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1. Introduction

After the entire human DNA sequence was made public, many post-genome researchers
began to investigate the systems of living creatures. Creatures consist of vast collections of
proteins and their bodies are maintained by complex interactions among genes, proteins,
and organic molecules. One major area of interest is how the characteristics of each creature
are manifest and what kind of proteins, genes, and their interactions are related to them.

Much research to detect protein-protein interactions has been conducted. The most direct
approach to tackle protein-protein interactions is to identify the evidence of the interactions
through in vitro or in vivo experiments. Since several high-throughput experimental methods
to detect physical interactions of proteins, such as yeast two-hybrid [1] and tandem affinity
purification [2], have been developed, a significant number of protein interactions have been
clarified that accelerated the exploration for protein functionality.

As vast amounts of genome sequences became available, computational approaches to infer
protein-protein interactions became more focused. They typically assume some hypotheses
of biological activity or property, and search biological databases with their own analytical
methods for combinations of proteins to satisfy their hypotheses. Initially, many of these
methods simply used gene or protein sequences, e.g., the method based on conservation of
gene neighborhoods [3], the Rosetta Stone method [4][5], and the sequence-based co-
evolution method [6]. Later, as various public databases became available, such as 3D-
structures, domains, motifs, pathways, and phylogenetic profiles, various advanced
methods to search for protein-protein interactions were developed. These methods and
their results are available on the Web [7].

As one computational approach, gene or protein expression-based analysis is widely used to
understand gene or protein interactions, which is the focus of this article. These methods
were originally developed for microarray experiments that produced gene expression
profiles, but they can apply to protein expression data as well. Because we can now obtain
the expression profile of genes using high-throughput experiments such as microarray,
protein chip, and 2D-electrophoresis, algorithms to derive interactions from expression data
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132 Protein-Protein Interactions — Computational and Experimental Tools

are increasingly valuable. As a basic analysis, the correlation coefficient of expression levels
between two proteins is often used to measure the interaction level of protein pairs. (Note
that, in this article, we call this type of interaction the sole effect, which refers to the effect on
a protein from another single protein.) However, since protein interactions have more
complex structures, more sophisticated analyses such as Bayesian networks [8] have been
used to understand combinatorial effects among proteins. A Bayesian network provides the
optimal network computed from a set of expression data, which shows the landscape of
interaction effects among proteins. Although this network does not infer direct physical
interactions, it helps us gain a better understanding of protein functions. However, since the
process of Bayesian network analysis considers the sole effects and the combinatorial effects
together, it cannot recognize the combinatorial effects alone.

In this article, we treat interactions among three proteins. We derive the combinatorial effect
level, which emerges only when the three proteins are together, besides the sole effects that
emerge between two proteins. The combinatorial effect level is estimated in a statistical
manner, which will lead to a better understanding of protein interactions and a guide to
deeper investigations.

The remainder of this paper is organized as follows. In Section 2, we describe related work
to understand the current state of the art in this research area. In Section 3, we describe the
model of protein-protein interactions used in our method, and present the method to
retrieve the combinatorial effect of three proteins. In Section 4, we evaluate our method by
applying it to real protein expression data, and finally in Section 5 present the conclusions.

2. Related work

In this section, we give a short introduction of the major approaches used to predict protein-
protein interactions.

