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1. Introduction

The analysis and application of the evolutionary information, as measured by means of
the conservation of protein sequences, using protein-protein interaction (PPI) networks, has
become one of the central research areas in systems biology from the last decade. It provides
a promising approach for better understanding the evolution of living systems, for inferring
relevant biological information about proteins, and for creating powerful protein interaction
and function prediction tools. The aim of this survey is to give a general overview of the
relevant literature and advances in the analysis and application of evolution in PPI networks.
Due to the broad scope and vast literature on this subject, the present overview will focus on
a representative selection of research directions and state-of-the-art methods to be used as a
solid knowledge background for guiding the development of new hypothesis and methods
aiming at the extraction and exploitation of evolutionary information in PPI networks.

This survey consists of two main parts (see Fig. 1). The first part deals with research works
concerning the relation between evolution and the topological structures of a PPI network,
in particular trying to discover and assess the evidence of such a relation and its strength at
different granularity levels. Specifically, we consider works analysing evolution at the single
protein level as well as at the level of a collection of proteins present in a PPI network. The
second part of this survey describes works analysing how such evolutionary evidence can be
exploited for knowledge discovery, in particular for inferring relevant biological information,
such as protein interaction prediction and the discovery of functional modules conserved
across multiple species.

The main terms and concepts underlying protein interaction and evolution which are used
throughout the survey are summarized in the sequel. In general, a protein-protein interaction
can represent different types of relations, such as a true physical bond or a functional
interplay between proteins. Here, if not explicitly stated, a PPI represents a physical protein
interaction as detected by experimental methods, such as yeast two-hybrid (Y2H) screening,
co-immunoprecipitation or tandem affinity purification.

Two proteins are called homologous if they share high sequence similarity. There are two main
types of homologous proteins: orthologous and paralogous. Here, for simplicity, we consider a
protein pair to be orthologous if the proteins of the pair are from different species. We refer to
the proteins of an orthologous pair as orthologs. Analogously, a protein pair is considered to
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2 Will-be-set-by-IN-TECH

be paralogous if its proteins belong to the same species, in this case their proteins are called
paralogs. A general assumption is that the proteins of an orthologous pair originated from
a common ancestor, having been separated in evolutionary time only by a speciation event,
while paralogous proteins are the product of gene duplication without speciation. The concept
of orthology can be directly extended to more than two species, where one can consider
clusters of orthologous proteins containing at least one protein of each species.
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Fig. 1. The structure of the survey.

2. Unravelling the relations between evolution and network structure in PPI

networks

We begin with a summary of those studies that involve the analysis of evolutionary
information in a single PPI network. One can divide these works into the following two
main groups. The first group studies evolutionary conservation with respect to topological
properties of a PPI network. The second one primarily investigates the role of evolution with
respect to the functional modules present in a PPI network.

The aim of the first group of studies is to describe how the topology of a single PPI network
reflects the evolutionary signal present in the proteins it contains. This evolutionary signal
is represented by the set of orthologs and it is retrieved with respect to a different species.
Specifically, given a PPI network of the species to be investigated and a set of proteins of a

428 Protein-Protein Interactions – Computational and Experimental Tools

www.intechopen.com



A Survey on Evolutionary Analysis in PPI Networks 3

distinct species, those proteins of the network being a part of orthologous pairs or clusters
(resulting from a sequence comparison of proteins of the two or multiple species respectively)
are considered to be source of the evolutionary or orthology signal in the network. Then,
having established the orthology relationship between proteins of the two or multiple species,
one can estimate the evolutionary rate or distance of aligned protein sequences (see e.g. Yang
& Nielsen, 2000). The higher the rate, the faster is considered the evolution of proteins.
Consequently, proteins which evolve slowly are well-conserved and a little or none change to
them can be observed throughout the evolution. Other protein evolutionary measures have
been also considered, as propensity for gene loss, evolutionary excess retention or protein age
(see Table 1).

Type of evolutionary
measure

Evolutionary
measure

References

Evolutionary
conservation

Evolutionary Rate
e.g. Yang & Nielsen (2000),
Wall et al. (2005),

Propensity for Gene Loss Krylov et al. (2003)
Evolutionary Excess Retention Wuchty (2004)

Phyletic Retention
Gustafson et al. (2006),
Chen & Xu (2005),
Fang et al. (2005)

Protein age
classification

Time of Origin Kunin et al. (2004)

Protein Age Group
Ekman et al. (2006),
Kim & Marcotte (2008)

Table 1. Measures of evolutionary signal at protein level

2.1 Relation between a single protein in a PPI network and evolution

Various features of a PPI network topology can be investigated with respect to evolutionary
information; the first and simplest ones are measures acting on the single nodes of the
network. One can associate with a node different topological measures which estimate the
relative relevance of the node within the network, here called centrality or connectivity of a
node.

A basic centrality measure of a node is its degree. The degree of a node is the number of edges
containing the node or, in terms of a PPI network, it is the number of proteins with which the
protein represented by the node in the network interacts. It has been observed that a protein
degree distribution of PPI networks follows a power law and thus PPI networks fall into a
class of scale-free networks (see e.g. Jeong et al., 2001). Scale-free networks have a few highly
connected nodes, called hubs, and numerous less connected nodes, which mostly interact only
with one or two nodes.

2.1.1 Essentiality, centrality and conservation of a protein

As a decade ago large protein physical interaction data were not yet available, researchers
mainly focussed on the study of the correlation between importance of a protein function
for a living cell (essentiality, dispensability) and its evolutionary conservation rate. The
generally accepted premise is that essential genes or proteins should evolve at slower rates
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than non-essential ones (see e.g. Kimura, 1983). Although empirical studies have cast doubts
on the validity of this hypothesis (see e.g. Hurst & Smith, 1999; Pal et al., 2003; Rocha
& Danchin, 2004), in the end the vast majority and late evidences favour the existence of
correlation between gene essentiality or dispensability and evolutionary conservation (see
e.g. Fang et al., 2005; Fraser et al., 2002; 2003; Hahn & Kern, 2005; Hirsh & Fraser, 2001; 2003;
Jordan et al., 2002; Krylov et al., 2003; Ulitsky & Shamir, 2007; Wall et al., 2005; Wang & Zhang,
2009; Waterhouse et al., 2011; Zhang & He, 2005). In particular, as recently stated by Wang &
Zhang (2009), the correlation remains weak yet still conveniently sufficient for practical use.

