithms and software. Biological 
graph drawing software must also be able to handle richly annotated data, including 
genomic and proteomic profiles, pathways, Gene Ontology annotations and data in PSI-MI 
and BioPAX formats, in addition to the vast quantity of microarray and proteomic data that 
is available. 

Individual tools need a good balance of performance and useful features. The features that 

are needed for each use are highly dependent on the available data and the workflow. As in 

any creative activity, a tool may enable new workflows by providing novel features, but the 

tool may also lack certain important features, or offer features that are not needed. There is 

no single solution that satisfies all of these requirements at the present time, and as data and 

workflows change over time, network visualization tools must also evolve. 

As the data grow more complex, the performance of layout algorithms will need to improve, 

and new options of differentiating multiple attributes will be required. As certain workflows 

become more main-stream, they may be turned into analysis patterns and implemented as 

plug-ins. Standardizing file formats, APIs and plug-ins will further intertwine existing tools, 

enabling their easier integration and specialization. 

With new data and advances in computational biology, user tasks are modified, which must 

be reflected by types of algorithms that support analyses and the user interfaces that 

effectively enable them. New graph theory algorithms for faster and biologically meaningful 

network layouts and algorithms for network structure analysis will need to be integrated 

into network visualization tools. Importantly, none of these algorithms would make a broad 

difference unless a user interface appropriate for biologists is available (Viau et al., 2010). 
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