Many computational methods to predict protein-protein interactions have been proposed.
They utilize various kinds of public data such as genome sequences, amino-acid sequences,
pathways, domains, 3D-structures, motifs, and phylogenetic profiles, to identify a property
of protein pairs in order to predict protein-protein interactions. One typical genome-
sequence-based technique is based on conservation of gene neighbourhood [3]. This
technique assumes that genes with similar functions or genes that are in the same pathways
are transcribed together as a single unit known as an operon. Thus, finding two proteins
that are neighbours in several genomes infers that they interact or have similar functions.
Another typical sequence-based technique is called the Rosetta Stone method [4][5]. This
method is based on the fact that several pairs of proteins interacting with each other have
their homologs in other single proteins, called Rosetta Stone proteins. The phylogenetic
profile method [6] uses a series of gene sequences in evolution and detects the set of genes
that are simultaneously present or absent in the sequences. Since proteins in interaction tend
to disappear simultaneously, finding the set of such genes predicts that the corresponding
proteins interact. In addition, the in silico two-hybrid system [9] provides a fully alignment-
based protein-protein interaction prediction. This technique tries to detect physical
interaction of proteins within their 3D structures by means of correlation of sequences of
sites among target proteins. Recently, docking analysis using 3D structures of proteins has
progressed rapidly. The main difficulty in docking analysis is that there are many potential
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ways in which proteins can interact, and protein surfaces are flexible. Currently, one of the
major approaches is a global search based on fast Fourier Transform [10]. Including the
methods introduced in this brief discussion, there are a tremendous number of techniques to
predict protein-protein interactions, and their algorithms and results are available in public
databases. For more details, see [7][11].

Boolean networks [12] and Bayesian networks [8] are well known as computational methods
to predict interactions from expression data. It is important to note that they treat gene
interactions rather than protein interactions since most of them originally suppose
microarray data as their source of analysis. However, they can also treat protein expression
data.

A Boolean network [12] is a network that represents causal association and it is typically
generated from a pattern of time-series expression data. In Boolean networks, a set of
expression levels for a sample at time ¢ is regarded as “state” at some time t, where each
expression level is typically represented by “1 (expressed)” or “0 (not expressed).” To
compute the network, the time-series state transition is analyzed to learn the functions to
determine the state at time f+1 from the current state at time ¢. As a result, an expression
level of a protein at time t+1 is determined depending on the expression level of several
proteins at time t. This dependency indicates the protein-protein interaction, although it
does not always indicate a direct interaction. There are several versions and extensions of
Boolean networks. Akutsu et al. proposed a model and an algorithm of Boolean networks
that is generated from non-time-series expression data [13]. Laubenbacher et al. proposed
multistate Boolean networks [14]. However, these models cannot treat noise and, thus, often
fail in computing networks. To overcome this problem, Shumulevich et al. proposed a
model of probabilistic Boolean networks [15] that enables Boolean networks to apply to
practical real expression data that includes noise.

A Bayesian network [8] is also a model of interactions often used in computational
approaches that is typically built from expression data with discrete expression levels.
Bayesian networks represent a joint distribution of random variables, and its direct edge
between nodes represents causal association of those nodes. The learning process of a
Bayesian network includes the optimization of network topology, where the evaluation of
topologies is based on some information criterion, which is typically based on entropy. Note
that it evaluates, for each node, the strength of the relationship between the node and its
parents in the network, meaning that the sole effects and the combinatorial effects are
evaluated together. Later, as an extension of the model, the Dynamic Bayesian network
model was proposed [16], which handles time-series expression data. For details of this kind
of network learning, there are several survey articles available, such as [17][18].

3. Method to retrieve combinatorial effects
3.1 Expression data used in our method

In this section, we explain the typical representation of protein expression data. Protein
expression data represents the expression level of each protein i in sample j. Typically, the
number of proteins in the data are several hundreds to thousands while the number of
samples is usually several tens and at most hundreds.
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Fig. 1. The process of obtaining Proteome Expression Data.
, Protain 1D
Sample ID
A B C D .
I 0.000582 | 0.000107 | 0.000338 | 0.000451
2 0.000563 0.000475 | 0.000458 .
3 0.000495 | 0.000126 | 0.000433 | 0.000565
4 0.000553 | 0.000153 | 0.000382 | 0.000486 .
5 0.000536 | 0.000134 | 0.000536 | 0.000471 .
6 0.000601 | 0.000185 | 0.000457 | 0.000513

Fig. 2. The Data Format for Our Data Mining Process.

