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1. Introduction  

Macromolecules such as proteins contain a large number of atoms, which lead to complex 
dynamic behaviors not usually seen in simpler molecular systems with only a few to tens of 
atoms. Characterizing the biochemical and biophysical properties of macromolecules, 
including their interactions with other molecules, has been a central research theme for many 
decades. The field is especially accelerated by recent advances in experimental techniques, 
such as nuclear magnetic resonance (NMR) and single-molecule measurements, and 
computational powers that has been facilitated to simulate molecular dynamics at large scales.  

Chemical kinetics has been well developed for simple molecular systems, and most of the 
small molecular reactions can be described accurately by kinetic equations. However, it’s 
hard to describe a macromolecular system using simple mathematical equations, because  
reactions at the macromolecular level usually involve complicated processes and dynamic 
behaviors. Even so, biochemists have done many efforts to find a way to describe the 
biological systems. Many equations and models have been published by using approximate 
treatments or hypothesis. 

If biochemists were asked what is the most important mathematical equation they know, 
most likely the answer you will hear is the Michaelis-Menten equation. Michaelis–Menten 
equation is one of the simplest and best-known equations describing enzyme kinetics 
(Menten and Michaelis, 1913). It is named after American biochemist Leonor Michaelis and 
Canadian physician Maud Menten. For a typical enzymatic reaction one often finds that the 
following scheme works reasonably well, 

 
1

   E  kS E S E P
α

α−

→+ → +←  (1) 

with S, E, ES, P representing the substrate, the free enzyme, the enzyme-substrate complex, 
and the product. Then one has the rate of product formation: (after certain assumptions, 
such as the enzyme concentration being much less than the substrate concentration) 
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In this model, the rate of product formation increases along with the substrate concentration 
[S] with the characteristic hyperbolic relationship, asymptotically approaching its maximum 
rate Vmax = k[E]t, ([E]t is the total enzyme concentration) attained when all enzymes are 
bound to substrates .We can use Km to represent (α-1+k)/α, named Michaelis constant. It is the 
substrate concentration at which the reaction rate is at half the maximum rate, and is a 
measure of the substrate's affinity for the enzyme. A small Km indicates high affinity, 
meaning that the rate approaches Vmax more quickly. 

The Michaelis–Menten equation was first proposed for investigating the kinetics of an 
enzymatic (invertase) reaction mechanism in 1913 (Menten and Michaelis, 1913). Later, it 
has been widely used in a variety of biochemical transitions other than enzyme-substrate 
interaction, which includes antigen-antibody binding, DNA-DNA hybridization and 
protein-protein interaction. There is no exaggeration to say that the Michaelis–Menten 
model has greatly pushed forward our understanding of enzymatic reactions. 

However, biochemists also found that many enzymes show kinetics are more complicated 
than the Michaelis-Menten kinetics. Frieden coined the name “hysteretic enzyme“ referring 
to “those enzymes which respond slowly (in terms of some kinetic characteristic) to a rapid 
change in ligand, either substrate or modifier, concentration” (Frieden, 1970). Since then a 
sizable literature exists on the enzyme behavior. The list of hysteretic enzymes cover 
proteins working in many organisms from bacteria to mammalians (Frieden, 1979), with one 
of the latest examples related to the protein secreted by bacteria Staphylococcus aureus to 
induce host blood coagulation (Kroh et al., 2009). The kinetics, especially the enzymatic 
activity of a hysteretic enzyme, cannot adapt to new environmental conditions quickly. The 
delay time can be surprisingly long. For example, upon changing the solution’s pH value, it 
takes more than two hours for alkaline phosphatase to relax to the enzymatic activity 
corresponding to the new pH value (Behzadi et al., 1999). The mnemonic behavior is 
another key example of slow conformational dynamic disorder advocated by Richard and 
his colleagues (Cornish-Bowden and Cardenas, 1987; Frieden, 1970; Frieden, 1979; Ricard 
and Cornish-Bowden, 1987). It refers to the phenomenon that “the free enzyme alone which 
undergoes the ‘slow’ transition…upon the desorption of the last product from the active 
site, the enzyme retains for a while the conformation stabilized by that product before 
relapsing to another conformation” (Ricard and Cornish-Bowden, 1987). Their observation 
revealed that Mnemonic enzymes show non-Michaelis-Menten (NMM) behaviors. The 
concepts of mnemonic and hysteretic enzymes emphasize the steady-state kinetics and the 
transient kinetics leading to the steady state, respectively.  However, the conformational 
change in a protein is the rate limiting step in both enzymatic reactions which are slower 
than the actual chemical reaction step (chemical bond breaking and forming). To this end, a 
unified model exists (Ainslie et al., 1972).  

