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1. Introduction 

After the entire human DNA sequence was made public, many post-genome researchers 

began to investigate the systems of living creatures. Creatures consist of vast collections of 

proteins and their bodies are maintained by complex interactions among genes, proteins, 

and organic molecules. One major area of interest is how the characteristics of each creature 

are manifest and what kind of proteins, genes, and their interactions are related to them. 

Much research to detect protein–protein interactions has been conducted. The most direct 

approach to tackle protein–protein interactions is to identify the evidence of the interactions 

through in vitro or in vivo experiments. Since several high-throughput experimental methods 

to detect physical interactions of proteins, such as yeast two-hybrid [1] and tandem affinity 

purification [2], have been developed, a significant number of protein interactions have been 

clarified that accelerated the exploration for protein functionality. 

As vast amounts of genome sequences became available, computational approaches to infer 

protein–protein interactions became more focused. They typically assume some hypotheses 

of biological activity or property, and search biological databases with their own analytical 

methods for combinations of proteins to satisfy their hypotheses. Initially, many of these 

methods simply used gene or protein sequences, e.g., the method based on conservation of 

gene neighborhoods [3], the Rosetta Stone method [4][5], and the sequence-based co-

evolution method [6]. Later, as various public databases became available, such as 3D-

structures, domains, motifs, pathways, and phylogenetic profiles, various advanced 

methods to search for protein–protein interactions were developed. These methods and 

their results are available on the Web [7]. 

As one computational approach, gene or protein expression-based analysis is widely used to 
understand gene or protein interactions, which is the focus of this article. These methods 
were originally developed for microarray experiments that produced gene expression 
profiles, but they can apply to protein expression data as well. Because we can now obtain 
the expression profile of genes using high-throughput experiments such as microarray, 
protein chip, and 2D-electrophoresis, algorithms to derive interactions from expression data 
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are increasingly valuable. As a basic analysis, the correlation coefficient of expression levels 
between two proteins is often used to measure the interaction level of protein pairs. (Note 
that, in this article, we call this type of interaction the sole effect, which refers to the effect on 
a protein from another single protein.) However, since protein interactions have more 
complex structures, more sophisticated analyses such as Bayesian networks [8] have been 
used to understand combinatorial effects among proteins. A Bayesian network provides the 
optimal network computed from a set of expression data, which shows the landscape of 
interaction effects among proteins. Although this network does not infer direct physical 
interactions, it helps us gain a better understanding of protein functions. However, since the 
process of Bayesian network analysis considers the sole effects and the combinatorial effects 
together, it cannot recognize the combinatorial effects alone. 

In this article, we treat interactions among three proteins. We derive the combinatorial effect 

level, which emerges only when the three proteins are together, besides the sole effects that 

emerge between two proteins. The combinatorial effect level is estimated in a statistical 

manner, which will lead to a better understanding of protein interactions and a guide to 

deeper investigations. 

The remainder of this paper is organized as follows. In Section 2, we describe related work 
to understand the current state of the art in this research area. In Section 3, we describe the 
model of protein–protein interactions used in our method, and present the method to 
retrieve the combinatorial effect of three proteins. In Section 4, we evaluate our method by 
applying it to real protein expression data, and finally in Section 5 present the conclusions. 

2. Related work 

In this section, we give a short introduction of the major approaches used to predict protein–

protein interactions. 

Many computational methods to predict protein–protein interactions have been proposed. 
They utilize various kinds of public data such as genome sequences, amino-acid sequences, 
pathways, domains, 3D-structures, motifs, and phylogenetic profiles, to identify a property 
of protein pairs in order to predict protein–protein interactions. One typical genome-
sequence-based technique is based on conservation of gene neighbourhood [3]. This 
technique assumes that genes with similar functions or genes that are in the same pathways 
are transcribed together as a single unit known as an operon. Thus, finding two proteins 
that are neighbours in several genomes infers that they interact or have similar functions. 
Another typical sequence-based technique is called the Rosetta Stone method [4][5]. This 
method is based on the fact that several pairs of proteins interacting with each other have 
their homologs in other single proteins, called Rosetta Stone proteins. The phylogenetic 
profile method [6] uses a series of gene sequences in evolution and detects the set of genes 
that are simultaneously present or absent in the sequences. Since proteins in interaction tend 
to disappear simultaneously, finding the set of such genes predicts that the corresponding 
proteins interact. In addition, the in silico two-hybrid system [9] provides a fully alignment-
based protein–protein interaction prediction. This technique tries to detect physical 
interaction of proteins within their 3D structures by means of correlation of sequences of 
sites among target proteins. Recently, docking analysis using 3D structures of proteins has 
progressed rapidly. The main difficulty in docking analysis is that there are many potential 
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ways in which proteins can interact, and protein surfaces are flexible. Currently, one of the 
major approaches is a global search based on fast Fourier Transform [10]. Including the 
methods introduced in this brief discussion, there are a tremendous number of techniques to 
predict protein–protein interactions, and their algorithms and results are available in public 
databases. For more details, see [7][11]. 