Protein expression data is obtained from several methods or devices such as protein arrays,
2D electrophoresis, and mass spectrometry. Among these, we now introduce a 2D
electrophoresis-based method [19] as a typical way of generating protein expression data.
The process of obtaining protein expression data is somewhat complicated compared to
microarray data that measures gene expression levels (see Figure 1). First, we prepare target
samples and obtain 2D electrophoresis images from each target sample through an
experimental biological process. Second, we identify areas (in the rest of this article we call
them spots) of separated proteins using image-processing software and measure the
expression level of each spot. Third, we match the spots among different images such that
the matched spots indicate the same protein. Finally, we normalize the values of expression
levels using a normalization method as a preprocess to the data mining processes. As a
result, we have a set of protein expression levels as shown in Figure 2, which shows the
expression levels of each protein in each sample.
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Fig. 3. The Interaction Model to Predict.
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Fig. 4. How to Measure Sole and Total Effect Level of Protein A and B on C.

3.2 Combinatorial protein-protein interaction model

The protein-protein interaction model we try to predict in this paper is shown in Figure 3.
Three proteins, A, B, and C, are related to this model, where A and B individually effect the
expression level of C, but if both A and B are expressed together, they have a far larger effect
on the expression level of C. We call the effect from A to C (resp. B to C) the sole effect, and
we call the whole effect from A and B on C the total effect. Note that the total effect consists
of two sole effects and the combinatorial effect appears only if both A and B express. What we
want to retrieve from expression data is the combinatorial effect of A and B on C.

To measure the combinatorial effect, we first estimate the amount of total effect of A and B
on C. Then from the estimated total effect level, we subtract the two sole effects, i.e., the
effect of A — C and B — C, to obtain the combinatorial effect level.

Note that the three proteins may interact directly or indirectly. We try to extract the three
proteins that work in the same functional groups by identifying the behaviour of expression
levels following our model of interaction.
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Fig. 5. Dividing Total Effect into Sole and Combinatorial Effect.

3.3 Estimating sole and total interaction levels based on conditional probability

We use conditional probability to retrieve this interaction from expression data. The
probability of the sole interactions of A—C and B—C are measured by conditional
probability, as shown in Figure 4. Namely, the sole interaction effect level of A on C is
measured as the ratio of the number of samples in which the expression levels of both A and
C are sufficiently high out of the number of samples in which the expression level of A is
sufficiently high. The total interaction effect of A and B on C is also measured in a similar
manner, i.e., the ratio of the number of samples in which the expression level of A, B, and C
are all sufficiently high out of the number of samples in which the expression levels of both
A and B are sufficiently high.

The definitions and formulation of our problems are as follows. We handle proteinsi (1 <i<
I) and samples j (1 <j <]), both of which are included in the input expression data. We also
call the proteins A, B, C, ..., and so on. As a parameter, we define r (0 < r <1) as the threshold
of the ratio used to judge the expression, i.e., if the expression level of sample j for protein i
is within the top r among all the expression levels of protein i, we call the protein i
“expressed” in sample j. Let |A| be the number of samples in which protein A is expressed,
and similarly, let |4 N B| be the number of samples in which both protein A and B are

expressed. Then, we define E rRN |A|:|C| as the sole effect level of A on C. Similarly, the sole

effect level of B on C is defined as E§ = IB“r;lCI, and the total effect level of A and B on C is
. ¢ _ lAnBnC|

defined as Ef p = VIR

3.4 Retrieving combinatorial effect

What we want to estimate is the amount of the combinatorial interaction effect level, which
can be estimated from the total interaction level (presented in the previous section) and the
sole effect levels of A — C and B — C (see Figure 5). To estimate the combinatorial effect level
for the combination of the three proteins A, B, and C, we split the total interaction effect into
two parts, i.e., into two sole interaction effects and the combinatorial effect. Then, the
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difference between them is regarded as the combinatorial effect level that we wish to

compute. To obtain the combinatorial effect level, we compute the statistical distribution of
the total effect levels E'§ 5 = lﬁ:i;fl,
under the assumption that no combinatorial effect exists over A, B, and C. From the
distribution of E'{p = lﬁ;i;fl and the total effect score Ef 5 = If};\igfl, which is the total
effect level presented in the previous subsection, we can estimate the combinatorial effect

level.