A deeper understanding on the origin of the mnemonic and hysteretic behaviors comes 
from biophysical studies. A related phenomenon called dynamic disorder has been 
discussed extensively in the physical chemistry and biophysics communities. Dynamic 
disorder refers to the phenomena that the ‘rate constant’ of a process is actually a random 
function of time, and is affected by some slow protein conformational motions (Frauenfelder 
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et al., 1999; Zwanzig, 1990). A molecule fluctuates constantly at finite temperature. The 
Reaction Coordinate (RC) is an important concept in chemical rate theories (Hanggi et al., 
1990). The RC is a special coordinate in the configurational space (expanded by the spatial 
coordinates of all the atoms in the system), which leads the system from the reactant 
configuration to the product configuration. A fundamental assumption in most rate theories 
(such as the transition state theory) states that the dynamics along the RC is much slower 
than fluctuations along all other coordinates. Consequently, for any given RC position, one 
may assume other degrees of freedom approaches approximately equilibrium. This is the 
so-called adiabatic approximation. Deviation from this assumption is treated as secondary 
correction (Grote and Hynes, 1980). Chemical rate theories based on this assumption are 
remarkably successful in explaining the dynamics involving small molecules. The dynamics 
of a system can be well characterized by a rate constant. However, the situation is much 
more complicated in macromolecules like proteins, RNAs, and DNAs. Macromolecules have 
a large number of atoms and possible conformations. The conformational fluctuation time 
scales of macromolecules span from tens of femtoseconds to hundreds of seconds 
(McCammon and Harvey, 1987). Consequently, conformational fluctuations can be 
comparable or even slower than the process involving chemical bond breaking and 
formation. The adiabatic approximation seriously breaks down at this regime. If one focuses 
on the dynamics of processes involving chemical reactions, the canonical concept of “rate 
constant” no longer holds. Since the pioneering work of Frauenfelder and coworkers on 
ligand binding to myoglobin (Austin et al., 1975), extensive experimental and theoretical 
studies have been performed on this subject (see for example ref. (Zwanzig, 1990) for further 
references). Additionally, the conformational fluctuation of a macromolecule is an 
individual behaviour, many dynamic processes were hidden under the ensemble 
measurements. Fortunately, recent advances in room-temperature single-molecule 
fluorescence techniques gave us an opportunity to investigate the conformational dynamics 
on the single-molecule level. Hence, the dynamic disorders in an individual macromolecule 
has been demonstrated directly through single molecule enzymology measurements 
recently  (English et al., 2006; Min et al., 2005b; Xie and Lu, 1999). For example, Xie and 
coworkers showed that both enzymes‘ conformation and catalytic activity fluctuate over 
time, especially the turnover time distribution of one β-galactosidase molecule spans 
several orders of magnitude (10-3 s to 10 s). Their results revealed that although a fluctuating 
enzyme still exhibits MM steady-state kinetics in a large region of time scales, the apparent 
Michaelis and catalytic rate constants do have different microscopic interpretations. It is also 
shown that at certain conditions dynamic disorder results in Non-Michaelis-Menten kinetics 
(Min et al., 2006). Single molecule measurements on several enzymes suggested that the 
existence of dynamic disorder in biomolecules is a rule rather than exception (Min et al., 
2005a). So if problems arise, when there are only a few copies of a particular enzyme in a 
living cell, do these fluctuations result in a noticeable physiological effect? 

Therefore, an important question we need to ask is: What is the biological consequence of 
dynamic disorder? Frieden insightfully noticed that “it is of interest that the majority of 

enzymes exhibiting this type of (hysteretic) behavior can be classed as regulatory enzymes” (Frieden, 
1979). A series of important questions emerge naturally: Is the existence of complex 
enzymatic kinetic behaviors an evolutional byproduct or selected trait? Is there any 
biological function for it? How can such diverse and complex enzymatic kinetic behaviors 
affect our understanding of regulatory protein interaction networks? 
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In recent years, studying interactions of molecules in a cell from a systems perspective has 
been gaining popularity. Researchers in this newly formed field “systems biology” 
emphasize that to characterize a complex system, it is insufficient to take the reductionist’s 
view. Combining several reactions together, one can form reaction networks with emerging 
dynamic behaviors such as switches, oscillators, etc, and ultimately the life form (Alon, 2007; 
Kholodenko, 2006; Tyson et al., 2001). In the new era of systems biology, a modeler may deal 
with hundreds to thousands ordinary differential rate equations describing various 
biological processes. The hope is that by knowing the network topology and associated rate 
constants (which requires daunting experimental efforts), one can reveal the secret of life 
and even synthesize life.  

On modeling such regulatory protein interaction networks, it is common practice to assume 
that each enzymatic reaction can be described by a simple rate process, especially by the 
Michaelis-Menten kinetics. In our opinion, most contemporary researches on biological 
network dynamics emphasize the effect of network topology without giving sufficient 
consideration of the biochemical/biophysical properties of each composing macromolecule. 
One of the reasons that account for the current state of affair is due to a lack of experimental 
data and theoretical understanding in the "intermediate regime" between single-molecule 
studies of individual enzymes (relatively simple) and cellular dynamics (too complex). 
Recent advances in single-molecule techniques give us hope to study larger systems. One of 
its unique advantages is the ability to study macromolecular dynamics under room 
temperature and nonequilibrium state, which well mimics physiological conditions of a 
living cell. Using these single-molecule experimental results to build the cellular dynamics 
model will be a promising and significative research field. 

In this chapter, we will present a unified mathematical formalism describing both 
conformational change and chemical reactions. Then we will discuss some implications of 
slow conformational changes in protein allostery and network dynamics. 