After the growth of protein interaction data, also the correlation between essentiality and
centrality, and evolutionary conservation and centrality started to be investigated. At first the
centrality-essentiality relationship was mostly investigated by examining the degree of a node,
proving the existence of the correlation (see e.g. Fraser et al., 2002; 2003; Hahn & Kern, 2005;
Jeong et al., 2001; Krylov et al., 2003). However Coulomb et al. (2005) showed no correlation
between essentiality and centrality, where centrality was assessed not only by the degree but
also by higher order centrality measures, namely average neighbours’ degree of a node and
clustering coefficient of a node, suggesting that the correlation centrality-essentiality could
be an artefact of the dataset. These findings were later supported by Gandhi et al. (2006) who
considered a set of PPI networks and also did not observe any significant relationship between
a node degree and the essentiality of the corresponding protein. Interestingly, Coulomb
et al. (2005) did not test other centrality measures as betweenness and closeness, which
showed a higher correlation with essentiality than just the simple degree (Hahn & Kern, 2005).
Nevertheless, Batada, Hurst & Tyers (2006) reaffirmed the existence of the correlation between
the node degree and essentiality taking into account Coulomb et al.’s concerns. However, Yu
et al. (2008) again disputed the correlation using the compilation of Yeast high quality PPI data.
Results contradicting this work appeared in two consecutive studies by Park & Kim (2009) and
Pang, Sheng & Ma (2010). The first study (Park & Kim, 2009) considered also other centrality
measures than just the degree of a node. As a result, the correlation could be successfully
revealed, whereas the highest correlation was observed with measures based on betweenness
and closeness, similarly to Hahn & Kern (2005). In the other study (Pang, Sheng & Ma, 2010)
the newer, updated yeast PPI dataset was used and the correlation between degree of a node
and its (protein) essentiality could be detected.

Although, the above works support that there is a connection between topological position
of a node and functional importance, it seems one cannot explain this centrality-lethality rule
just by the degree distribution (He & Zhang, 2006; Zotenko et al., 2008). This seems to be
in accordance with the analysis conducted in (Lin et al., 2007) showing that protein domain
complexity is not the single determinant of protein essentiality and that there is a correlation
between the number of protein domains and the number of interactions (Schuster-Bockler &
Bateman, 2007). In addition, Kafri et al. (2008) showed that highly connected essential proteins
tend to have duplicates which can compensate their deletion thus decreasing the deleterious
effect of their removal, a phenomenon that could possibly explain the findings that genes
with no duplicates are more likely to be essential (Giaever et al., 2002). Therefore higher order
topological features appear to be more appropriate for capturing gene essentiality, especially
those based on node-betweenness and node-closeness (Hahn & Kern, 2005; Park & Kim, 2009;
Yu et al., 2007), which are believed to estimate better the local connectivity or centrality of a
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node within the network. Moreover, these features also relate with gene expression (Krylov
et al., 2003; Pang, Sheng & Ma, 2010; Yu et al., 2007).

We consider now works that analyse the correlation between evolution and centrality. Also
in this case the two main features used to estimate this correlation are the degree of a node
and the evolutionary rate. At first, it was hypothesized that proteins with a higher degree
should evolve slower (Fraser et al., 2002). A main criticism to this hypothesis was based
on the fact that the analysis conducted in (Fraser et al., 2002) did not take into account the
presence of a possible bias and of noise in data obtained from high-throughput experiments
(Bloom & Adami, 2003; Jordan et al., 2003a;b). Nevertheless Fraser et al. (2003), Fraser & Hirsh
(2004) and Lemos et al. (2005) could confirm the existence of such correlation by taking into
account these objections. Kim et al. (2007) also confirmed interconnection between centrality,
essentiality and conservation and showed that peripheral proteins of the PPI network are
under positive selection for species adaptation. Moreover, the link between the connectivity
of a node and its evolutionary history was further substantiated by works studying the
correlation between node degree and other evolutionary measures such as propensity for
gene loss (Krylov et al., 2003), evolutionary excess retention (Wuchty, 2004) and protein
age (Ekman et al., 2006; Kunin et al., 2004). However Batada, Hurst & Tyers (2006) again
pointed to a lack of evidence for a significant correlation between the evolutionary rate and
the connectivity of a node. Moreover, Makino & Gojobori (2006) classified proteins according
to two criteria, clustering coefficient of a node and protein’s multi-functionality, and showed
that multi-functional proteins of sparse parts of yeast PPI network (with a low clustering
coefficient) evolve at the slowest rate regardless of the degrees of the connectivity. This
suggests that clustering coefficient is a better descriptor of protein evolution within the global
network of protein interactions.

A possible explanation for these conflicting results was proposed by Saeed & Deane (2006)
who showed that the strength and significance of the correlation between evolution and
centrality varies depending upon the type of PPI data used. Also Saeed & Deane (2006)
found that more accurate datasets demonstrate stronger correlations between connectivity
and evolutionary rate than less accurate datasets. Another reason may be the existence of two
distinct types of highly connected nodes, so-called party and date hubs, which appear to satisfy
different evolutionary constraints.

2.1.2 Evolution of party and date hubs

Specifically, Han et al. (2004) observed a bimodal distribution of average Pearson correlation
coefficients between the expression profiles of proteins and its interacting partners. This
yielded a classification of hubs into party hubs, having similar co-expression profiles with
their neighbours, and date hubs, having different co-expression profiles with their neighbours.
As a consequence, party hubs tend to interact simultaneously (“permanently”) with their
partners and to connect proteins within functional modules while date hubs tend to interact
with different partners at different time/space (“transiently”) and to bridge different modules.
Thus, one may also refer to party hubs as intramodule and to date hubs as intermodule (Fraser,
2005).

Fraser (2005) was the first to investigate the difference in evolution between date and party

hubs and found that party hubs are highly evolutionary constrained, whereas date hubs are
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more evolutionary labile. This is clearly in accordance with findings of Mintseris & Weng

(2005) who argued that residues in the interfaces of permanent protein interactions tend to

evolve at a relatively slower rate, allowing them to co-evolve with their interacting partners,

in contrast to the plasticity inherent in transient interactions, which leads to an increased

rate of substitution for the interface residues and leaves little or no evidence of correlated

mutations across the interface. The work of Fraser (2005) was, in addition, later corroborated

by Bertin et al. (2007). Examining three dimensional properties of proteins also supported

this hypothesis, as multi-interface hubs were found to be more evolutionary conserved and

essential as well as more likely to correspond to party hubs (Kim et al., 2006). Defining

singlish- and multi-Motif hubs further substantiated these findings, because multi-Motif

hubs were found to be more evolutionary conserved, more essential and to correlate with

multi-interface hubs (Aragues et al., 2007). In addition, other features as orderness of regions

in protein sequences and the solvent accessibility of the amino acid residues was shown to be

different between party and date hubs and to contribute in the lowering of the evolutionary

rate of party hubs (Kahali et al., 2009). Recently, Mirzarezaee et al. (2010) applied feature

selection methods and machine learning techniques to predict party and date hubs based on

a set of different biological characteristics including amino acid sequences, domain contents,

repeated domains, functional categories, biological processes, cellular compartments, etc.

However, other researchers disputed not only the evolutionary differences between party

and date hubs but the existence of hub types as such (Agarwal et al., 2010; Batada, Reguly,

Breitkreutz, Boucher, Breitkreutz, Hurst & Tyers, 2006; Batada et al., 2007). Indeed, some

datasets do not exhibit clear or robust bimodal distribution of hubs’ gene co-expression

profiles (Agarwal et al., 2010) and in some cases there is even a complete lack of bimodality

(Batada, Reguly, Breitkreutz, Boucher, Breitkreutz, Hurst & Tyers, 2006; Batada et al., 2007).