which are computed through the simulation executed

The computer simulation to compute the distribution of E'§; = il
’ |ANB|

follows. For the corresponding value of @ and f, which are the sole effect values for the
combination A — C and B — C, we first create distributions of A, B, and C randomly such that
the sole effect levels of A — C and B — C are a and f, respectively. Since those distributions
are created randomly, it is possible to assume that they do not include any combinatorial
effect. Then we compute the total effect score of the combination A, B, and C. After a
sufficient number of repetitions of this process, we obtain the distribution of E'{ as the
accumulation of the total effect scores. Note that we do not consider what kind of
distribution A, B, and C follow in our method since we determine if the protein is expressed
using the threshold r of the ranking in expression levels.

is performed as

From this total effect distribution E'§ 5, we compute the combinatorial effect as a z-score in

. . . . . ES -u
the distribution of E'§ . The z-score z§ 5 is defined as z§, = %

effect level of A, B, and C obtained from the real data, and u and o are the average and the
standard deviation of the distribution of E'§ obtained from the computer simulation,
respectively. Namely, the z-score is the difference between the averagepuof the
distribution of E'§; and the real total effect level obtained from the real data, which is
measured as the unit value o. Intuitively, the z-score indicates the probability of the value
E f_ p assuming that the combinatorial effect does not exist, which implies the level of the
combinatorial effect.

, where Ef 5 is the total

To compute the distribution of the total effect levels through the simulation, however,
requires considerable computing time so it is desirable to precompute the distribution. Thus,
we prepared a distribution table that shows the average and the standard deviation of the
distribution for each value of @ and 3, as shown in Figure 6. Note that when we compute the
distributions in Figure 6, we prepared the data of A, B, and C with 10,000 samples and we
perform 5,000,000 trials for each pair of @ and . Because we computed the table for 20
values of @ and  between 0 and 1, for obtaining the corresponding values of 4 and o we
used the value in the table that is the closest to @ and 8 of A, B, and C.

Now we summarize the proposed method. First, we enumerate every combination of the
three proteins A, B, and C from the input data set. For each of the combinations, we
compute the total effect level E X, g of A, B, and C. By referring to the precomputed
distribution table, we find the distribution of E'{ 5 corresponding to the value a and f of A,
B, and C. From the distribution of E'§;, and the total effect level Ef;, we obtain the
combinatorial effect level of A and B on C as the corresponding z-score. Finally, we create a
ranking of all the combinations of the three proteins by ordering them by the z-score.
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Fig. 6. The Distribution Table of E'§ ; Created through Simulation.

4. Evaluation
4.1 Property of expression data used in our method

In this section, we explain the preprocess applied to the expression data, and also describe
the basic property of the data. The expression data used in this experiment originated from
the sample of fat near the kidney of black cattle. We performed 2D electrophoresis on each
sample and measured the volume of each separated spot that corresponds to each protein.
For details of the protocol of the experiment, see [19].

We preprocessed the expression data to improve the reliability of the expression data. Our
preprocess consists of the following three steps. First, we removed from the data the
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Fig. 7. The histogram of correlation coefficient between proteins.

samples and the proteins that included more than 10% of null expression levels. This was done
because samples or proteins with so many null values significantly reduce the reliability of the
expression data. Next, we normalized the expression data with the global scaling method [20],
where for every sample a scale factor is applied such that the total sum of the protein
expression levels in the sample is 1. Finally, we removed the samples with high repetition
error. Note that, in fact, in this data set, we performed 2D electrophoresis twice for each
sample to confirm the accuracy of each electrophoresis experiment. To maintain the reliability
of the data, we removed the sample in which more than 30% of the spots have a high
repetation error or null value. Specifically, we consider a spot to have high repetation error if
the larger expression level is larger than 1.3 times the value of the smaller expression level.
Otherwise, the average of the two expression levels is used for each sample-protein pair. As a
result, the expression data used for our evaluation consist of 124 samples and 670 proteins.