2. Coarse grained mathematical description of conformational changes   

Substrate binding often induces considerable changes of the protein conformation, 
especially in the binding pocket. This is the so-called induced-fit model. To explicitly take 
into account the induced conformational change, one can generalize the scheme given in 
Equation 1 to what shown in Fig. 1A. The substrate and protein form a loosely bound 
complex first. Their mutual interactions drive further conformational change of the binding 
pocket to form a tight bound complex, where atoms are properly aligned for chemical bond 
breaking and forming to take place. Next the binding pocket opens to release the product 
and is ready for another cycle. Mathematically one can write a set of ordinary differential 
based rate equations to describe the dynamics, or perform stochastic simulations of the 
process.  

For a more complete description of the continuous nature of conformational changes, one 
can reduce the conformational complexity of the system to a few well defined degrees of 
freedom with slow dynamics (Xing, 2007). For example, let’s denote x to represent the 
conformational coordinate of the enzyme from open to close of the binding pocket, and U(x) 
the potential of mean force along x. In general U(x) is affected by substrate binding. 
Therefore, in a minimal model the chemical state of the binding pocket (the catalytic site) 
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can be: Emp (empty), Rec (reactant bound), or Prod (product bound). As shown in Figure 
1B, each state is described by a potential curve Ui(x) along the conformational coordinate, 
and localized transitions can happen between two potentials. For an enzymatic cycle, a 
reactant molecule first binds onto the catalytic site (Emp→Rec), then forms a more compact 
complex, next the chemical reaction happens (Rec→Prod), and finally the catalytic site is 
open and the product is released (Prod→Emp). Notice that binding molecules may shift 
both the curve shape and minimum position, and some conformational motion is necessary 
during the cycle. The harmonic shape of the curves shown in Figure 1B is only illustrative. A 
more complete description is to use the two (or higher) dimensional potential surfaces 
plotted in Figure 1C. The plot should be only viewed as illustrative. Within an enzymatic 
cycle, the system zigzags through the potential surface, with motions along both the 
conformational and reaction coordinates coupled. Figure 1D gives projection of the potential 
surface along the reaction coordinate at two conformational coordinate values. The curves 
have the characteristic double well shape. For barrier crossing processes, a system spends 
most of the time at potential wells, and the actual barrier-crossing time is transient and fast. 
Therefore, one can reduce the two-dimensional surface (Figure 1C) to one-dimensional 
projections along the conformational coordinate (Figure 1B), and approximate transitions 
along the reaction coordinate by rate processes among the one-dimensional potential curves.  

With the above introduction of potential curves, we can now formulate the governing 
dynamic equations by a set of over-damped Langevin equations coupled to Markov 
chemical transitions (Xing, 2007; Zwanzig, 2001),    

 ( )( )
( )i

i i

dU xdx t
f t

dt dx
ζ = − + , (3)  

where x and Ui as defined above, ζi is the drag coefficient along the molecular 
conformational coordinate, and f is the random fluctuation force with the property <f(t)f(t’)> 
= 2 kBTζδ(t-t’), with kB the Boltamann’s constant, T the temperature. Chemical transitions 
accompany motions along the conformational coordinate with x-dependent transition rates. 
In general the dynamics may be non-Markovian and contain a memory effect (Zwanzig, 
2001). Min et al. observed a power law memory kernel for single protein conformational 
fluctuations (Min et al., 2005b). Xing and Kim showed that the observation can be well 
reproduced using a coarse-grained protein fluctuation model, with both of two adjustable 
parameters agree with other independent studies (Xing and Kim, 2006). However here we 
will assume Markovian dynamics for simplicity. The Langevin dynamics described by 
Equation 3 can be equally described by a set of coupled Fokker-Planck equations, 

 ( )
2

2

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )i i i

i i i ij j ji i
B j i

D U x x
x x D K x x K x x

t k T x x x

ρ
ρ ρ ρ ρ

≠

∂ ∂∂ ∂  
= − ⋅ − + + − 

∂ ∂ ∂ ∂ 
  (4) 

Where Di = kBT/ζi is the diffusion constant, Kij is the transition matrix element, and ρi(x) is 
the probability density to find the system at position x and state i.  

The formalism given by Equations 3 and 4 is widely used to model systems such as electron 
transfer reactions, protein motors (Bustamante et al., 2001; Julicher et al., 1997; Wang and 
Oster, 1998; Xing et al., 2006; Xing et al., 2005), as well as enzymatic reactions here (Gopich 
and Szabo, 2006; Min et al., 2008; Qian et al., 2009; Xing, 2007). 
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Fig. 1. Descriptions of coupling between chemical reactions and conformational changes.  
(A) A discrete enzymatic cycle model with conformational changes. (B) A minimal continuous 
model representing three potentials of mean force along a conformational coordinate.  
(C) A continuous model with explicit reaction and conformational coordinates.  
(D) Two protein conformations and the corresponding potentials of mean force along the 
reaction coordinate.  

