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1. Introduction  

Protein-protein interactions (PPI) are one of the most important biological events which 

occur in the cell. As PPIs regulate almost all biological processes in the cell, aberrations in 

PPI may cause severe health problems. One specific area of PPI is receptor-ligand 

interactions. These interactions are transient yet account for a large part of cell-to-cell 

communication. As PPI is an important area of research, many groups have proposed 

methods to make computational predictions of PPI. 

The basis of the majority of these methods rely largely on the phylogenetic profile analysis 

of candidate interactors. These methods determine the similarity of the phylogenetic history 

of a protein A and its putative protein partner B, examining the most accurate measure of 

similarity between the phylogenetic histories of A and B in order to predict interaction. As 

interacting proteins should co-adapt as they are under the same evolutionary pressures, it is 

self-evident that interacting receptors and ligands should be identifiable by application of 

the same methodology.  

While several methods, described below, make use of phylogenetic information to predict 

protein-protein interaction (PPI), more contemporary work has been conducted in the area 

of data fusion and kernel learning. We describe one method [Iacucci et al. 2011] in detail 

which does both. In this work, the existing line of phylogenetic research is extended by 

using phylogenetic data to construct a kernel to train a least square support vector machines 

(LS-SVM) in order to classify candidate receptors and ligands as interacting or non-

interacting.  

In this chapter, we discuss the plethora of various methods for determining protein-protein 

interactions. In addition, we evaluate the application of LS-SVMs to the sub-problem of 

receptor-ligand interaction prediction.  

www.intechopen.com



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

260 

 

Fig. 1. The Receptor Ligand Schematic. Schematic of receptor-ligand and protein-protein 
interaction model. Top image is a representation of in-vivo interaction of proteins, receptors, 
and ligands while bottom image is the graph representation from which a PPI adjacency 
matrix may be derived. (Figure published in Iacucci et al. 2010) 

2. Current computational approaches for predicting protein-protein 
interaction 

During the past decade, many methods for prediction of interaction between proteins have 
been studied due to the crucial role that these interactions have in the understanding of the 
diverse cellular mechanisms of life forms. Many of these methods involve experimental 
analysis of specific protein pairs in a smaller scale or, in current high throughput methods 
[Uetz et al. 2000, Giot et al. 2003], a large amount of protein interactions. The later can be 
used to detect many interactions with reasonable sensitivity but rather low specificity. 
Another, relatively inexpensive, way to predict protein-protein interactions does not include 
wet lab analysis, using instead a variety of computational approaches. These approaches can 
complement experimental wet lab techniques and are often supported by either the 
hypothesis of protein co-evolution [Tan et al. 2004, Tillier et al. 2006, Izarzugaza et al. 2006], 
structural similarities [Gong et al. 2005, Ogmen et al. 2005] or amino-acids sequence 
conservation [Pitre et al. 2006].  

While the entire genomes of many species are already completely sequenced, the interactone 
of these life forms is often many orders of magnitude larger and yet far from being fully 
mapped [Claverie et al. 2001, Rubin et al. 2001]. High throughput experimental techniques will 
certainly help to create this mapping and computational approaches can complement their 
results identifying false positive interactions, and therefore improving the specificity of these 
experimental techniques. Apart from the experimental techniques, computational methods are 
themselves a powerful and affordable alternative to contribute to interactome mapping. 
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Several computational approaches have been developed in recent years. Many of them are 

freely available as web tools offering a variety of services to biologists and bioinformatics 

that range from prediction of interactions between of proteins in pairs or in batch mode, 

through browsing of consolidated large scale analysis, up to visualization of binding sites 

and physical interactions in 3-dimensional images. 

The methodologies of these many different approaches vary, but they all seem to be supported 

by the following findings: (a) evidences in favor of the hypothesis of protein co-evolution and 

the similarities observed in the phylogenetic trees of these proteins; and (b) datasets of already 

known protein-protein interactions verified by experimental techniques. Co-evolutionary 

methods find protein pairs with the highest co-evolutionary signal. This information is 

powerful to predict which members of interacting protein families are associated structurally 

or functionally although it is not specific enough to predict whether or not two protein families 

interact. On the other hand, methods supported by verified protein-protein interactions make 

use of the structural or amino-acid sequence similarities of interacting proteins partners to 

predict interaction between query protein pairs. This makes such methods more suitable to 

predict physical interactions rather than functional relationships. 