In order to indicate a characteristic of this data, we investigated the correlation between
proteins. See Figure 7 for the results of calculating correlation coefficients for all pairs of the
proteins. Note that the number of pairs is 670C> in total. Figure 7 is the histogram where the
horizontal axis shows the correlation coefficient separated into classes with 0.05 intervals and
the vertical axis shows the frequency of each class. From this result, we can see that most of the
correlation coefficients take positive values, and many of them take relatively large values.

4.2 Evaluation experiment of retrieving combinatorial effect
4.2.1 Methods

We performed the experiment to evaluate the performance of the proposed method by
applying it to the expression data described in Section 4.1. As a parameter of the experiment,
we used the values of 50% and 30% as the threshold r to define the phenomenon that a
protein is expressed.

To maintain statistical reliability, we excluded from the analysis the combinations of three
proteins where the number of samples was insufficient. Namely, we ignored the
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combinations of the three proteins if |A N B|, which is the denominator in the total effect
level E f, 5, was less than 35 in case of ris 50%, and less than 20 in case r is 30%. Similarly, we
also removed the combinations if |A N B N C| was less than 18 in case of r is 50%, and less
than 10 in case r is 30%. Furthermore, for the computation, we only used the samples in
which all the expression levels of the three proteins are not null.

4.2.2 Results

In this section, we describe the results of the evaluation experiments. Figure 8 shows the
histogram of the case of r = 50%, where the horizontal axis indicates the z-scores separated
into classes with 0.5 intervals, and the vertical axis indicates the number of combinations in
each class. Figure 9 shows the ranking of the top 30 combinations of proteins in terms of z-
score. This table includes the columns of the spot numbers of proteins A, B, C, z-score of the
combinations, E{ and Ef (the sole effect levels), E{p (the total effect level), |A N B| and
|A N B N C| (the number of samples contained in each phenomenon).

Under the significance level of 1%, we extracted 462,706 combinations in which a strong
combinatorial effect is inferred. Here, we caluculate the corresponding p-value to the

significance level of 1% using the formula of the Bonferroni correction presented in [21], i.e.,
log(1-y)
p-value =1—e n , where n is the number of combinations of three proteins and y is the
log(1—0.01)
significance level. This suggests that if p-value = 1 — e1#9708820 = 6,713 x 107! or less, the

combinatorial effect exists. When the p-value is 6.713 x 10~!, then the corresponding z-
score is 6.423. This is computed as the point in the normal distribution where the probability
that the value will become more than the point is p-value = 6.713 x 107!, Figure 8 shows
only the part where the z-score is larger than 6.423. Note that the probability of a z-score
larger than 6.423 is only 6.713 x 107! if we assume that there is no combinatorial effect.
This and the results of Figure 8 imply that our expression data includes many combinations
in which the combinatorial effect exists.

Figure 9 shows that most of the sole effects of the shown combinations occur between 0.4
and 0.45, and the total effects occur between 0.45 and 0.55. Moreover, in most of the
combinations, |A N B| takes values close to 35, which is the threshold value to judge
statistical reliability. This implies that combinations of lower |A N B| tend to have larger z-
scores. Although it is not shown in Figure 9, the combinations of lower ranks have larger
values of |A N B|.