Boolean networks [12] and Bayesian networks [8] are well known as computational methods 

to predict interactions from expression data. It is important to note that they treat gene 

interactions rather than protein interactions since most of them originally suppose 

microarray data as their source of analysis. However, they can also treat protein expression 

data.  

A Boolean network [12] is a network that represents causal association and it is typically 

generated from a pattern of time-series expression data. In Boolean networks, a set of 

expression levels for a sample at time t is regarded as “state” at some time t, where each 

expression level is typically represented by “1 (expressed)” or “0 (not expressed).” To 

compute the network, the time-series state transition is analyzed to learn the functions to 

determine the state at time t+1 from the current state at time t. As a result, an expression 

level of a protein at time t+1 is determined depending on the expression level of several 

proteins at time t. This dependency indicates the protein–protein interaction, although it 

does not always indicate a direct interaction. There are several versions and extensions of 

Boolean networks. Akutsu et al. proposed a model and an algorithm of Boolean networks 

that is generated from non-time-series expression data [13]. Laubenbacher et al. proposed 

multistate Boolean networks [14]. However, these models cannot treat noise and, thus, often 

fail in computing networks. To overcome this problem, Shumulevich et al. proposed a 

model of probabilistic Boolean networks [15] that enables Boolean networks to apply to 

practical real expression data that includes noise.  

A Bayesian network [8] is also a model of interactions often used in computational 

approaches that is typically built from expression data with discrete expression levels. 

Bayesian networks represent a joint distribution of random variables, and its direct edge 

between nodes represents causal association of those nodes. The learning process of a 

Bayesian network includes the optimization of network topology, where the evaluation of 

topologies is based on some information criterion, which is typically based on entropy. Note 

that it evaluates, for each node, the strength of the relationship between the node and its 

parents in the network, meaning that the sole effects and the combinatorial effects are 

evaluated together. Later, as an extension of the model, the Dynamic Bayesian network 

model was proposed [16], which handles time-series expression data. For details of this kind 

of network learning, there are several survey articles available, such as [17][18]. 

3. Method to retrieve combinatorial effects 

3.1 Expression data used in our method 

In this section, we explain the typical representation of protein expression data. Protein 

expression data represents the expression level of each protein i in sample j. Typically, the 

number of proteins in the data are several hundreds to thousands while the number of 

samples is usually several tens and at most hundreds.  
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Fig. 1. The process of obtaining Proteome Expression Data. 

 

Fig. 2. The Data Format for Our Data Mining Process. 

Protein expression data is obtained from several methods or devices such as protein arrays, 

2D electrophoresis, and mass spectrometry. Among these, we now introduce a 2D 

electrophoresis-based method [19] as a typical way of generating protein expression data. 

The process of obtaining protein expression data is somewhat complicated compared to 

microarray data that measures gene expression levels (see Figure 1). First, we prepare target 

samples and obtain 2D electrophoresis images from each target sample through an 

experimental biological process. Second, we identify areas (in the rest of this article we call 

them spots) of separated proteins using image-processing software and measure the 

expression level of each spot. Third, we match the spots among different images such that 

the matched spots indicate the same protein. Finally, we normalize the values of expression 

levels using a normalization method as a preprocess to the data mining processes. As a 

result, we have a set of protein expression levels as shown in Figure 2, which shows the 

expression levels of each protein in each sample.  
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Fig. 3. The Interaction Model to Predict. 

 

Fig. 4. How to Measure Sole and Total Effect Level of Protein A and B on C. 