Therefore, Pang, Cheng, Xuan, Sheng & Ma (2010) argue that the average Pearson correlation

coefficient is a weak measure of whether a protein acts transiently or permanently with

its interacting partners and they propose a new measure, a co-expressed protein-protein

interaction degree. This measure estimates the actual number of partners with which a protein

can permanently interact. One can interpret it as a degree of ‘protein party-ness’ and it offers

more a continuum-like estimate of the protein’s interaction property. This seems to be in

accordance with Nooren & Thornton (2003) who suggest that rather a continuum range exists

between distinct types of protein interactions and that their stability very much depends on

the physiological conditions and environment.

Pang, Cheng, Xuan, Sheng & Ma (2010) firstly corroborated the results of Saeed & Deane

(2006) on the correlation variations between connectivity and evolutionary rate of a protein

on different datasets and then they showed that the co-expression-dependent node degree

correlates significantly with the protein’s evolutionary rate irrespectively of the specific

dataset used. However, their topological measure is derived by using an external source

of experimental data on gene expression. The further investigation on purely topological

features of a PPI network which would distinguish transient and permanent interactions, and

party and date hubs could bring more insights on how the evolutionary history of a protein is

wired in its position within the network of all the protein interactions in an organism. In

this perspective, network path-based measures, such as betweenness and closeness, seem

to be promising (Yu et al., 2007). All the more, these measures also appear to relate to
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protein essentiality (Park & Kim, 2009; Yu et al., 2007) and it could clarify the link between

essentiality and evolution as such. Thereafter, they could improve on the prediction of

essential genes from the topology of a PPI network in combination with protein evolutionary

information, such as phyletic retention (Gustafson et al., 2006), as already corroborated by

several application of machine learning techniques for essential gene detection, prioritizing

drug targets and determining virulence factors (see e.g. Chen & Xu, 2005; Deng et al., 2011;

Doyle et al., 2010; Gustafson et al., 2006; McDermott et al., 2009).

2.1.3 Node connectivity is relevant for protein evolution

Since the factors relevant for protein evolution could be of a multiple character (Wolf et al.,

2006), it is interesting to investigate whether protein connectivity plays a central or a more

subtle role. In the latter case, the link between protein connectivity and evolution could

be the results of spurious correlations due to other underlying biological processes (Bloom

& Adami, 2003). In order to address this issue, the contribution of protein connectivity to

protein evolutionary conservation has been also studied in an integrated way (Pal et al., 2006)

using multidimensional methods such as principal component analysis (PCA) and principal

component regression (PCR).

The first successful application of PCA was given by Wolf et al. (2006) on seven

genome-related variables. The derived first component reflected a gene’s ‘importance’

and confirmed positive correlation between lethality, expression levels and number of

protein-protein interaction which at the same time constrained protein evolution measures.

Interestingly, the component also showed that the number of paralogs positively contributes

to gene essentiality, which contradicts the finding of Giaever et al. (2002) that non-duplicated

genes tend to be essential. However, the study of Drummond et al. (2006) revealed by using

PCR only single determinant of protein evolution, namely translational selection, which is

almost entirely determined by the gene expression level, protein abundance, and codon bias.

Later, Plotkin & Fraser (2007) re-examined the use of PCR method and showed noise in

biological data can confound PCRs, leading to spurious conclusions. As a result, when they

equalized for different amounts of noise across the predictor variables no single determinant

of evolution could be found indicating that a variety of factors-including expression level,

gene dispensability, and protein-protein interactions may independently affect evolutionary

rates in yeast. This observation was further substantiated by a recent study (Theis et al.,

2011) where 16 genomic variables were analysed using Bayesian PCA. The study supports

the evidence for the three above-discussed correlations. It also demonstrates how different

definitions of paralogs may lead to different conclusions on their effect on essentiality, and

thus commenting on Wolf et al.’s conflicting result (Wolf et al., 2006).

2.2 Higher-order structures in a PPI network and evolution

Researchers have also focused on other topological structures of a PPI network than just a

node and their relation to evolutionary conservation. With increasing topological complexity

we may talk about a single protein-protein interaction (an edge in PPI network), topological

motifs, and protein clusters or modules as detected by their interaction density or network

traffic.
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2.2.1 Evolution and protein-protein interaction

Unlike in the case of a single protein, where various well-established methods for measuring
sequence evolution are developed, to the best of our knowledge only a recent attempt has
been made in order to estimate the evolutionary rate of protein-protein interaction (Qian et al.,
2011). However, this study is limited to a small set of PPIs in yeasts and can not be yet applied
for large-scale studies due to the lack of data. Thus, the research has extensively focused on
estimating correlated evolution of a protein pair and their functional or physical interaction
(Pazos & Valencia, 2008).

It is generally assumed that proteins which co-evolve tend to participate together in a
common biological function. This hypothesis is supported by many examples of functionally
interacting protein families that co-evolve (see e.g. Galperin & Koonin, 2000; Moyle et al.,
1994). Co-evolution of proteins may be assessed at sequence level (sequence co-evolution)
by correlating evolutionary rates (Clark et al., 2011), or at gene family level (gene family
evolution) by correlating occurrence vectors (Kensche et al., 2008). An occurrence vector or
a phylogenetic profile (phyletic pattern) (Tatusov et al., 1997) is an encoding of protein’s
(homologue’s) presence or absence within a given set of species of interest (Kensche et al.,
2008). In general, the methods for correlating protein evolution have been successfully applied
to predict a physical or functional interaction between proteins (Clark et al., 2011; Kensche
et al., 2008), where sequence co-evolution is powerful in predicting the physical interaction
and phylogenetic profiling is a good indicator of functional interplay between proteins in a
broader sense. Large-scale co-evolutionary maps have also been constructed and analysed for
better understanding the evolution of a species and its link to protein interactions (see e.g.
Cordero et al., 2008; Tillier & Charlebois, 2009; Tuller et al., 2009). All these works suggest
that the topology of PPIs should reflect the evolutionary processes behind the proteins which
formed such network.

The first systematic study of linked genes and their evolutionary rates was done by Williams
& Hurst (2000) who showed that the rates of linked genes are more similar than the rates
of random pairs of genes. Pazos & Valencia (2001) performed the first successful large-scale
prediction of physical PPIs based on sequence co-evolution by correlating phylogenetic trees.
Another large-scale study by Kim et al. (2004) on domain structural data of interacting
protein families also revealed their high co-evolution but also showed a high diversity in
the correlation of rates of each family pair. Specifically, protein families with a greater
number of domains were shown to be more likely to co-evolve. However, Hakes et al.
(2007) argued that this correlation of evolutionary rates is not responsible for the covariation
between functional residues of interacting proteins. Nevertheless, other studies have been
able to predict interacting domains from co-evolving residues between domains or proteins
(see e.g. Jothi et al., 2006; Yeang & Haussler, 2007) indicating that different organisms use the
same ’building blocks’ for PPIs and that the functionality of many domain pairs in mediating
protein interactions is maintained in evolution (Itzhaki et al., 2006).