Figures 10 and 11 show the results with r = 30%. Compared to Figure 8, z-scores tend to
have lower values. In addition, the number of combinations with z-scores larger than 6.423
decreases to 167,320. Here, 6.423 is the corresponding p-value with the significance level of
1%. In Figure 11, all of the total effects take a value of 1.0 and all of |A N B| take a value of 20,
which is the threshold value to judge statistical reliability. Furthermore, about 97.8% of the
total effects take 1.0 in the retrieved 167,320 combinations. This means that in most of
retrieved combinations, protein C is expressed in all the samples in which both proteins A
and B are expressed. This appears to be an unusual tendency. Since in the case of 30% the
number of samples in the phenomenon “express” is smaller than in the case of 50%, it is
possible that the number of samples is not sufficient to ensure a reliable statistical analysis.
One of our future projects will be to clarify why this result appears in the case of r = 30%.
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Fig. 8. The histogram of z-score (r=50%).
A B C : ¢ : .
rank (spot No.) | (spot No.) | (spot No.) Z-sC0re Ef. E. E:x IANBI IANBNCI
1 5052 608( 5895 37.3456 0.4583 0.3058 0.5429 35 19
2 3554 5639 5895 36.2082 0.4600; 0.400( 0.5429 35 19
3 2742 3554 5895 344911 0.4490) (.4490) 0.5714 35 20
4 4015 5735 31000 33.7957 0.4348 (1.4348 0.5405 37 20
5 5812 5860, 1767 33.7458 0.4468 (0.4255 0.5429 35 19
0 4798 HO80) 4849 33.5581 0. 4000 (1.4000) 0.4737 38 18
7 5052 5731 5895 334141 0.4468 (.3830) 0.5000) 30 18
8 5739 6043 4838 33.260606 0.4043 (.4255 0.5000, 38 19
9 5812 5860, 5895  32.7405 0.4490) (.4280, 0.5429 35 19
10) 5052 5730 5895 32.6462 0.4375 0.3958 0.5000) 364 18
11 3861 6111 5649 32.6423 0.3958 0.3058 0.4615 39 18
12| 2318 594( 1765 32.5554 0.4130; 0.4348 0.5135 37 19
13 926 5739 5895 323921 0.4800] 0.4000 0.5429 35 19
14 168 6162 5695 31.915¢ 0.4667 0.4444 0.5714 35 20
15 5738 6043 3657 318151 0.4222 0.4444 0.5278 361 19
16) 5636 6242 5895 3134406 (0.3600) (). 4400 0.4615 39 18
17 5612 5732 5895 31.3436 0.4375 0.4167 0.5135 37) 19
15 6043 GOS0 4849 31.2987 0.4348 (.3913 0.4863 37 18
19 4015 5735 4838 31.2948 0.4130) (.4563 0.5278 30 19
20 5735 6043 4838 31.2367 0.4348 (0.4348 0.5278 30 19
21 4201 5808 3646, 31173 0.4408 (.4681 0.5714 35 20
22 5726 6242 5805 30.9849 0.4082 (. 4490 0.5143 35 18
23 5040 6O 1767 30.7235 0.4255 ().4468 0.5278 30 19
24 2318 4134 5895 30.6533 0.4082 0.5102 0.5714 35 20
25 5734 5866 3467 30.5461 0.4255 0.4043 0.4865 37 18
26 388( 6162 1763 30.5325 0.4444 0.4444 0.5429 35 19
27 562( 5639 5895 30.4974 0.4800] 0.380( 0.5135 37) 19
28 3554 5621 5805 30.492( 0.4490; 0.4694 0.5714 35 20
29 4015 5849 3100 30.4629 0.4222 0.4222 0.5000/ 36 18
30 5622 5731 5895 30.3865 0.4800) (. 4200 0.5526 38 21

Fig. 9. The Top 30 Combinations in z-score (r=50%).
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Fig. 10. The histogram of z-score (r=30%).

rank (spo?No. ) {spulBNo. ) (spo't:Nc. ) Z-sCOTE E : E ; E f., IANBI ANBNCI

| 932 4257 4284 l16.1614 0.6061 0.6970) 1000k 200 200

2 932 4284 4257 161614 0.6061 0.6970 1.0000 20) 20

3 034 5140) 828  15.9453 0.6176 (.67635 1.000¢ 200 20)