We have reviewed 6 methods and their web tools for predicting protein-protein interactions. 

Three of them, supported by the protein co-evolution hypothesis, are: TSEMA [Izarzugaza 

et al. 2006], ADVICE [Tan et al. 2004], Codep [Tillier et al. 2006]. The other three, supported 

by datasets of verified interactions, are: PIPE [Pitre et al. 2006], PSIbase [Gong et al. 2005], 

and PRISM [Ogmen et al. 2005]. In the next Sections, we describe each one of these two 

types of methods. 

2.1 Current co-evolutionary methods  

Many studies of the problem of predicting protein-protein interactions investigate the 

similarity of the phylogenetic history of the interaction partners. Many examples of 

interaction between proteins have presented signs of co-evolution in such a way that 

members of different interacting protein families present similarity between their 

phylogenetic trees [Fryxell 1996, Goh et al. 2000, van Kesteren et al. 1996, Moyle et al. 1994, 

Pazos and Valencia 2001]. The core of co-evolutionary methods is based on measures of 

similarity for the phylogenetic trees of interacting protein partners. 

There are several measures for similarity between phylogenetic trees. The trees can be 

compared directly [Goh et al. 2000], via distance matrices [Moyle et al. 1994, Goh and Cohen 

2002, Ramani and Marcotte 2003, Gertz et al. 2003], or using multiple sequence alignments 

[Tillier et al. 2006]. In the following Sections, we present three co-evolutionary methods: 

TSEMA and ADVICE, which uses distance to compare the phylogeneitc trees, and Codep, 

which computes the correlation between co-evolving partners from their multiple sequence 

alignments. 

2.1.1 Interactive prediction of protein pairing between interacting families TSEMA  

TSEMA is a method and web tool to predict mappings between two families of homologous 

proteins. The probed protein families can either be inputted using the Newick format or in a 

format comparable with ClustalW, which is used to build the trees. The distances for all 
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pairs of proteins within both families are extracted from their phylogenetic trees by 

summing the length of the branches separating each pair of proteins in the trees. The 

algorithm of TSEMA finds the mapping between the two sets proteins which maximizes the 

matching between the sets of distances using a modified implementation of the Ramani and 

Marcotte's Monte Carlo Metropolis method [Ramani and Marcotte 2003]. 

Availability: http://tsema.bioinfo.cnio.es/ 

2.1.2 Automated Detection and Validation of Interaction by Co-Evolution – ADVICE  

ADVICE predicts and validate protein-protein interactions using observed co-evolution 

between proteins. The web tool retrieves orthologous sequences of a list of input protein 

sequences and compute the similarities among the proteins evolutionary histories. The tool 

also provides visualization for the resulting network of co-evolved proteins. 

The ADVICE algorithm infers interaction based on the correlation between distance matrices 

constructed from the evolutionary history using orthologous sequences of top 10 species. The 

tool uses BLAST [Altschul et al. 1990] to search the orthologous sequences from Swiss-Prot 

and TrEMBL databases [Boeckmann 2003]. The distance matrices are constructed using only 

pairs of orthologous sequences occurring together in the same species. By default, only the 

orthologous sequences of the top 10 species, based on the BLAST E-value, are used to 

construct the matrices, excluding those species where more than one orthologous sequence of 

the input sequence is found. The actual distance matrices are build from the respective 

multiple sequence alignments using ClustalW [Thompson et al. 1994]. The algorithm then 

calculates the correlation between pairs of matrices measuring the Pearson's correlation 

coefficients, which has values between -1, implying 100% anti-correlation, and 1,which 

representing 100% evolutionary history similarity, being velues above 0.8 good indicators of 

interaction and values below 0.3 a good cut-off value to detect potential spurious interaction. 

Availability: http://advice.i2r.a-star.edu.sg 

2.1.3 Maximizing co-evolutionary interdependencies to discover interacting proteins – 

Codep  

Codep and the other co-evolutionary methods find proteins with the highest co-

evolutionary signals, independent of physical or functional interaction. The main difference 

of Codep is that it uses multiple sequence alignments directly rather than distances obtained 

from the sequences. The user inputs two phylogenetic trees with orthologous sequences. 

The algorithm maximizes interdependency based on the maximal mutual information. It 

does this by fixing one of the multiple sequence alignments and varying the order of the 

other via exhaustive search or via simulated annealing. 