3.2 Combinatorial protein-protein interaction model 

The protein–protein interaction model we try to predict in this paper is shown in Figure 3. 

Three proteins, A, B, and C, are related to this model, where A and B individually effect the 

expression level of C, but if both A and B are expressed together, they have a far larger effect 

on the expression level of C. We call the effect from A to C (resp. B to C) the sole effect, and 

we call the whole effect from A and B on C the total effect. Note that the total effect consists 

of two sole effects and the combinatorial effect appears only if both A and B express. What we 

want to retrieve from expression data is the combinatorial effect of A and B on C.  

To measure the combinatorial effect, we first estimate the amount of total effect of A and B 

on C. Then from the estimated total effect level, we subtract the two sole effects, i.e., the 

effect of A − C and B − C, to obtain the combinatorial effect level.  

Note that the three proteins may interact directly or indirectly. We try to extract the three 

proteins that work in the same functional groups by identifying the behaviour of expression 

levels following our model of interaction. 
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Fig. 5. Dividing Total Effect into Sole and Combinatorial Effect. 

3.3 Estimating sole and total interaction levels based on conditional probability 

We use conditional probability to retrieve this interaction from expression data. The 

probability of the sole interactions of A − C and B − C are measured by conditional 

probability, as shown in Figure 4. Namely, the sole interaction effect level of A on C is 

measured as the ratio of the number of samples in which the expression levels of both A and 

C are sufficiently high out of the number of samples in which the expression level of A is 

sufficiently high. The total interaction effect of A and B on C is also measured in a similar 

manner, i.e., the ratio of the number of samples in which the expression level of A, B, and C 

are all sufficiently high out of the number of samples in which the expression levels of both 

A and B are sufficiently high. 

The definitions and formulation of our problems are as follows. We handle proteins i (1 ≤ i ≤ 

I) and samples j (1 ≤ j ≤ J), both of which are included in the input expression data. We also 

call the proteins A, B, C, ..., and so on. As a parameter, we define r (0 < r <1) as the threshold 

of the ratio used to judge the expression, i.e., if the expression level of sample j for protein i 

is within the top r among all the expression levels of protein i, we call the protein i 

“expressed” in sample j. Let |ܣ| be the number of samples in which protein A is expressed, 

and similarly, let |ܣ ∩  be the number of samples in which both protein A and B are |ܤ

expressed. Then, we define ܧ஺஼ = |஺∩஼||஺|  as the sole effect level of A on C. Similarly, the sole 

effect level of B on C is defined as ܧ஻஼ = |஻∩஼||஻| , and the total effect level of A and B on C is 

defined as ܧ஺,஻஼ = |஺∩஻∩஼||஺∩஻| . 

3.4 Retrieving combinatorial effect 

What we want to estimate is the amount of the combinatorial interaction effect level, which 

can be estimated from the total interaction level (presented in the previous section) and the 

sole effect levels of A − C and B − C (see Figure 5). To estimate the combinatorial effect level 

for the combination of the three proteins A, B, and C, we split the total interaction effect into 

two parts, i.e., into two sole interaction effects and the combinatorial effect. Then, the 
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difference between them is regarded as the combinatorial effect level that we wish to 

compute. To obtain the combinatorial effect level, we compute the statistical distribution of 

the total effect levels ܧ′஺,஻஼ = |஺∩஻∩஼||஺∩஻| , which are computed through the simulation executed 

under the assumption that no combinatorial effect exists over A, B, and C. From the 

distribution of ܧ′஺,஻஼ = |஺∩஻∩஼||஺∩஻|  and the total effect score ܧ஺,஻஼ = |஺∩஻∩஼||஺∩஻| , which is the total 

effect level presented in the previous subsection, we can estimate the combinatorial effect 

level.  

The computer simulation to compute the distribution of ܧ′஺,஻஼ = |஺∩஻∩஼||஺∩஻|  is performed as 

follows. For the corresponding value of ߙ and ߚ, which are the sole effect values for the 

combination A − C and B − C, we first create distributions of A, B, and C randomly such that 

the sole effect levels of A − C and B − C are ߙ and ߚ, respectively. Since those distributions 

are created randomly, it is possible to assume that they do not include any combinatorial 

effect. Then we compute the total effect score of the combination A, B, and C. After a 

sufficient number of repetitions of this process, we obtain the distribution of ܧ′஺,஻஼  as the 

accumulation of the total effect scores. Note that we do not consider what kind of 

distribution A, B, and C follow in our method since we determine if the protein is expressed 

using the threshold r of the ranking in expression levels. 