4 932 6240) 4134 155417 0.7059 0.6176 100008 20) 200

5 2319 4050 6039 15.5417 0.6176] 0.7059 1.0000) 20) 20

6 934 4284 4257 15.0960) 0.6364 0.6970 1.0000; 20) 20

7 975 4134 4284 15.0960) 0.6364 0.697( 1.000¢ 200 20

8 3998 4705 50450 15.0960) (0.6970)| 0.6304 1.000CK 20) 20)

9 4479 5724 4009 15.0960) 0.6970 0.6364 10000 20) 200
10 5045 5715 5194 15.0060) 0.6970| (1.6364 10000 20) 20)
11 5573 5954 5218 15.0960 0.6970) 0.6364 1.0000 20) 20
12 5615 6240 5965 15.0060) 0.6970)| (0.63064 1.000CK 20) 20)
13 2318 4013 5043  15.0058 0.6061 0.7273 1.0000; 200 20
14 2318 5943 4013 15.0958 0.6061 0.7273 1.000( 200 20)
15 932 4755 5954 14.9425 (L6286, (.7143 1.000¢ 20) 208
16 3972 4755 4476 14.8927 0.7188 0.6250) 1.0000) 200 200
17 4470/ 4755 3972 14.8927 0.7188 0.62350 1.0000) 20) 20)
18| 4134 6240 5724 14.8927 0.7188 0.6250 1.0000; 20) 20
19 5724 6240 4134 14.8927 0.7188 0.6250) 1.0000) 20) 20
20 5731 (065 0158 14.8927 (.6250) (L7188 1.O00CK 20) 20)
21 5731 6158 6065  14.8927 0.6250) 0.7188 10000 20) 20)
22 5733 6065 G158  14.8927 0.6250) 0.7188] 10000 20) 20
23 5733 6158 6065  14.8927 0.6250) 0.7188 1.0000) 20) 20
24 934 6240) 4134 1464606 0.7059 0.6471 1.0000) 20) 200
25 2319 6158 5207 14.64606 0.6471 0.7059 1.0000; 200 20
26 5622 5639 5955 14.64606 0.7059 0.6471 1.0000) 20) 20
27 1762 6034 5065 14.5887 (0.7007 (1.6452) 1.000¢ 20) 20
28 5965 6034 1762] 145887 0.7097 0.6452) 10000 20) 20
29 1764 3620, 5065 145887 0.7097 0.6452) 100008 20) 200,
30 3620| 5965 1764] 14.5887 0.6452| 0.7097 1.0000) 20) 20

Fig. 11. The Top 30 Combinations in z-score (r=30%).
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4.3 Evaluation experiment of exchangeable proteins
4.3.1 Procedure to exchange proteins

In this section, for the combinations that have high z-scores, we investigate the z-scores when
we exchange protein A with protein D in the case where D has a high correlation coefficient
with A. Figure 9 shows that many high z-score combinations include C as the common
protein, although A and B are also found as common proteins. Since our method defines the
samples with the top r expression levels as expressed, having similar z-scores is intuitively
inferred if we exchange A with D when D has a high correlation coefficient with A. We believe
this is because there are many pairs of proteins in our data set that have a high correlation
coefficient allowing us to retrieve so many combinations with a high combinatorial effect. In
order to confirm this, we performed an experiment where we exchanged proteins.

The experiment is as follows. First, we create the list of proteins for D that have correlation
coefficients against A that are larger than a certain threshold value. Next, we exchange A
with D, and calculate the z-score z§ 5 for all combinations of proteins D, B, and C.

4.3.2 Result of exchanging protein

Figure 12 shows the value of the z-scores z§ ; when A and D are exchanged in the highest z-
score combination of A, B, and C in the case r = 50%, where A is exchanged with D if D has
the correlation coefficient with A larger than 0.8. This table includes the columns of the spot
numbers of proteins A, B, C, protein D exchanged with A, correl(A,D) (the correlation
coefficient of A and D), E§ (the sole effect level when A and D are exchanged), Ef5 (the sole
effect level of before exchanging), Ef z (the total effect level), [IDNB| and [D NBNC| (the
number of samples contained in each phenomenon). In addition, this table is sorted in
descending order of z-score.