The rationale to use directly multiple sequence alignments instead of the distance matrices, 

which provides a faster way to calculate correlation, is that character-state methods in the 

field of phylogenetic analysis are more powerful than distance method and some 

information can be lost in transforming character-state data into distance matrices. 

Availability: http://www.uhnresearch.ca/labs/tillier/ 
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2.2 Methods based on verified interactions 

Another promising computational approach to predict new protein-protein interactions is to 

look at the physical structure and the conservation of amino-acid sequences in partners of 

interactions that are already reliably known to exist. Then, use the gathered information to 

find correlation with query protein partners of a probed interaction. Many methods apply 

this approach, which have delivered powerful tools for finding new interactions [Pitre et al. 

2006] and even to corroborate with the protein co-evolution hypothesis [Kim et al. 2004]. In 

the next three Sections we describe three of these methods: PIPE, which compares amino-

acid subsequences between probed protein partners and partners of verified protein 

interactions from a database; and PSIbase and PRISM, both which compare structural 

characteristics of probed and verified interactions. 

2.2.1 Protein-Protein Interaction Prediction Engine – PIPE 

PIPE is a computational tool that can effectively identify protein-protein interactions among 

S. cerevisiae protein pairs. It relies on previously determined S. cerevisiae protein interactions 

compiled from the DIP [Salwinski et al. 2004] and MIPS [Mewes et al. 2002] databases to 

construct a graph where the nodes are proteins and the edges represent the relationship of 

interacting proteins. 

The working principle of the PIPE algorithm to probe interaction between the pair of 

proteins A-B is to compare sliding subsequences of amino-acids of size w from A to 

subsequences of the same size of all proteins in the graph of known interactions; then 

compare sliding subsequences of B to the neighbors of all matches of A. If protein pair C-D 

are connected in the graph, representing a verified interaction, and if A has subsequence 

matches with C and B has matches with D, then the pair A-B is more likely to present 

interaction. The accumulation of all matches of subsequence comparisons presented in form 

of a matrix indicates a predicted interaction when the higher values in this matrix is above a 

given threshold of M matches. 

The algorithm has three tuning parameters: w, M, and SPAM, which is the threshold value 

that indicates a match between two subsequences of amino-acids. The author of PIPE chose 

to fix w in 20, and tune the other two parameter either by trial and error or by statistical 

evaluation. 

PIPE is reported to have success rate comparable to biochemical techniques, with a 

sensitivity of 61% , specificity of 89%, and overall accuracy of 75%. The main disadvantages 

of PIPE is its heavy computational burden and its limitation to yeast proteins. 

Availability: http://pipe.cgmlab.org 

2.2.2 Protein Structural Interactome Map – PSIMAP  

PSIMAP is a map that describes the information about domain-domain and protein-protein 

interactions known to exist in the Protein Data Bank of structures. It is based on the 

principle that interaction between protein structures is conserved as closely as protein 

structures themselves [Park et al. 2001, Aloy and Rossell, 2002; Aloy et al. 2003]. It that 

predicts if domains or proteins structures interact calculating if every possible pair of 
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structures has an Euclidean distance below a certain threshold. There are three different 

methods to do this: Full Atom Contact (FAC); Sample Atom Contact (SAC); and Bounding 

Box Contact (BBC). FAC is the most accurate, whereas SAC and BBC [Dafas et al. 2004] are 

faster methods. 

PSIMAP extract the molecular interaction information of proteins from the PDB. It 

associates this information to domains using the Structural Classification of Proteins (SCOP) 

to assign the domains to the structures.  

Availability: http://psimap.org and http://psibase.kaist.ac.kr/ 

2.2.3 Protein Interactions by Structural Matching – PRISM  

The PRISM tool allows the user to explore protein interfaces and predict protein-protein 

interactions by comparing the structure of query proteins to those of a structurally and 

evolutionarily subset of biological and crystal interactions present in the Protein Data Bank 

(PDB) [Berman 2000]. Interfaces are defined as the set of residues forming the region of the 

structure through which two different protein chains bind to each other. This set consists the 

contacting residues between the chains and the neighboring residues up to a certain distance 

threshold.  

The interfaces in PRISM were obtained from all higher complexes of proteins available in the 

PDB [Keskin et al. 2004]. From the 49512 interfaces extracted form the PDB, 8205 clusters were 

obtained using a sequence order-independent computer vision-based algorithm to structurally 

compare the interfaces. From these 8205 clusters, PRISM considers only 158 template interfaces 

(Oct/2011) that were found to have evolutionary hotspots [Keskin et al. 2005]. 