Another perspective on co-evolution of interacting partners was given by Mintseris & Weng
(2005), who distinguished between transient and obligate interactions. The authors concluded
that obligate complexes are likely to co-evolve with their interacting partners, while transient
interactions with an increased evolutionary rate show only little evidence for a correlated
evolution of the interacting interfaces. This observation was later corroborated by Brown
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& Jurisica (2007) who analysed the presence of protein interactions across multiple species
via orthology mapping and found that the greater the conservation of a protein interaction
is, the higher the enrichment for stable complexes. Beltrao et al. (2009) also observed that
stable interactions are more conserved than transient interactions, by studying evolution
of interactions involved in phosphoregulation. Finally, Zinman et al. (2011) extracted
protein modules from a yeast integrated protein interaction network using various source
of PPI evidence, and showed that interactions within modules were much more likely to be
conserved than interactions between proteins in different modules.

The preference of conserved protein interactions to be placed in modular parts of a network
was also observed by Wuchty et al. (2006) by extending the paradigm of protein’s connectivity
and its evolutionary conservation to the connectivity of a protein-protein interaction.
Specifically, they used the hypergeometric clustering coefficient to estimate the interaction
cohesiveness of the PPI’s neighbourhood and orthologous excess retention in order to asses
the evolutionary conservation of PPIs. They used the same clustering coefficient as that given
by the presence of orthologs of interacting proteins in another organism and showed that
PPIs with highly clustered environment were accompanied by an elevated propensity for
the corresponding proteins to be evolutionary conserved as well as preferably co-expressed
(Wuchty et al., 2006). These findings are significant all the more they were shown to be
stable under perturbations. This propensity of interacting proteins to be more conserved
and prevalent among taxa was later confirmed by Tillier & Charlebois (2009) who used
evolutionary distances to estimate the protein’s conservation. Yet another perspective on
conservation of PPIs was given by Kim & Marcotte (2008) who classified proteins into four
groups (from oldest to youngest) according their age and found a unique interaction density
pattern between different protein age groups, where the interaction density tends to be dense
within the same group and sparse between different age groups.

2.2.2 Evolution and modularity of PPI networks

All the evidences above that PPIs whose proteins are evolutionary correlated tend to form
stable complexes and to be embedded in cohesive areas of a network topology support the
premise that modularity of PPI networks is maintained by evolutionary pressure (Vespignani,
2003). Indeed, when examining networks solely built from sequence co-evolution, gene
context analysis or gene family evolution of completely sequenced genomes, one may observe
that these networks exhibit high modularity with clusters corresponding to known functional
modules, thus revealing the structure of cellular organization (Cordero et al., 2008; Tuller et al.,
2009; von Mering et al., 2003).

Regarding the networks of physically interacting proteins, to the best of our knowledge the
first direct evidence that evolution drives the modularity of PPI networks was provided by
Wuchty et al. (2003). They looked beyond a single protein pair and studied the more complex
patterns of interacting proteins, called topological motifs. In general, they found that, as the
number of nodes in a motif and number of links among its constituents increase, a greater
and stronger conservation of the proteins could be observed. This was corroborated by
Vergassola et al. (2005) who focused on specific instances of motifs known as cliques. Cliques
are topological patterns where all protein constituents interact with each other. Vergassola
et al. (2005) provided evidence for co-operative co-evolution within cliques of interacting
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proteins. Later, Lee et al. (2006) investigated motifs at a higher resolution level, by defining
for each motif different motif modes based on functional attributes of interacting proteins:
again their findings indicated that motifs modes may very well represent the evolutionary
conserved topological units of PPI networks. More recently, Liu et al. (2011) studied network
motifs according to the age of their proteins and discovered that the proteins within motifs
whose constituents are of the same age class tend to be densely interconnected, to co-evolve
and to share the same biological functions. Moreover, these motifs tend to be within protein
complexes.

The finding that modularity of PPI networks is constrained by evolution and that conserved
interactions are enriched in dense motifs and regions of a PPI network also suggest that
protein complexes present in such cohesive areas should be evolutionary driven (Jancura
et al., 2012). As putative protein complexes can be extracted from a PPI network by means of
clustering techniques, Jancura et al. (2012) detected such protein complexes in the PPI network
consisting of only yeast proteins having an ortholog in another organism and compared
them with those protein complexes derived either by using the global topology of a yeast
PPI network or by using a network induced by randomly selected proteins. The in-depth
examination of enriched functions in these three types of protein complexes revealed that
evolutionary-driven complexes are functionally well differentiated from other two types of
protein complexes found in the same interaction data. As a consequence, new complexes and
protein function predictions could be unravelled from PPI data by using a standard clustering
approach with the inclusion of evolutionary information. In addition, evolutionary-driven
complexes were found to be differentially conserved, in particular some complexes were
detected for all distinct set of orthologs as determined by comparison with different species,
some exhibited only a subset of proteins identifiable in a complex across all species, and some
complexes being found only for one specific set of orthologs. This suggests that presence of
evolution in modularity of PPI networks is more versatile and flexible with different degrees
of conservation.

The findings of Jancura et al. (2012) seem to conform with related studies that focused on
evolutionary cohesiveness of protein functional modules in order to investigate whether a
group of proteins which functionally interact, co-evolve more cohesively than a random group
of proteins. Either known protein complexes and pathways were analysed (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004) or putative protein modules usually derived
from integrated networks of functional link evidences (Campillos et al., 2006; Zhao et al., 2007;
Zinman et al., 2011). A different strategy was employed by Yamada et al. (2006) who at first
detected evolutionary modules which were afterwards compared with enzyme connectivity
in a metabolic network.

Although the co-evolution of modules is assessed by the presence or absence of modules’
constituents across a set of species, there is no standard method to measure the degree
to which a module evolves cohesively (Fokkens & Snel, 2009). For instance, Snel &
Huynen (2004) used the deviation of the number of modules’ orthologs per species from the
average number of modules’ orthologs per species, whereas Campillos et al. (2006) measured
the fraction of joined evolutionary events given the reconstructed, most parsimonious
evolutionary scenario of the genes in a module over their phylogenetic profiles.
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Despite this measures’ diversity, the common conclusion is that the majority of modules
evolve flexibly (Campillos et al., 2006; Fokkens & Snel, 2009; Seidl & Schultz, 2009; Snel &
Huynen, 2004; Yamada et al., 2006). Also, it appears that curated modules evolve more
cohesively than modules derived from high throughput interaction data (Fokkens & Snel,
2009; Seidl & Schultz, 2009; Snel & Huynen, 2004). Moreover, there is a different enrichment
in functions which co-evolve. For example, biochemical pathways, certain metabolic and
signalling processes, as well as core functions like transcription and translation, tend to have
higher rate of evolutionary cohesiveness (Campillos et al., 2006; Fokkens & Snel, 2009; Zhao
et al., 2007). This is also supported by methods which cluster phylogenetic profiles in order to
detect biochemical pathways or to predict functional links and thus exploiting the predictive
power of phylogenetic methods (Glazko & Mushegian, 2004; Li et al., 2009; Watanabe et al.,
2008). These methods show a relatively good performance in characterizing biochemical
pathways but seem to have a limited coverage for physically interacting proteins (Watanabe
et al., 2008). A dubious result was reported on inter-connectivity of cohesive and flexible
modules. Specifically, Fokkens & Snel (2009) demonstrated that components of cohesive
modules are less likely to interact with each other than in the case of flexible modules, while
two other studies (Campillos et al., 2006; Zinman et al., 2011) suggest cohesive modules to be
more highly connected.