From this total effect distribution ܧ′஺,஻஼ , we compute the combinatorial effect as a z-score in 

the distribution of ܧ′஺,஻஼ . The z-score ݖ஺,஻஼  is defined as ݖ஺,஻஼ = ൫ாಲ,ಳ಴ ିఓ൯ఙ , where ܧ஺,஻஼  is the total 

effect level of A, B, and C obtained from the real data, and ߤ and ߪ are the average and the 

standard deviation of the distribution of ܧ′஺,஻஼  obtained from the computer simulation, 

respectively. Namely, the z-score is the difference between the average	ߤ	of the 

distribution of ܧ′஺,஻஼  and the real total effect level obtained from the real data, which is 

measured as the unit value ߪ. Intuitively, the z-score indicates the probability of the value ܧ஺,஻஼  assuming that the combinatorial effect does not exist, which implies the level of the 

combinatorial effect. 

To compute the distribution of the total effect levels through the simulation, however, 

requires considerable computing time so it is desirable to precompute the distribution. Thus, 

we prepared a distribution table that shows the average and the standard deviation of the 

distribution for each value of ߙ and ߚ, as shown in Figure 6. Note that when we compute the 

distributions in Figure 6, we prepared the data of A, B, and C with 10,000 samples and we 

perform 5,000,000 trials for each pair of ߙ and ߚ. Because we computed the table for 20 

values of ߙ and ߚ between 0 and 1, for obtaining the corresponding values of ߤ and ߪ we 

used the value in the table that is the closest to ߙ and ߚ of A, B, and C. 

Now we summarize the proposed method. First, we enumerate every combination of the 

three proteins A, B, and C from the input data set. For each of the combinations, we 

compute the total effect level ܧ஺,஻஼  of A, B, and C. By referring to the precomputed 

distribution table, we find the distribution of	ܧ′஺,஻஼  corresponding to the value ߙ and ߚ of A, 

B, and C. From the distribution of ܧ′஺,஻஼ , and the total effect level ܧ஺,஻஼ , we obtain the 

combinatorial effect level of A and B on C as the corresponding z-score. Finally, we create a 

ranking of all the combinations of the three proteins by ordering them by the z-score. 
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Fig. 6. The Distribution Table of ܧ′஺,஻஼  Created through Simulation. 

4. Evaluation 

4.1 Property of expression data used in our method 

In this section, we explain the preprocess applied to the expression data, and also describe 

the basic property of the data. The expression data used in this experiment originated from 

the sample of fat near the kidney of black cattle. We performed 2D electrophoresis on each 

sample and measured the volume of each separated spot that corresponds to each protein. 

For details of the protocol of the experiment, see [19]. 

We preprocessed the expression data to improve the reliability of the expression data. Our 

preprocess consists of the following three steps. First, we removed from the data the  
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Fig. 7. The histogram of correlation coefficient between proteins. 

samples and the proteins that included more than 10% of null expression levels. This was done 
because samples or proteins with so many null values significantly reduce the reliability of the 
expression data. Next, we normalized the expression data with the global scaling method [20], 
where for every sample a scale factor is applied such that the total sum of the protein 
expression levels in the sample is 1. Finally, we removed the samples with high repetition 
error. Note that, in fact, in this data set, we performed 2D electrophoresis twice for each 
sample to confirm the accuracy of each electrophoresis experiment. To maintain the reliability 
of the data, we removed the sample in which more than 30% of the spots have a high 
repetation error or null value. Specifically, we consider a spot to have high repetation error if 
the larger expression level is larger than 1.3 times the value of the smaller expression level. 
Otherwise, the average of the two expression levels is used for each sample-protein pair. As a 
result, the expression data used for our evaluation consist of 124 samples and 670 proteins.  

In order to indicate a characteristic of this data, we investigated the correlation between 
proteins. See Figure 7 for the results of calculating correlation coefficients for all pairs of the 
proteins. Note that the number of pairs is 670C2 in total. Figure 7 is the histogram where the 
horizontal axis shows the correlation coefficient separated into classes with 0.05 intervals and 
the vertical axis shows the frequency of each class. From this result, we can see that most of the 
correlation coefficients take positive values, and many of them take relatively large values. 