 

Fig. 2. Phylogenetic Analysis of Proteins  

As proteins A and B are interacting proteins, they share a similar phylogenetic history and 
thus their phylogenetic profiles are highly correlated (R=0.97). Proteins A and C are non-
interacting and are thus not strongly correlated (R=0.30).  
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PRISM algorithm compares the 158 template interfaces to a target dataset of 18698 structures 

obtained from passing the structures extracted form the PDB through a 50% sequence identity 

filter, splitting multimeric proteins into constituent chains, and counting homologous chains 

only once. The user can also probe a protein structure that is originally not present in the target 

dataset. To compare target proteins to template interfaces PRISM algorithm do as follow: (a) 

extract target protein surfaces; (b) compare the target surface with all interface complementary 

partners from the template dataset using MULTIPROT [Shatsky et al. 2004] in order to detect 

common geometrical cores in a sequence-order-independent way; (c) check for the presence of 

hotspots in the target structure. The final prediction score is calculated weighting the structural 

match ratio and the hotspot match ratio.  

Availability: http://prism.ccbb.ku.edu.tr/prism/ 

3. Phylogenetics and beyond, how multiple kernel learning can improve 
predictions of receptor-ligand pairings 

As seen in the sections above, there are several groups which have used phylogenetic 
analysis to predict PPI. Here we examine the use of multiple kernel learning in the task of 
PPI prediction. Kernel learning provides the ability to utilize directly and indirectly related 
data (such as expression measures, domain content, etc.) and perform classification in high 
dimensional space. When different data sources are used, separate kernel classifiers can be 
built and the combined output used to provide a final result.  

One of the first groups to look at predicting PPI using multiple data sources was Bhardwaj 

et al. (2003). They use both phylogenetic information as well as expression data to make 

their predictions. The use of both data sources were proved, in their work, to provide results 

with greater accuracy than with using phylogenetic analysis alone. Co-expression is a logical 

source of information for use in this setting as proteins which interact for the purpose of 

performing a common function are likely to be co-expressed as they will need to be present 

at the same time in the cell [Bhardwaj et al. 2003, Grigoriev et al. 2001]. 

The idea of combining expression and phylogenetic information to predict PPI is clearly a step 

on a path which leads one to consider a wider variety of data integration. Other data sources 

include domain information as domains are known to interact and it is clear that this data 

would provide additional insight into the task of protein-protein interaction. Combining the 

above mentioned data sources can be carried out by using multiple kernel learning.  

To examine the utility of multiple kernel learning with respect to this task, it is necessary to 

cite an example in which it performs better than other settings. One such example exists 

when one looks at the work of Gertz et al. (2003) and compare it with the work presented in 

Iacucci et al. (2011). Both groups look at the receptor-ligand prediction task and apply 

computational methods to the same dataset. The datasets consist of members of the 

chemokine and tgfβ ligand families with their respective receptor families. In the case of 

Gertz et al (2003), distances matrices are created for the families and are matched according 

to their similarity. Using a Metropolis Monte Carlo optimization algorithm, the Gertz et al. 

(2003) group explored and scored possible matches between the two matrices, until they 

reached optimal solutions. A limitation of this approach is that it relied on phylogenetic 

distance information alone. 
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Contrary to the work of Gertz et al (2003), the work presented by Iacucci et al 2011 proposes 

that the integration of multiple data sources results in more accurate matches. This work 

involved the creating of a combined kernel classifier to carry out the learning task. While 

other kernel-based works have been applied to the PPI task [Kim et al. 2010, Miwa et al. 

2009], the work of Iacucci et al (2011) is unique as they apply multiple kernel learning to the 

receptor-ligand problem. More specifically, they apply the least-squares support vector 

machines (LS-SVM) method based on the conclusions by Suykens et al. (2001) which shows 

this implementation to be robust.  

The ability of Iacucci et al. (2011) to predict candidate receptor-ligand pairs has been show to 
outpace that of Gertz et al. (2003) on the same dataset. This work involves using multiple data 
sources (expression, phylogenetic, and protein-domain content information), computing 
separate kernels for each data type, creating LS-SVM classifiers and combining the results to 
predict receptor-ligand pairs. The specifics of these steps will be discussed below. 

3.1 Data sources  

Several choices for data sources can be considered when addressing the PPI prediction task. 
While the studies, mentioned above, which use phylogenetic information rely on sequence 
data, other sources are available. Such sources include domain content data and expression 
data. 