The continuous form of Equation 4 can also be discretized to a form more familiar to 
biochemists1, 

 

(5)

                                                 
1 A mathematical procedure for the discretization is given in Xing, J., Wang, H.-Y., and Oster, G. (2005). 
From continuum Fokker-Planck models to discrete kinetic models. Biophys J 89, 1551-1563. 
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Fig. 2. Different models for allostery. (A) Schematic illustration of allosteric regulation.  
(B) Schematic potentials of mean force illustrating the MWC (left) and the KNF (right) 
models. (C) A nonequilibrium dynamic model. 

Equations 3-5 describe richer physics than the simple induced fit model does. The 
conformational changes include contributions from binding induction as well as enzyme 
spontaneous fluctuations. There may be a number of parallel pathways for an enzymatic 
reaction corresponding to different protein conformations. An optimal conformation for one 
step of the reaction may not be the optimal conformation for another step. If an enzyme can 
transit among these conformations faster than a chemical transition event (including 
substrate/product binding and release), then the system can mainly follow the tortuous 
optimal pathway involving different conformations shown in Figure 1B and C. If the 
conformational change is comparable or slower than chemical events, multiple pathways 
may contribute significantly to the dynamics, and one observes time varying enzyme 
activity at the single molecule level, which leads to the phenomenon “dynamic disorder“. 
One origin of the slow dynamics of intramolecular dynamics comes from diffusion along 
rugged potential surfaces with numerous potential barriers (Frauenfelder et al., 1991). 
Zwanzig shows that the effectic diffusion constant is greatly reduced along a rugged 
potential (Zwanzig, 1988). For example, for a rugged potential with a gaussian distributed 
barrier height, and root-mean-square ε, the so-called roughness parameter, the effective 
diffusion constant is scaled as, 

 ( )
2

exp /effective BD D k Tε = −   (6) 

which can be greatly reduced from the bare value of D. 
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3. Thermodynamic versus dynamic models for allostery 

A cell needs to adjust its metabolic, transcriptional, and translational activities to respond to 
changes in the external and internal environment. Allostery and covalent modification are 
two fundamental mechanisms for regulating protein activities (Alberts et al., 2002). 
Allostery refers to the phenomenon that binding of an effector molecule to a protein’s 
allosteric site affects the protein activity at its active site, which is usually physically distinct 
from where the effector binds. The discovery of allosteric regulations was in the 1950s, 
followed by a general description of allostery in the early 1960s, has been regarded as 
revolutionary at that time (Alberts et al., 2002). Not surprisingly, to understand the 
mechanism of allosteric regulation is an important topic in structural biology. Below we will 
focus on allosteric enzymes. For simplicity, we will restrict our discussions to positive 
allosteric effect, i.e., effector binding increases enzymatic activity. The discussions can be 
easily generalized to negative allosteric effects. 

3.1 Conventional models of allostery  

There are two popular models proposed to explain the allosteric effects. The concerted 
MWC model by Monod, Wyman, and Changeux, assumes that an allosteric protein can exist 
in two (or more) conformations with different reactivity, and effector binding modifies the 
thermal equilibrium distribution of the conformers (Monod et al., 1965). Recent population 
shift models re-emphasize the idea of preexisting populations (Goodey and Benkovic, 2008; 
Kern and Zuiderweg, 2003; Pan et al., 2000; Volkman et al., 2001). The sequential model 
described by Koshland, Nemethy, and Filmer is based on the induced-fit mechanism, and 
assumes that effector binding results in (slight) structural change at another site and affects 
the substrate affinity (Koshland et al., 1966). While different in details, both of the above 
models assume that the allosteric mechanism is through modification of the equilibrium 
conformation distribution of the allosteric protein by effector binding. For later discussions, 
we denote the mechanisms as “thermodynamic regulation”.  

The mechanisms of thermodynamic regulation impose strong requirements on the mechanical 
properties of an allosteric protein. The distance between the two binding sites of an allosteric 
protein can be far. For example, the bacterial chemotaxis receptor has the two reaction regions 
separated as far as 15 nm (Kim et al., 2002). In this case, signal propagation requires a network 
of mechanical strain relaying residues with mechanical properties distinguishing them well 
from the surroundings to minimize thermal dissipation – Notice that distortion of a soft donut 
at one side has negligible effect on another side of the donut. Mechanical stresses due to 
effector molecule binding irradiate from the binding site, propagate through the relaying 
network, and con-focus on the reaction region at the other side of the protein (Amaro et al., 
2009; Amaro et al., 2007; Balabin et al., 2009; Cecchini et al., 2008; Cui and Karplus, 2008; 
Horovitz and Willison, 2005; Ranson et al., 2006). However, it is challenging to transmit the 
mechanical energy faithfully against thermal dissipation over a long distance. A possible 
solution is the attraction shift model proposed by Yu and Koshland(Yu and Koshland, 2001).   

From a chemical physics perspective, current existing models on allosteric effects differ in 
some details of the potential shapes. The MWC and the recent population-shift model 
emphasizes that there are pre-existing populations for all the possible forms, as exemplified by 
the double well shaped potentials and the two corresponding conformers in the left panel of 
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Figure 2C. Effector binding only shifts their relative populations. The KNF model emphasizes 
that without the effector the protein exists mainly in one form (conformer 2 in the right panel 
of Figure 2C).  Effector binding shifts the protein to another form (conformer 1) with different 
reactivity. The functions U(x) are potentials of mean force, which suggests that the effect of 
effector binding can be enthalpic or entropic (Cooper and Dryden, 1984). Therefore in some 
sense there is no fundamental difference between the KNF and MWC models. They differ only 
in the extent of each conformer being populated, which is related to the free energy difference 
between conformers ∆U (in Figure 2C) through the Boltzman factor.  