It is possible that the above studies underestimated the actual degree of evolutionary
cohesiveness present in the modularity of protein interaction networks due to their
conservative approach, the limitations in ortholog detection as well as the cohesiveness
measures which are restricted to phylogenetic profiles. Nevertheless, they show that, as
evolution is a complex process, its presence in modularity of protein interaction networks also
exhibits a very complex nature, whose understanding is far from being complete. Evolution
itself, indeed, can be expected to be asynchronous and heterotactous along the tree of life.

In general, the interim evidence shows different evolutionary pressure for different types
of protein interactions and data. In particular, the slowly evolving interacting partners
are enriched in stable, permanent complexes, and functional modules such as biochemical
pathways and curated complexes exhibit higher evolutionary cohesiveness than high
throughput complexes. It seems that the co-evolutionary degree of modules within PPI
networks increases with greater integration of various sources of evidence for proteins
to functionally interact (Zinman et al., 2011). Also, not all protein complexes and
functional modules need to be co-evolutionary modules (Fokkens & Snel, 2009). There is a
continuum from extremely conserved to rapidly changing modules, where those modules
found to be co-evolving appear to be enriched in certain, specific functional categories
(Campillos et al., 2006). In addition, the degree of conservation and co-evolution of
functional modules within interaction networks seem to reflect cellular organization and their
spatio-temporal characteristics. For instance, cohesive modules can be classified according
to their evolutionary age as ancestral, intermediate and young, where one may observe
ancient, ancestral modules to be highly conserved and perform essential, core processes
such as information storage and metabolism of amino acids, while young modules are less
conserved and responsible for the communication with the environment (Campillos et al.,
2006). Therefore one might expect ancestral modules to contain static, obligate interactions as
the proteins of essential functions tend to involve multiple domains with slow evolutionary

437A Survey on Evolutionary Analysis in PPI Networks

www.intechopen.com



12 Will-be-set-by-IN-TECH

rates, whereas young modules can be enriched with dynamic, transient interactions with less
but fast evolving protein domains to allow adaptation to the environment.

3. Using evolutionary information for knowledge discovery in PPI networks

The tendency of functionally linked or physically interacting proteins and densely interacting
motifs to exhibit correlated evolution and/or to be conserved across species is at the core of
methods for inferring relevant biological information using PPI networks. Although such
biological information can be limited and biased towards specific type of known interactions
and protein functions, it allows one to infer new, unknown functions of proteins, to improve
the understanding of biological systems, and to guide the discovery of drug-target interaction.
In its basic form, the knowledge discovery process is based on the transfer of information
involving a single interaction between two organisms, while in its most complex form it
involves the identification and transfer of protein complexes across multiple species. In the
sequel we summarize concepts and techniques used to achieve these goals, in particular the
notions of “interologs” and of multiple PPI networks alignment.

3.1 Predicting protein interaction: Interologs

If two proteins physically interact in one species and they have orthologous counterparts in
another species, it is likely that their orthologs interact in that species too. If such conserved
interactions exist, they are called interologs. This simple method of protein interaction
inference was firstly introduced and tested by Walhout et al. (2000) on proteins involved in
vulval development of nematode worm, where potential interactions between these proteins
were identified based on interactions of their orthologs in other species. Later, Matthews
et al. (2001) performed a large-scale analysis of this inference technique using the yeast PPI
network as a model and proteins of worm as a target. Although the success rate of detection
of inferred interactions by Y2H analysis was between 16%-31%, it represented a 600-1100-fold
increase compared to a conventional approach at that time (Matthews et al., 2001).

The interologs-based protein interaction prediction has become one of the standard methods
for in silico PPI prediction. The method can be easily extended to more PPI data from
multiple species. In particular, having two groups of orthologs, where each ortholog group
contains proteins from the same N species, and observing an interaction between proteins
of these orthologous groups in (N − 1) species, the interaction between proteins of the N-th
species present in the ortholog groups can be predicted. This multidimensional character of
interolog inference has been extensively used to predict and build databases of the whole
interactome for various species, either as a stand alone approach or in combination with other
in silico methods, which often integrate multiple data types including the gene co-expression,
co-localization, functional category, the occurrence of orthologs and other genomic context
methods. In this way researchers could provide, for instance, the first sketch of human
interactome (Lehner & Fraser, 2004), build the interactome of plants (Geisler-Lee et al., 2007;
Gu et al., 2011), and improve the understanding of processes in a malarial parasite (Pavithra
et al., 2007) or in cancer (Jonsson & Bates, 2006). Also, three, up-to-date, tools have been
recently implemented and made available to perform this inference task (Gallone et al., 2011;
Michaut et al., 2008; Pedamallu & Posfai, 2010).
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Several algorithmic enhancements of the interologs-based approach have been introduced
since the first proposal of a systematic use of interolog inference (Matthews et al., 2001). For
instance, Yu et al. (2004) have strengthen the definition of ortholog by using a reciprocal
best-hit approach and compared it to the original one-way best-hit approach implemented
by Matthews et al. (2001). In addition, they required a minimum level for a joint similarity of
orthologous sequences in order to perform interolog mapping. Their method yielded a 54%
accuracy in contrast to a 30% of the previous method by Matthews et al. (2001).

Other approaches exploited the knowledge on a higher conservation rate of PPIs in dense
network motifs. For instance Huang et al. (2007) scored interologs according to the density
of the topological pattern containing the respective PPI of the interolog in a model species
as determined by the extraction of maximal quasi-cliques from the PPI network of the
model species. This score was integrated with scores of other various features used
for PPI prediction, such as tissue specificity, sub-cellular localization, interacting domains
and cell-cycle stage. The use of multiple types of features was shown to yield more
accurate predictions of PPIs in comparison with other interolog-based methods used to build
interactome databases. More recently, Jaeger et al. (2010) proposed another interesting method
based on two steps. First a set of all candidate interologs is built across the considered
species. Next, interologs are assembled into maximal conserved and connected patterns by
detecting frequent sub-graphs appearing in the interolog network of the candidate set. Only
functionally coherent patterns were used for interolog inference.

The interolog concept was also modified and used in other ways and application domains.
In particular, Tirosh & Barkai (2005) proposed a method to assess and increase the confidence
of a predicted PPI by examining the co-expression of proteins of its potential interolog in
other species. Chen et al. (2007) extended interolog mapping for homologous inference
of interacting 3D-domains and they built a database of so-called 3D-interologs (Lo, Chen
& Yang, 2010). Chen et al. (2009) used interologs to transfer conserved domain-domain
interactions. Recently, Lo, Lin & Yang (2010) combined this interolog domain transfer with the
former 3D-interolog detection technique and implemented an integrated tool for searching
homologous protein complexes. Finally, Lee et al. (2008) exploited interologs to predict
inter-species interactions.