The phylogenetic data used in the Iacucci et al. (2011) study was derived through several steps. 
First, candidate receptor and ligand sequences were retrieved for seven species (Rattus 
norvegicus, Mus musculus, Homo sapiens, Pan troglodytes, Canis familiaris, Cavia porcellus, and Bos 
taurus) from ensemble build 51 [Hubbard et al. 2009]. Following this, the sequences were 
aligned using ClustalW [Thompson et al. 1994] Once aligned, the sequences were edited so as 
to eliminate the positions which were not conserved across the seven orthologous sequences. 
Finally, the pair-wise alignment score was then taken for each possible species to species 
comparison between the edited orthologous sequences (as seven species are used, a total of 21 
pair-wise comparisons for each candidate are created). The distance scores form a 
phylogenetic vector which was then used to create the phylogenetic kernel. 

The expression data used in the Iacucci et al. (2011) work was taken from the well-known 
GNF human expression atlas (79 tissues) [Su et al. 2004], the data was normalized (values 
were mean-zeroed and the standard deviation was set to one) and was further transformed 
into the expression kernel.  

For the Iacucci et al. (2011) work, the domain content of each candidate protein (receptor or 
ligand) was taken from the Interpro Database [Hunter et al. 2009]. A vector for each 
candidate protein was created where the presence of a protein domain was indicated with 
a ’1’ and the absence of a domain was indicated by a ‘0’. This data was then transformed to 
create the domain content kernel. 

The “Golden Standard” for the verification of the Gertz et al (2003) and the Iacucci (2011) et 
al. work is based on the Database of Ligand-Receptor Partners (DLRP) [Graeber et al. 2001]. 
This dataset is an experimentally derived dataset where known receptor-ligand pairs are 
stored. The information found here was used to train the LS-SVM described below. In 
addition, it was also used as the “Golden Standard” to determine which predictions, by both 

www.intechopen.com



Computational Approaches to Elucidating Transient  
Protein-Protein Interactions, Predicting Receptor-Ligand Pairings 

 

267 

groups, were true positives and false positive as well as false negatives and true negatives. 
These values were then used to calculate specificity and sensitivity of each groups’ 
predictions to ultimately determine which approach provided better results. 

3.2 Kernel creation and the LS-SVM 

The creation of the kernels and the training of the least-squares support vector machine (LS-
SVM) in the work presented by Iacucci et al. (2011) required multiples steps. First, the data 
sources, discussed above, were used to create data matrices (phylogenetic, expression, and 
domain content) which were then used to create three kernels for each receptor-ligand 
family. Following this, the LS-SVMs were trained using the three kernels to predict 
outcomes for receptor-ligand pairs known from the DLRP “Golden Standard”. 

 

Fig. 3. Work flow of the combined kernel classifier 

Data was partitioned into training and validation sets and parameters were tuned using a five 
fold validation strategy. The final output of the classifiers was achieved by a leave one out 
strategy. The classifier values were combined for a final result and a threshold was applied to 
determine which values are predicted edges (Figure published in Iacucci et al. 2011). 

The kernel function used by Iacucci et al. (2011) measures the similarity between two 
proteins A and B (K(A,B)), one a candidate receptor A and the other a candidate ligand B. 
The LS-SVM classifier produced by Iacucci et al. (2011) is a binary predictor which assigns 
new examples in “interacting” or “non-interacting” classes. Creating the kernels from the 
various data matrices involved trials with different kernel functions, with linear functions 
ultimately being found to give the best performance in all cases. Data was partitioned into 
training and validation sets and parameters were tuned using a five fold validation strategy 
The final output of the classifiers was achieved by a leave-one-out strategy. The classifier 
values were scaled (minimum set to zero, maximum set to one). The values were then 
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combined, as defined in (1), for a final result. Figure 3 provides an overview of the workflow 
as described above. 

 exp( ) ( ) ( )
( )

3

phylo dom
comb

g x g x g x
g x

+ +

=  (1) 

3.3 Results and discussion 

The comparison of the phylgenetic based method of Gertz et al. (2003) and the combined 
kernel classifer method of Iacucci et al. (2011) provides a clear perspective on the advantages 
of multiple kernel learning in the PPI prediction task. As both groups use the same dataset 
and have results which can be summarized and contrasted using recall, precision, and the F-
measures. 