3.2 Possibly neglected dynamic aspect of allostery 

The above allosteric models focus on the conformational changes decoupled from those 
changes associated with an enzymatic cycle. Consequently, the distribution along the 
conformational coordinate can be described as thermodynamic equilibrium. However, as 
discussed in section 2, an enzymatic cycle usually inevitably involves enzyme 
conformational changes, so the distribution of the latter is in general driven out of 
equilibrium due to coupling to the nonequilibrium chemical reactions. In many cases, as 
Frieden wrote, “conformational changes after substrate addition but preceding the chemical 
transformation, or after the chemical transformation but preceding product release may be 
rate-limiting” (Frieden, 1979). Recent NMR studies further demonstrate conformational 
changes as rate-limiting steps (Boehr et al., 2006; Cole and Loria, 2002). Based on these 
experimental observations, Xing proposed that the conformational change dynamics within 
an enzymatic cycle can be subject to allosteric modulation (Xing, 2007).  

Enzyme conformational changes can be thermally activated barrier crossing events, and 
effectors function by modifying the height of the dominant barrier. Alternatively, effectors 
may accelerate conformational changes through decreasing the potential roughness (see 
Figure 2D). Intuitively, for the latter mechanism effectors transform rusty engines (enzymes) 
into better-oiled ones.  

Figure 3 schematically summarizes possible effector binding induced changes of the 
potentials of mean force along a conformational coordinate, which then affects the  

 
Fig. 3. Summary of effects of effector binding on the potential of mean force: (1) relative free 
energy difference of the two conformers; (2) Width of the potential well; (3) Barrier height; 
(4) Potential roughness. 
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enzymatic reaction dynamics. The changes can be the relative height of the potential wells 
representing different conformers (labelled 1 in Figure 3, enthalpic), the widths of potential 
wells (labelled 2, entropic), the barrier height (labelled 3) and the potential roughness 
(labelled 4) (dynamic). For a given enzyme subject to a given effector regulation, one or 
more effects may play the dominant role.  

 
Fig. 4. Possible scenarios of modifying potential roughness. Relative motion between two 
protein surfaces (A) can be modulated through changing the linkage stiffness (B) or the 
arrangement of surface residues (C), or solvant accessibility (D).  

Further experimental and theoretical studies are necessary to reveal the detailed molecular 
mechanisms for the proposed potential roughness regulation. Figure 4 gives some possible 
scenarios. Suppose during the process of conformational change, two protein surfaces need 
to move along each other, with numerous residues dangling on the surfaces forming and 
breaking noncovalent interaction pairs, e.g., hydrogen bonds. If these residues are rigidly 
connected to the protein body, one can treat the process as two rigid bodies moving relative 
to each other. At a given instance moving of the two surfaces requires breaking of all the 
previously formed interaction pairs (see Figure 4A). The repetitive breaking and forming 
interaction pairs result in rugged potentials along the moving coordinate. Effector binding 
may increase the elasticity of the residue linkages or the protein body. Then the two surfaces 
can move with some of the existing interaction pairs being stretched but not necessarily 
broken (see Figure 4B). Formation of new interaction pairs may energetically facilitate 
eventual broken of these bonds. This increased elasticity effectively smoothen the potential 
of mean force. Similarly, effector binding induced displacement of some residues may also 
reduce the average number of interaction pairs formed at a given relative position of the two 
surfaces. Effector binding may also increase solvent (water) molecule accessibility to the 
protein interface. Water molecules are effective on bridging interactions between displaced 
residues, and thus stabilizing the intermediate configurations (see Figure 4D). 
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3.3 Allosteric regulation of bacterial flagellar motor switching  

Here we specifically discuss allosteric regulation in the bacterial flagellar motor system. 
Although the flagellar motor switching process does not involve enzymatic cycles directly, 
the process shares some features common to what we discussed in section 3.2.  

 
Fig. 5. Cartoon illustrations of the BFM torque generation/switching structure and the 
concept of conformational spread on the rotor ring (A) Schematic plot of the main structural 
components of the BFM. In this figure some rotor units (red) are in CW state against 
majority of the rotor units (blue) driving the motor rotating along CCW direction. (B) Top-
view of the rotor ring complex with putative binding positions of the CheY-P molecules. 