Despite the successful use of interolog inference, a gap was observed between the actual,
observed number of conserved interactions and the expected theoretical coverage (Gandhi
et al., 2006; Lee et al., 2008). In order to test the reliability of interolog transfer, Mika
& Rost (2006) performed a comprehensive validation of the method on several datasets.
Their findings suggested that interolog transfers are only accurate at very high levels of
sequence identity. In addition, they also compared the interolog transfer within species
and across species. In the case of within-species interolog inference a PPI is transferred
onto proteins which are sequence similar to the proteins of the considered PPI in the same
species. Surprisingly, such paralogous interolog transfers of protein-protein interactions were
shown to be significantly more reliable than the orthologous ones. This result was later
substantiated by Saeed & Deane (2008), indicating that homology-based interaction prediction
methods may yield better results when within-species interolog inference is also considered.
In addition, Brown & Jurisica (2007) argued that one also needs to take into account whether
all interactions have equal probability of being transferred between organisms. For example,
the dynamic components of the interactomes are less likely to be accurately mapped from
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distantly related organisms. Moreover, there is apparent bias of interologs to be enriched
in stable, permanent complexes (Brown & Jurisica, 2007), which is completely in accordance
with findings on the different evolution of transient and permanent interactions. On the other
hand, it is likely that the performance of interolog inference could be underestimated since its
accuracy is assessed using experimentally tests based on Y2H techniques or high-throughput
datasets with a high abundance in Y2H interactions, which were found to be highly enriched
in transient and inter-complex connections (Yu et al., 2008).

3.2 Pairwise protein network alignment

Detection and transfer of an interolog between species have motivated the study and
exploration of interspecies conservation of protein interactions on a global scale. In particular,
instead of focusing on a conserved interaction alone one can compare and align whole
interactome maps of distinct species, which mimics the idea behind sequence alignment
methods. This approach gave a rise to so-called network alignment approach (Sharan & Ideker,
2006).

Using protein network alignment, one can either search for conserved functional network
structures such as protein complexes and pathways, or identify functional orthologs across
species. As a result this approach should provide a greater evidence and support for protein
function and protein interaction prediction for yet uncharacterized or unknown biological
processes. Protein network alignment methods can be classified into two main groups:local
network alignments and global network alignments.

As most of the research attention has focused on comparing PPI networks of two different
species, here we discuss the successive development of methods for, so-called, pairwise network
alignment. In sequel we survey local pairwise alignments for detecting evolutionary conserved
pathways, local pairwise alignments for detecting conserved protein complexes, and global
pairwise network alignment techniques.

3.2.1 Local pairwise network alignment for pathway detection and query tasks

The main goal of local protein network alignment is to detect conserved pathways and protein
complexes across species, by searching for local regions of input networks having both high
topological similarity between the regions and high sequence similarity between proteins of
these regions. The standard approach to this task consists of two main phases: an alignment
phase and a searching phase. In the first phase a merged network representation of compared
PPI networks is constructed, called alignment or orthology graph. The second phase performs
a search for the structures of interest in the orthology graph. Each output result corresponds
to a pair or multiplet of complexes or pathways which are evolutionary conserved across the
two or more (PPI networks of the) species, respectively.

The first alignment method of whole PPI networks of two species using protein sequence
similarity was introduced by Kelley et al. (2003). In this method, called PathBLAST, first a
many-to-many mapping between proteins of the two species is determined by considering
each pair of proteins with a sequence similarity higher than a given threshold as putative
orthologs. Next, every orthologous pair is encoded in one alignment node of the new
alignment graph and three types of edges (direct, gap and mismatch edge) are identified
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between these alignment nodes as follows. The direct edge corresponds to the case when a
PPI between proteins of two orthologous pairs exists in the PPI networks of both species. The
gap edge represents the case when in one species the respective proteins of alignments nodes
are connected indirectly through a common neighbour. Finally, the mismatch edge between
alignments nodes is formed if such indirect connection is found between the corresponding
proteins in the PPI networks of both species. Gap and mismatch edges are used to describe
possible evolutionary variations or account for experimental errors in data (Kelley et al., 2003).
In the search phase, the alignment graph is turned into acyclic sub-graphs by random removal
of alignment edges, which allows to extract high-scoring paths in linear time by a dynamic
programming approach. The score of a path is computed as the sum of log probabilities of true
orthology encoded in alignment nodes of the path and of true conserved interactions encoded
by alignment edges contained in the path. Interestingly, the method was also applied to align
a PPI network with its own copy. In this way they could identify conserved (paralogous)
pathways within one species.

The work of Kelley et al. (2003) was followed by other alignment techniques for discovering
conserved pathways based on evolutionary conservation. The main drawbacks of PathBLAST

are that it detects conserved linear pathways in protein interaction data, which is represented
as an undirected graph, and it has an exponentially worsening efficiency with the expected
increasing length of a pathway to be detected. To circumvent these limitations Pinter et al.
(2005) proposed an alignment technique designed explicitly for metabolic networks with
directed links between enzymes. The method also handles more complex structures than
a simple path, because the scoring of the alignment is based on sub-tree homeomorphism,
which can be solved by an efficient deterministic approximation. Another enhancement for
the pathway alignment problem was proposed by Wernicke & Rasche (2007) who designed
a method that does not impose topological restrictions upon pathways and exploits the
biological and local properties of pathways within the network. Another effective approach
to metabolic network alignment was developed by Li et al. (2008) which uses an integrative
score on compound and enzyme similarities. Pathway alignment has been further extensively
investigated and various other techniques have been proposed (see e.g. Cheng et al., 2008;
Koyutürk, Kim, Subramaniam, Szpankowski & Grama, 2006; Li et al., 2007).

The evolutionary mapping of PathBLAST can also be used to query a known pathway
of one species into the PPI network of another species. However, due to limitations and
algorithmic constraints of PathBLAST, many other methods have been developed with a
focussed application of orthologous querying of biological functional complexes, and tools
and web-services are available for querying general pathways and other types of protein
functional modules across species (see e.g. Bruckner et al., 2009; Dost et al., 2008; Qian et al.,
2009; Yang & Sze, 2007).

3.2.2 Local pairwise network alignment for protein complex detection

Another group of methods which followed PathBLAST focus on detection of conserved
protein complexes across (PPI networks of two or more) species. As these methods
compare networks of physical interactions, the identified complexes can be used for interolog
prediction as well as for protein function prediction of yet uncharacterized proteins. The
detected conserved complexes are either (putative) entire physical complexes or conserved
parts of them.
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To the best of our knowledge, the first method for detecting conserved complexes using
pairwise comparison of PPI networks was introduced by Sharan, Ideker, Kelley, Shamir &
Karp (2005) and called NetworkBLAST. It can be viewed as a direct extension of PathBLAST

for the task of complex detection across species. The method employs a comprehensive
probabilistic model for conservation of protein complexes and searches for heavy induced
sub-graphs in the weighted orthology graph. As the maximal induced sub-graph problem is
computationally intractable, NetworkBLAST employs a bottom-up greedy heuristic for this
task.