The Iacucci et al. (2011) predictions for the tgfβ family accurately reconstructed over 76% of 
the supported edges (0.76 recall and 0.67 precision) of the know DLRP receptor-ligand pairs. 
In this case, the combined kernel classifier was able to relatively improved upon the Gertz et 
al. (2003) work by a factor of approximately two as the Gertz et al. (2003) work reconstructs 
44% of the supported edges (0.44 recall and 0.53 precision) of the know DLRP receptor-
ligand pairs. Comparing F-measures, we see that the combined kernel classifer method 
improved upon that of Gertz et al. (2003) significantly as the Iacucci et al. (2011) method has 
an F-measure of 0.71 while that of Gertz et al. (2003) has a value of 0.48. 

The Iacucci et al. (20011) predictions for the chemokine family accurately reconstructed over 
65% of the supported edges (0.65 recall and 0.23 precision) of the know DLRP receptor-
ligand pairs. In this case, the combined kernel classifier was able to relatively improved 
upon the Gertz et al. (2003) work by a factor of approximately three as the Gertz et al. (2003) 
work reconstructs 22% of the supported edges (0.22 recall and 0.37 precision) of the know 
DLRP receptor-ligand pairs. Comparing F-measures, we see that the combined kernel 
classifer method improved upon that of Gertz et al. (2003) significantly as the Iacucci et al 
(2011) method has an F-measure of 0.33 while that of Gertz et al. (2003) has a value of 0.27. 

Qualitatively, the performance of the Iacucci et al (2011) method also seems to be matching 

the performance of Gertz et al. (2003), as the novel interaction of CCR1 with SCY11 [Gao et 

al. 1996] reported in their work is also discovered using Iacucci et al (2011) method. 

The comparison of the results of the two methods discussed here support the notion that 

kernel learning presents a useful methodology for elucidating receptor-ligand pairings. The 

benefits of the combined kernel classifier method over the Gertz et al. (2003) method are 

clear. Foremost in the advantages are the ability to predict multiple ligands for one receptor, 

which represents an necessary feature for receptor-ligand research. Also, as the classifier 

output is continuous, the results can be considered to be prioritized, this presents a major 

convenience to researchers as often the set of candidate ligands are large and financial and 

time resources to validate few.  

4. Conclusion 

The task of PPI prediction is a difficult and important area of bioinformatics research. As the 
number of possible interacting protein pairs in the cell is huge, wet-lab experimentation 
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validation of all of them is essentially impossible. In addition to being time consuming, in-
vivo validation costs are also a consideration. Having a computational method for 
predicting PPI is therefore a necessary tool for researchers. 

Several groups have addressed the PPI prediction task. While several have used 
phylogenetics to solve the problem, others have used physical protein structures and amino-
acid sequence information to assist in making the predictions. We have reviewed these 
methods and discussed the key differences among them.   

Methods, which rely on the physical structure and the conservation of amino-acid sequences 
in partners of interactions that are already reliably known to exist, also give researchers 
additional insight to function prediction as the methods are based on known examples. The 
drawback of these methods is that one has to have a known example for a comparison, 
which is not always the case when researching candidate receptor-ligand pairs. 

Methods which rely on phylogenetic histories to determine PPI are based on a well-establish 
rational which holds that as interacting proteins co-evolve, there phylogenetic histories should 
be similar. This explains why the methods which rely on phylogenetic information are largely 
based on measures of similarity for the phylogenetic trees of interacting protein partners.  

The advantage of using multiple kernel learning to predict PPI is apparent when using 

multiple sources of data. Many of the methods, mentioned above, rely on an ever growing 

amount of publicly available data. The ever expanding amount of high throughput data which 

continues to become available to the bioinformatics community represents an excellent 

opportunity to enhance the kernel classifier method presented in Iacucci et al. (2011).  

A practical advantage of using multiple data sources allows one to extend the method as 
new and higher quality sources become available. For example, if better micro-array dataset 
becomes available in the future, it is an advantage to be able remove the existing expression-
based kernel with one derived from the new dataset without having to the retrain a global 
classifier. Likewise, if additional data sources become available, adding an additional sub-
classifier based on the new data source would take less time to train than adding the data 
source and retraining the global classifier. 

Looking forward many exciting challenges remain to be addressed in this field. While the 

task of PPI is daunting and complex, the work reviewed above demonstrates that it is also 

rich with opportunities for improvement and further development. 
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