4.2 Evaluation experiment of retrieving combinatorial effect 

4.2.1 Methods 

We performed the experiment to evaluate the performance of the proposed method by 
applying it to the expression data described in Section 4.1. As a parameter of the experiment, 
we used the values of 50% and 30% as the threshold r to define the phenomenon that a 
protein is expressed.  

To maintain statistical reliability, we excluded from the analysis the combinations of three 

proteins where the number of samples was insufficient. Namely, we ignored the 
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combinations of the three proteins if |A ∩ B|, which is the denominator in the total effect 

level ܧ஺,஻஼ , was less than 35 in case of r is 50%, and less than 20 in case r is 30%. Similarly, we 

also removed the combinations if |A ∩ B ∩ C| was less than 18 in case of r is 50%, and less 

than 10 in case r is 30%. Furthermore, for the computation, we only used the samples in 

which all the expression levels of the three proteins are not null. 

4.2.2 Results 

In this section, we describe the results of the evaluation experiments. Figure 8 shows the 
histogram of the case of r = 50%, where the horizontal axis indicates the z-scores separated 
into classes with 0.5 intervals, and the vertical axis indicates the number of combinations in 
each class. Figure 9 shows the ranking of the top 30 combinations of proteins in terms of z-
score. This table includes the columns of the spot numbers of proteins A, B, C, z-score of the 

combinations, ܧ஺஼ and ܧ஻஼ (the sole effect levels), ܧ஺,஻஼  (the total effect level), |A ∩ B| and |A ∩ B ∩ C| (the number of samples contained in each phenomenon). 

Under the significance level of 1%, we extracted 462,706 combinations in which a strong 
combinatorial effect is inferred. Here, we caluculate the corresponding p-value to the 
significance level of 1% using the formula of the Bonferroni correction presented in [21], i.e., 

p-value = ͳ − ݁೗೚೒ሺభషംሻ೙ , where n is the number of combinations of three proteins and ߛ is the 

significance level. This suggests that if p-value = ͳ − ݁೗೚೒ሺభషబ.బభሻభరవ,ళబఴ,ఴమబ = ͸.͹ͳ3 × ͳͲିଵଵ or less, the 
combinatorial effect exists. When the p-value is ͸.͹ͳ3 × ͳͲିଵଵ, then the corresponding z-
score is 6.423. This is computed as the point in the normal distribution where the probability 
that the value will become more than the point is p-value = ͸.͹ͳ3 × ͳͲିଵଵ. Figure 8 shows 
only the part where the z-score is larger than 6.423. Note that the probability of a z-score 
larger than 6.423 is only ͸.͹ͳ3 × ͳͲିଵଵ if we assume that there is no combinatorial effect. 
This and the results of Figure 8 imply that our expression data includes many combinations 
in which the combinatorial effect exists.  

Figure 9 shows that most of the sole effects of the shown combinations occur between 0.4 
and 0.45, and the total effects occur between 0.45 and 0.55. Moreover, in most of the 
combinations, |A ∩ B| takes values close to 35, which is the threshold value to judge 
statistical reliability. This implies that combinations of lower |A ∩ B| tend to have larger z-
scores. Although it is not shown in Figure 9, the combinations of lower ranks have larger 
values of |A ∩ B|.  
Figures 10 and 11 show the results with r = 30%. Compared to Figure 8, z-scores tend to 

have lower values. In addition, the number of combinations with z-scores larger than 6.423 

decreases to 167,320. Here, 6.423 is the corresponding p-value with the significance level of 

1%. In Figure 11, all of the total effects take a value of 1.0 and all of |A ∩ B| take a value of 20, 

which is the threshold value to judge statistical reliability. Furthermore, about 97.8% of the 

total effects take 1.0 in the retrieved 167,320 combinations. This means that in most of 

retrieved combinations, protein C is expressed in all the samples in which both proteins A 

and B are expressed. This appears to be an unusual tendency. Since in the case of 30% the 

number of samples in the phenomenon “express” is smaller than in the case of 50%, it is 

possible that the number of samples is not sufficient to ensure a reliable statistical analysis. 