Many alignment network techniques which followed NetworkBLAST are motivated by the
computational intractability issue derived from the problem of a finding maximal common
or induced sub-graph in an ortholog graph, and are based on different heuristics. For
instance, Koyutürk, Kim, Topkara, Subramaniam, Grama & Szpankowski (2006) partitions
the alignment graph into smaller clusters by performing an approximated balanced ratio-cut.
In another method by Koyutürk, Kim, Subramaniam, Szpankowski & Grama (2006) the
most frequent interaction motifs are extracted from an orthology-contracted graph. Liang
et al. (2006) transforms the problem of maximal common sub-graph into the problem of
finding all maximal cliques in the graph. Recently, Tian & Samatova (2009) introduced an
algorithm based on detection of connected-components of the orthology graph solvable in a
very efficient way.

Other researchers propose to restrict the search space to cope with intractability issue
of searching phase instead of performing heavy heuristics. For example Li et al. (2007)
pre-clusters one PPI network in order to detect candidate complexes which are afterwards
aligned to the target species network with an exact integer programming algorithm. Jancura
& Marchiori (2010) proposed a pre-processing algorithm based on detection of network hubs
for dividing PPI networks, prior to their alignment, into smaller sub-networks containing
potential conserved modules. Each possible pair of sub-networks can be later aligned with a
state-of-the-art alignment method where the search phase can be performed by means of an
exact algorithm, allowing one to perform network comparison in a fully modular fashion and
possibly to parallelize the computation. An interesting modular approach was introduced by
Narayanan & Karp (2007), where an orthology graph is not constructed but rather networks
are compared and split consecutively in several recursive steps until all possible solutions,
conserved sub-graphs, are found. Similarly, Gerke et al. (2007) only compares, but does not
merge, local hub-centred regions of PPI networks as identified by clustering coefficients and
node degrees. The method by Ali & Deane (2009) is again another example of approach
where an alignment graph is not explicitly constructed; there interspecies protein similarities
are considered as new edges in such a way that species PPI networks and similarity edges
between them are encoded into a single global meta-graph which can be searched by standard
clustering techniques.

There are also alignment methods which try to incorporate or use other types of information
than just the one based on sequence similarity and interaction conservation. For instance,
Guo & Hartemink (2009) exploited the findings on co-evolving interacting domains which
mediate PPIs and, instead of using putatively homologous proteins for alignment, compares
PPI networks across species according to conserved domains of protein-protein interactions.
Ali & Deane (2009) propose a functionally guided alignment of PPI networks, where a scoring
function incorporates not only sequence and topological similarity of aligned proteins but also
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their gene co-expression characteristics and coherence of functional annotations. Thus, the
method can be seen as detecting functional modules shared across species rather than strictly
evolutionary modules. Finally, Berg & Lässig (2006) developed a generalized alignment
Bayesian method applicable to different biological networks.

Despite various pairwise alignment techniques have been introduced, only a few of them
embody an evolutionary model of PPI networks in the scoring scheme of an alignment.
Notably, Koyutürk, Kim, Topkara, Subramaniam, Grama & Szpankowski (2006) were the first
to introduce a method that builds the orthology graph following the duplication/divergence
model based on gene duplications. Another interesting method was proposed by Hirsh &
Sharan (2007) who extended the probabilistic score of NetworkBLAST to asses the likelihood
that two complexes originated from an ancestral complex in the common ancestor of the two
species being compared under the evolutionary pressure of duplication and link dynamics
events.

3.2.3 Global pairwise network alignment

In contrast to local network alignment, which uses many-to-many homologous mapping
between proteins of distinct species to detect local conserved regions of a high topological
similarity in the respective PPI networks, global protein network alignment uses this mapping
to define an unique, globally optimal mapping across whole topologies of PPI networks (Singh
et al., 2007), even if it were locally suboptimal in some regions of the networks. In the most
strict form of this unique mapping each node in one input network is either matched to
one node in the other input network or has no match in the other network. Thus the goal
of global protein network alignment is to define functional orthologs across species, as the
solution offers a way to resolve the ambiguity of orthology detection with the use of species
interactome map. Naturally, as a by-product the global alignment can also identify conserved
complexes or pathways.

To the best of our knowledge, the first method performing explicitly global alignment
on pair of networks, called IsoRank, was introduced by Singh et al. (2007). Similarly to
the local network alignment problem, the global network alignment problem is in general
computationally intractable. As a consequence, IsoRank employs an approximation using an
eigenvalue framework in a manner analogous to Google’s PageRank algorithm.

Several advancements have naturally followed the introduction of IsoRank. For instance,
Evans et al. (2008) proposed an asymmetric network matching algorithm based on a network
simulation method called quantitative simulation, where a similarity score of a protein pair is
iteratively updated by the similarity scores of their neighbours and vice versa until a unique
global optimum is found. Other researchers focused more on formulating global alignment
as combinatorial optimization problems. For instance Zaslavskiy et al. (2009) redefined the
problem of global alignment as a standard graph matching problem and investigated methods
using ideas and approaches from state-of-the-art graph matching techniques. Klau (2009)
formalized global network alignment as an integer linear programming problem, where a
near-optimal solution with a quality guarantee is found by solving a Lagrangian relaxation of
the original optimization formulation. Recently, Chindelevitch et al. (2010) proposed a method
where the global alignment is encoded as bipartite matching and applied a very efficient local
optimization heuristic used for the well-known Travelling Salesman Problem.
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3.3 Multiple protein network alignment

The methods on network alignment discussed so far perform alignment of two PPI networks
of distinct species. The next natural extension is aligning more than two PPI networks, that
is multiple network alignment. A first attempt to perform multiple local network alignment
using three species was done by Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler, Karp
& Ideker (2005), which exploited the scoring model of NetworkBLAST. However, the method
scales exponentially with the number of input species and consequently it is ineffective for
large scale comparisons.

Apart from the scalability problem, there are also other issues related to the problem of
aligning more than two species. For instance, the putative orthologous mapping of certain
proteins does not need to span across all species, meaning that proteins may be conserved
only for a particular subset of species. This “orthology decay” is more evident when a large
number of increasingly distant species are considered in the alignment. As a result, functional
modules, such as pathways and complexes, can have a different degree of conservation,
with some modules being strictly conserved across all species and some other modules being
conserved only for a particular clade. Thus, a good alignment method should allow one to
search for conserved modules at different degree of conservation. However, such requirement
also increases the complexity of searching and consequently one may need to prune the
number of all possible species combinations in alignment.