The bacterial flagellar motor (BFM) is a molecular device most bacteria use to rotate their 
flagella when swimming in aqueous environment. Using the transmembrane 
electrochemical proton (or sodium) motive force as the power source, the bacterial flagellar 
motor can rotate at an impressive high speed of a few hundred Hz and consequently, free-
swimming bacteria can propel their cell body at a speed of 15-100 µm/s, or up to 100 cell 
body lengths per second (Berg, 2003, 2004; Sowa and Berry, 2008). Figure 5A shows a 
schematic cartoon plot of the major components of the E. coli BFM derived from previous 
research of electron microscopy, sequencing and mutational studies. These structural 
components can be categorized into two groups according to their function: the rotor and 
the stators. In the center of the motor, a long extracellular flagellum (about 5 or 10 times the 
length of the cell body) is connected to the basal body of the motor through a flexible hook 
domain. The basal body consists of a few protein rings, functioning as the rotor of the 
machine, and spans across the outer membrane, peptidoglycan and inner membrane into 
the cytoplasm of the cell (Berg, 2004). Around the periphery of the rotor, a circular array of 
8-11 stator complexes are located. Each stator complex functions independently as a torque 
generation unit. When ions (proton or sodium) flow from periplasm to cytoplasm through 
an ion channel on the stator complex, conformational changes are triggered by ion binding 
on/off events, and therefore deliver torque to the rotor at the interface between the 
cytoplasmic domain of the stator complex and C-terminal domain of one of the 26 copies of 
FliG monomers on the rotor (Sowa et al., 2005). A series of mathematical models haven been 
proposed to explain the working mechanism of the BFM (Bai et al., 2009; Meacci and Tu, 
2009; Mora et al., 2009; Xing et al., 2006).   
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The bacterial flagellar motor is not only important for the propulsion of the cell, but also 
crucial for bacterial chemotaxis. In the E. coli chemotaxis system, chemical gradients 
(attractant or repellent) are sensed through multiple transmembrane methyl-accepting 
chemotaxis proteins (MCPs) (Berg, 2004). When extracellular chemotactic attractants (or 
repellents) bind to MCPs, conformational changes through the membrane inhibit (or trigger) 
the autophosphorylation in the histidine kinase, CheA. CheA in turn transfers phosphoryl 
groups to conserved aspartate residues in the response regulators CheY. The 
phosphorylated form of CheY, CheY-P, diffuses away across the cytoplasm of the cell and 
binds to the bottom of the FliM/FliN complex of the flagellar motor. When attractant 
gradient is sensed, CheY-P concentration is low in the cytoplasm and therefore less CheY-P 
molecules bind to the flagellar motor, which favours counter-clockwise (CCW) rotation of 
the motor. When most of the motors on the membrane spin CCW, flagellar filaments form a 
bundle and propel the cell steadily forward. When repellent gradient is sensed, CheY-P 
concentration is raised and more CheY-P binds to the flagellar motor, which leads to 
clockwise (CW) rotation of the motor. When a few motors (can be as few as one) spin CW, 
flagellar filaments fly apart and the cell tumbles. The bacterial flagellar motor (BFM) 
switches stochastically between CCW and CW states and therefore the cell repeats a ‘run’-
‘tumble’-‘run’ pattern. This enables a chemotactic navigation in a low Reynolds number 
environment (reviewed in Berg, book E. coli in motion). The ratio of the rotation direction 
CCW/CW is tuned by the concentration of the signalling protein, CheY-P.  

The problem of BFM switching response to cytoplasmic CheY-P concentration is essentially 
a protein allosteric regulation. When the effector (CheY-P) binds to the bottom of each rotor 
unit (a protein complex formed by roughly 1:1:1 of FliG, FliM, FliN protein), it makes CW 
rotation more favourable (Figure 5B). However, a careful examination of the BFM switching 
shows that the allosteric regulation here has distinct features: 1) in previous in vivo 
experiment (Cluzel et al., 2000), Cluzel et al. monitored in real time the relationship between 
BFM switching bias and CheY-P concentration in the cell and found that the response curve 
is ultrasensitive with a Hill coefficient of ~ 10. Later FRET experiment further showed that 
binding of CheY-P to FliM is much less cooperative than motor switching response (Sourjik 
and Berg, 2002). The molecular mechanism of this high cooperativity in BFM switching 
response remains unknown. 2) the BFM rotor has a ring structure, which is a large 
multisubunit protein complexes formed by 26 identical rotor units. For such a large 
multisubunit protein complex, an absolute coupling between subunits as the MWC model 
requires seems very unlikely. 3) the BFM rotates in full speed stably in CCW or CW 
directions, and transitions between these two states are brief and fast. This indicates that the 
26 rotor units on the basal body of the BFM are in a coherent conformation for most of the 
time and switching of the whole ring can finish within a very short time period. The above 
facts also put the KNF model in doubt. As in the KNF model, coupling between effector 
binding and conformation is absolute: When an effector binds a rotor unit, that rotor unit 
switches direction.  

Therefore a new type of model is in needed to explain the molecular mechanism of the BFM 
switching. Duke et al. constructed a mathematical model of the general allosteric scheme 
based on the idea proposed by Eigen (Eigen, 1968) in which both types of coupling are 
probabilistic (Duke et al., 2001; Duke and Bray, 1999). This model encompasses the classical 
mechanisms at its limits and introduces the mechanism of conformational spread, with 
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domains of a particular conformational state growing or shrinking faster than ligand 
binding. Particular regions in the parameter space of the conformational spread model 
reproduce the classical WMC and KNF model (Duke et al., 2001).  