One of our future projects will be to clarify why this result appears in the case of r = 30%. 
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Fig. 8. The histogram of z-score (r=50%). 

 

 

Fig. 9. The Top 30 Combinations in z-score (r=50%). 
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Fig. 10. The histogram of z-score (r=30%). 

 

 

Fig. 11. The Top 30 Combinations in z-score (r=30%). 
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4.3 Evaluation experiment of exchangeable proteins 

4.3.1 Procedure to exchange proteins 

In this section, for the combinations that have high z-scores, we investigate the z-scores when 
we exchange protein A with protein D in the case where D has a high correlation coefficient 
with A. Figure 9 shows that many high z-score combinations include C as the common 
protein, although A and B are also found as common proteins. Since our method defines the 
samples with the top r expression levels as expressed, having similar z-scores is intuitively 
inferred if we exchange A with D when D has a high correlation coefficient with A. We believe 
this is because there are many pairs of proteins in our data set that have a high correlation 
coefficient allowing us to retrieve so many combinations with a high combinatorial effect. In 
order to confirm this, we performed an experiment where we exchanged proteins. 

The experiment is as follows. First, we create the list of proteins for D that have correlation 

coefficients against A that are larger than a certain threshold value. Next, we exchange A 

with D, and calculate the z-score ݖ஽,஻஼  for all combinations of proteins D, B, and C. 

4.3.2 Result of exchanging protein 

Figure 12 shows the value of the z-scores ݖ஽,஻஼  when A and D are exchanged in the highest z-

score combination of A, B, and C in the case r = 50%, where A is exchanged with D if D has 

the correlation coefficient with A larger than 0.8. This table includes the columns of the spot 

numbers of proteins A, B, C, protein D exchanged with A, correl(A,D) (the correlation 

coefficient of A and D), ܧ஽஼ (the sole effect level when A and D are exchanged), ܧ஻஼ (the sole 

effect level of before exchanging), ܧ஽,஻஼  (the total effect level), |D ∩ B| and |D ∩ B ∩ C| (the 

number of samples contained in each phenomenon). In addition, this table is sorted in 

descending order of z-score. 

Figure 12 shows that the lowest z-score as a result of exchanging is 5.503. Note that there are 
only three combinations that have a z-score less than 6.423, by which the combinatorial effect 
is inferred under the significance level of 1%. This means that the z-score tends to be high 
when two proteins with a strong correlation are exchanged. Accordingly, one of the reasons 
that so many combinations that have a combinatorial effect are retrieved in our data seems to 
be that our data includes so many pairs of proteins in which the correlation coefficient is high. 

5. Conclusion 

In this paper, we proposed a method to retrieve the combinatorial protein–protein (or gene-

gene) interactions from expression data using statistics of conditional probability. We 

suppose a model of protein–protein interactions in which the expression level of C takes a 

large value only if proteins A and B are expressed together. This is the first study to estimate 

the combinatorial effect level apart from the sole effect. In this study we described our 

method to treat protein interactions, but note that our method is also applicable to gene 

expression data generated from microarray experiments.  

We evaluated our method using real expression data obtained from a 2D electrophoresis-

based experiment. We performed two evaluation experiments with two different parameters, 

i.e., r = 50% and r = 30%. As a result, the real expression data used in our experiment 
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Fig. 12. The ranking of z-score about exchangeable proteins (r=50%). 

included a considerable number of combinations in which combinatorial effect is inferred. 

However, the results are quite different between the two parameters of r that we used in our 

expeirment. This may be because the number of samples is not sufficient for statistical 

analysis, and we hope to clarify the validity of our method in detail in our future work. 

Further, we confirmed that we can exchange protein of A with D when D has strong 

correlation with A, and we found that the combinatorial effect is still strong even when A is 

exchanged with D.  

In the future, we would like to perform more experiments to further validate our proposed 

method. In addition, we would like to develop an algorithm for the analytical computation 
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of the statistical distribution under the assumption of no combinatorial effect, i.e., we would 

like to compute the distribution shown in Figure 6 without simulation. If such fast 

computation is possible, it enables us to easily vary the threshold r, and it also enables us to 

compute a more accurate analysis. Finally, we also would like to find the known interactions 

in our results verify the value of this data-mining method. 
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