To the best of our knowledge, the first method capable of an efficient comparison of multiple
PPI networks, called Graemlin, was introduced by Flannick et al. (2006). The alignment model
of the method allows one to perform local as well as global alignment and is also applicable
for querying tasks of particular biological modules of interest across PPI networks. It employs
a rather involved scoring scheme which allows one to search for conserved pathways as
well as for conserved complexes. It also outputs modules with a different conservation
degree. Graemlin progressively aligns the closest pair of PPI networks according the species
distance measured using a phylogenetic tree, until the last pair on the root of the tree is
compared, corresponding to the most conserved parts of the aligned networks. The main
disadvantage of this approach is that it involves to estimate many parameters. Recently, a
supervised, automated parameter learner was proposed to lessen the burden of parameter
tuning (Flannick et al., 2009).

Another phylogeny-guided local network alignment was proposed by Kalaev et al. (2008).
Although the method uses the same probabilistic scoring for conserved complex as
NetworkBLAST, it avoids its exponential scalability by redefining the alignment model such
that it does not construct the merged representation of aligned networks but represents them
as separate layers interconnected via orthologous mapping. Then a seed, that is, a group
of putatively orthologous proteins spanning across all species, is selected using the species
phylogeny and greedily expanded by adding other proteins being orthologous to each other
in all respective species in order to maximize the alignment conservation score. The proposed
method, however, identifies only protein complexes conserved across all species and does not
detect complexes conserved only for a certain subset of species.

Notably, the functionally guided network alignment method of Ali & Deane (2009), previously
mentioned as one of the methods for pairwise alignment, was also shown to perform
efficiently local alignment of multiple networks.
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All these multiple local network alignments do not reconstruct a plausible evolutionary
history of PPI networks based on a model of evolution, although they might be
phylogeny-aware. Motivated by this observation, Dutkowski & Tiuryn (2007) introduced
a new multiple local network alignment method, called CAPPI, which from the given PPI
networks of distinct species aims to reconstruct an ancient PPI network of the common
ancestor. The method uses a Bayesian inference framework based on a duplication and
divergence model of network evolution which mimics the processes by which most protein
interactions are formed. After the reconstruction step, the ancestral network is decomposed
into connected components which correspond to the ancestral modules of protein interactions
and are projected back to the original networks to obtain the actual conserved network
residues. Although the demonstrated application of the method was restricted to orthologous
groups spanning across all species (Dutkowski & Tiuryn, 2007), to the best of our knowledge
CAPPI is the only model-based approach for large-scale ancestral network reconstruction.

Among the multiple alignment methods above mentioned, only Graemlin was shown to
perform a global multiple network alignment, yet it relies on a involved parameter estimation
step and phylogeny-guided approximation. Recently Liao et al. (2009) developed another
global alignment technique which is fully unsupervised and phylogeny-free. The method,
called IsoRankN, is built on the IsoRank algorithm mentioned above (Singh et al., 2007) and
its extension to the multiple global network alignment (Singh et al., 2008a). At first IsoRankN

scores topological and sequence similarity matching between putatively orthologous proteins
of each pair of input networks using IsoRank. Then, a maximum k-partite graph matching
problem is formulated on the induced graph of pairwise alignment scores (Singh et al., 2008a)
and the exact solution is approximated by a spectral graph partitioning algorithm. IsoRankN

also effectively identifies one-to-one orthologous mappings for all subset of species and
appears to out-perform Graemlin in terms of coverage and quality of functional enrichments.

3.4 Applications and future developments

Local and global alignment methods have been successfully applied to study evolution of
species and to discover relevant biological knowledge. For example, Suthram et al. (2005)
applied the network alignment of Sharan, Suthram, Kelley, Kuhn, McCuine, Uetz, Sittler,
Karp & Ideker (2005) to examine the degree of conservation between the Plasmodium protein
network and other model organisms, such as yeast, nematode worm, fruit fly and the bacterial
pathogen Helicobacter pylori. They investigated whether the divergence of Plasmodium
at the sequence level is reflected in the configuration of its protein network. Indeed, the
alignments showed very little conservation suggesting that the patterns of protein interaction
in Plasmodium, like its genome sequence, set it apart from other species (Suthram et al., 2005).

Another application of local network alignment was performed by Tan et al. (2007)
who combined transcriptional regulatory interactions with protein-protein interactions and
identified co-regulated complexes between yeast and fly revealing different conservation
of their regulators. This finding advocates that PPI networks may evolve more slowly
than transcriptional interaction networks. In addition, Schwartz et al. (2009) and
Dutkowski & Tiuryn (2009) used conserved complexes detected by network alignments
for protein interaction prediction in a manner similar to the interologs transfer approach
and demonstrated their usefulness. In particular, Schwartz et al. (2009) provided a
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comprehensive experimental design which includes PPI prediction using network alignment,
and demonstrated how effectively it reduces the cost of interactome mapping.

Furthermore, Bandyopadhyay et al. (2006) presented the first systematic identification of
functional orthologs based on protein network comparison. They used the pairwise local
alignment model of Kelley et al. (2003) to construct the orthology graph and then they resolved
ambiguity of orthology mapping by fitting a logistic function previously trained on a known
set of functional orthologs. In contrast, Singh et al. (2008b) predicted functional orthologs in
unsupervised manner by using explicitly a global multiple network alignment method.

Finally, Kolar et al. (2008) performed a cross-species analysis of two herpes-viruses using the
generalized Bayesian network alignment of Berg & Lässig (2006). Interestingly, the performed
alignment employs in its probabilistic scoring system evolutionary rates of sequences and
thus it goes beyond the narrow use of orthologous mapping as done in all other alignment
techniques. The method predicted meaningful functional associations that could not be
obtained from sequence or interaction data alone.

Despite the recent progress and increasing number of network alignment tools, their
further development remains an ongoing research issue, in particular for multiple network
comparison. Only a few methods perform the scoring of alignment according to evolutionary
models and there is only one of them which fully reconstructs network evolutionary history.
This clearly is in contrast with the numerous techniques for the reconstruction of evolutionary
history of gene families. Also, actual alignment methods do not distinguish among
diverse types of interactions, specifically between transient and permanent interactions. For
example, the prior knowledge on different evolutionary behaviour of these types of physical
interactions could be incorporated into a scoring scheme of alignment construction.

In addition, all but one network comparison methods just rely on the straightforward use
of putative orthologous mapping as identified by sequence comparison or available in
orthologous databases, but they do not employ evolutionary measures, such as evolutionary
distances or retentions, which can be derived from the corresponding sequence alignments.
These measures assess the level of evolutionary conservation and they could potentially
improve the performance of network alignments.

Mostly all current applications of network alignments have worked with networks of physical
interactome. However, the power of network alignment for functional annotation and other
system biology applications could be explored when one performs comparison of more
general, functional interaction networks. One may expect that such alignment could reveal
a higher number of conserved modules as the interspecies conservation of modularity across
protein networks increases with combined, integrated evidence for a pair of proteins to be
functionally linked. Finally, all available methods here considered focused on conservation
of modules but not on the more general concept of module evolutionary cohesiveness or
co-evolution. The evolutionary cohesiveness can be assessed especially for the case of multiple
alignments. Indeed, all conserved modules are inherently very cohesive, however not all
evolutionary modules need to exhibit the correlated conservation at a level as expected by
actual multiple network alignments. Protein functional modules differ in the degree of
conservation and also in the degree of cohesiveness.
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