Here we introduce the conformational spread model modified for studying the BFM 
switching mechanism. In this model, first we assumed that each rotor unit can take two 
conformations: CCW and CW. The rotor unit in CCW state generates torque along CCW 
direction when interacting with a stator unit; the rotor unit in CW state generates torque 
along CW direction when interacting with a stator unit. Each rotor unit undergoes rapid 
flipping between these two conformations and may also bind a single CheY-P molecule. On 
the free energy diagram, we further assumed that for each rotor unit the CCW state is 
energetically favoured by Ea while the binding of CheY-P stabilizes the CW state. As shown 
in Figure 6A, the free energy of the CW state (red) changes from +EA to – EA relative to the 
CCW state (blue), when a rotor unit binds CheY-P. 

 
Fig. 6. Energy states of a rotor unit in the BFM switch complex. (A) The free energy of the 
CW state (red) changes from +EA to –EA relative to the CCW state (blue), when a rotor unit 
binds CheY-P. (B) The rotor unit is stabilized by EJ if the adjacent neighbor is in the same 
conformation.  

In order to reproduce the ultrasensitivity of the BFM switching, a coupling energy EJ 
between adjacent neighbors in the ring is introduced. The free energy of a rotor unit is 
further stabilized by a coupling energy EJ when each neighboring rotor unit is in the same 
conformational state (Figure 6B), an idea inspired by the classical Ising phase transition 
theory from condensed matter physics.  

In this conformational spread model, the rotor ring shows distinct features upon 
increasing of EJ. Below a critical coupling energy, the ring exhibits a random pattern of 
states as the rotor units flip independently of each other. Above the critical coupling 
energy, switch-like behaviour emerges: the ring spends the majority of time in a coherent 
configuration, either all in CCW or CW states, with abrupt stochastic switching between 
these two states. Unlike the MWC model, the conformational spread model allows the 
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existence of an intermediate (or mixed) configuration of the rotor units on the ring; and 
unlike the KNF model, the conformational spread model also allows rotor units stay in its 
original conformation without being switched by effector binding events. By 
implementing parallel Monte Carlo processes, one can simulate BFM switching response 
to CheY-P concentration. In each iteration, each rotor unit on the ring is visited and polled 
to determine whether to stay in the old state or jump to a new state according to the free 
energy difference between the two states as a function of 1) free energy of the rotor unit 
itself 2) binding condition of the regulator molecule CheY-P 3) energy coupling of 
adjacent neighboring subunits.  

The conformational spread model has successfully reproduced previous experimental 
observations that 1) the BFM switching bias responses ultrasensitively to changes in CheY-P 
concentration 2) the motor rotates stably in CCW and CW states with occasional fast 
transitions from one coherent state to the other. The model also made several new 
predictions: 3) creation of domains of the opposite conformation is frequent due to fast 
flipping of single rotor unit, but most of them shrink and disappear, failing to occupy the 
whole ring. However, some big fluctuations can still produce obvious slowdowns and 
pausing of the motor. Therefore, speed traces of the BFM should have frequent transient 
speed slowdowns and pauses. 4) the switch interval (the time that the motor spends in the 
CCW or CW state) follows a single exponential distribution. 5) the switch time, the time that 
the motor takes to complete a switch, is non-instantaneous. It can be modeled as a biased 
random walk along the ring. The characteristic switching time depends on the size of the 
ring and flipping rate of each rotor unit in a complicated manner. Due to the stochastic 
nature of this conformational spread, we expect to see a wide distribution of switching 
times. 

With the cutting-edge single molecule detection technique, the above predictions of the 
conformational spread model has recently been confirmed (Bai et al., 2010). Instead of 
instant transition , switches between CCW and CW rotor states were found to follow a 
broad distribution, with switching time ranging from less than 2 milliseconds to several 
hundred milliseconds, and transient intermediate states containing a mixture of CW/CCW 
rotor units have been observed. The conformational spread model has provided a molecular 
mechanism for the BFM switching, and more importantly, it sheds light on allosteric 
regulation in large protein complexes. In addition to the canonical MWC and KNF models, 
the conformational spread model provides a new comprehensive approach to allostery, and 
is consistent with the discussion in section 3.2 that both kinetic and thermodynamic aspects 
should be considered.  

4. Coupling between slow conformational change and network dynamics 

A biological network usually functions in a noisy ever-changing environment. Therefore, 
the network should be: 1) robust ─ functioning normally despite environmental noises; 2) 
adaptive ─ the tendency to function optimally by adjusting to the environmental changes; 3) 
sensitive ─ sharp response to the regulating signals. It is not-fully understood how a 
biological network can achieve these requirements simultaneously. Contemporary 
researches emphasize that the dynamic properties of a network is closely related to its 
topology.  
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Many in vivo biological processes involve only a small number of substrate molecules. When 
this number is in the range of hundreds or even smaller, stochastic effect becomes 
predominant. Chemical reactions take place in a stochastic rather than deterministic way. 
Therefore one should track the discrete numbers of individual species explicitly in the rate 
equation formalism. So far, many studies have shown that one might make erroneous 
conclusions without considering the stochastic effect (Samoilov et al., 2005; Wylie et al., 
2007). Noise propagation through a network is currently an important research topic 
(Levine et al., 2007; Paulsson et al., 2000; Pedraza and van Oudenaarden, 2005; Rao et al., 
2002; Rosenfeld et al., 2005; Samoilov et al., 2005; Shibata and Fujimoto, 2005; Suel et al., 
2007; Swain et al., 2002). One usually assumes that the stochastic effect mainly arises from 
small number of identical molecules, and rate constants are still assumed well defined.  

With the existence of dynamic disorder, the activity of a single enzyme (and so of a small 
number of enzymes) is a varying quantity. This adds another noise source with unique (multi-
time scale, non-white noise) properties (Min and Xie, 2006; Xing and Kim, 2006). For bulk 
concentrations, fluctuations due to dynamic disorder are suppressed by averaging over a large 
number of molecules. However, existence of NMM kinetics can still manifest itself in a 
network. If there are only a small number of protein molecules, as in many in vivo processes, 
dynamic disorder will greatly affect the network dynamics. The conventionally considered 
stochastic effect is mainly due to number variations of identical molecules. Here a new source 
of stochastic effect arises from small numbers of molecules with the same chemical structure 
but different conformations. Dynamic disorder induced stochastic effect has some unique 
properties, which require special theoretical treatment, and may result in novel dynamic 
behaviors. First, direct fluctuation of the rate constants over several orders of magnitude may 
have dramatic effects on the network dynamics. Second, the associated time scales have broad 
range. The Gaussian white noise approximation is widely used in stochastic modeling of 
network dynamics with the assumption that some processes are much faster than others 
(Gillespie, 2000). Existence of broad time scale distribution makes the situation more 
complicated. Furthermore, a biological system may actively utilize this new source of noise. 
Noises from different sources may not necessarily add up. Instead they may cancel each other 
and result in smaller overall fluctuations (Paulsson et al., 2000; Samoilov et al., 2005). We 
expect that the existence of dynamic disorder not only further complicates the situation, but 
may also provide additional degrees of freedom for regulation since the rates can be 
continuously tuned. Especially we expect that existence of dynamic disorder may require 
dramatic modification on our understanding of signal transduction networks. Many of these 
processes involve a small number of molecules, and are featured by short reaction time scales 
(within minutes), high sensitivity and specificity (responding to specific molecules only).  

Wu et al. examined the coupling between enzyme conformational fluctuations and a 
phosphorylation-dephosphorylation cycle (PdPC) (Wu et al., 2009). The PdPC is a common 
protein interaction network structure found in biological systems. In a PdPC, the substrate 
can be in phosphorylated and dephosphorylated forms with distinct chemical properties. 
The conversions are catalyzed by a kinase (E1 in Figure 7A) and a phosphatase (E2 in Figure 
7A) at the expense of ATP hydrolysis. Under the condition that the enzymes are saturated 
by the substrates, the system shows ultrasensitivity (Goldbeter and Koshland, 1981). As 
shown in Figure 7B, the fraction of the phosphorylated substrate form, f(W-P), is close to 
zero if the ratio between E1 and E2 enzymatic activities θ <1, but close to 1 if θ >1. Now 
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consider a system with a finite size, e.g. 50 E1 molecules, 50 E2 molecules, and a total of 1500 
substrate molecules as used to generate results in Figure 7C & D. Enzyme activities fluctuate 
due to conformational fluctuations. For simplicity let us assume that E1 can stochastically 
convert between an active and a less active forms. While the average value of θ  = 1.1, it 
fluctuates within the range [0.7, 1.5], depending on the number of E1 molecules in the active 
form. For convenience of discussion, let us also define the response time of the PdPC, τ, as 
the time it takes for the fraction of W-P reaching half given at time 0 the system jumps from 
θ  < 1 το θ > 1 due to enzyme conformational fluctuations. The response time clearly related 
to the enzymatic turnover rate. As the trajectories in Figure7C show, for slow θ fluctuation 
∆θ is amplified to ∆W-P due to the ultrasensitivity of the PdPC and the much larger number 
of substrate molecules compared to enzymes. However, with θ fluctuation much faster than 
τ,  the PdPC only responses to the average value of θ . Therefore depending on the relative 
time scale between θ fluctuation and the response time of the PdPC to θ change, fluctuations 
of θ can be either amplified or suppressed.   

 
Fig. 7. Coupling between enzyme conformational fluctuations and a phosphorylation-
dephosphorylation cycle. (A) A phosphorylation-dephosphorylation cycle (PdPC).  
(B) Ultrasensitivity of a PdPC. (C) Trajectories of enzyme activity due to slow 
conformational fluctuations and the corresponding substrate fluctuation. (D) Similar to C 
but with fast conformational fluctuations.  

5. Conclusion  

Slow conformational motions in macromolecules play crucial roles in their unique function 
in enzymatic reactions as well as biological networks. We suggest that these motions are of 
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great functional importance, which can only be fully appreciated in the context of regulatory 
networks. Collaborative researches from molecular and cellular level studies are urgently 
needed for this largely unexplored area.   
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despite significant advances in these experimental approaches, many limitations exist such as false-

positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of

transient PPI, among others. To overcome these limitations, many computational approaches have been

developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has

gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into

Computational Approaches, Experimental Approaches, and Others.
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