Figure 12 shows that the lowest z-score as a result of exchanging is 5.503. Note that there are
only three combinations that have a z-score less than 6.423, by which the combinatorial effect
is inferred under the significance level of 1%. This means that the z-score tends to be high
when two proteins with a strong correlation are exchanged. Accordingly, one of the reasons
that so many combinations that have a combinatorial effect are retrieved in our data seems to
be that our data includes so many pairs of proteins in which the correlation coefficient is high.

5. Conclusion

In this paper, we proposed a method to retrieve the combinatorial protein-protein (or gene-
gene) interactions from expression data using statistics of conditional probability. We
suppose a model of protein-protein interactions in which the expression level of C takes a
large value only if proteins A and B are expressed together. This is the first study to estimate
the combinatorial effect level apart from the sole effect. In this study we described our
method to treat protein interactions, but note that our method is also applicable to gene
expression data generated from microarray experiments.

We evaluated our method using real expression data obtained from a 2D electrophoresis-
based experiment. We performed two evaluation experiments with two different parameters,
ie, r =50% and r = 30%. As a result, the real expression data used in our experiment
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A B C D c

- c AL )
(spot No.)ltspot No.)| (spot No.) |(spot No.) correl( A, D) z_score E. E. Eos 1M Bl IDABNACI
5142 0.8222 30.7004] 05300 04286 0.6129 31 1
6019 0.9351 272615 0.4808 0.3878  0.5143 35 I8
1275 0.8750 26.9008 05600 0.4000 _0.5938 32 It
2312 0.8205 26.3425 0.5000 0.4565 0.5882 34 2(
6043 0.8442 262674 0.4600, _0.4200 05128 39 20
026 0.8302 26.1577] _0.4902] 0.4314 05526 33 21
3001 0.8393 252836 0.56000 0.4200 0.6061 33 2
3269 0.8817 25.0023 05882 0.4118 _ 0.625( . >
5706 0.0268 24.8728] 05319 03617 0.5161 31 16
5281]  0.8255] 24.7993] 05000 0.3913 _ 0.5152 33 17
1225 0.8406 24.7963] 05417 0.3542] _0.5172 29 15
5208 (0.83060 24.7883 0.4783 0.4130 0.5161 31 16
243 0.8686 24.6493 0.5102]  0.3673 05000 34 17
5612 0.8920] 24.4205  0.47060 _0.4314 _ 0.5250 40 21
4256 0.8447 24.2400,_0.6939 _0.4082 _ 0.7308 26 T
6020 0.9019 24.0511] _0.5000, _0.3800 _0.5000) 34 17
5703 0.0148 24.0087 04800 0.4400 _ 0.5405 37 20
3961 (0.8195 23.9841 .54 0.4314| 0.6O00N 35 21
2505 0.8112 23.0176] 05400 0.4000] _0.5588 34 T
3052 | 6080 | 5895 4257 0.8637 14.3240  0.6800| 0.4200 0.6774 31 21
014 08112 142823 05686 04314 0.5714 35 2
1185 0.8303 14.0312] _0.6531] 0.4286 _ 0.6552 29 T
4710 0.8103 13.5711]  0.5200 _0.4400 _0.5278 36 1
5978 0.8501] 13.5634 _0.7000, _0.4400 _0.7143 28 20
5207 0.8104 13.4411] 05294 04314 0.5278 36 19
2589 (0.8287 13.1487 (0.5294 0.4314| 0.5263 38 2
021 0.8219 125048 0.6000] _0.4000 _0.5625 32 I8
6057 0.8128 124964 0.5652 0.4348  0.5625 32 18
6012 0.8380 124960, 0.5625 _0.4375 _ 0.5625 P 18
6181 0.8033 11.6221] 0.5714 _0.4490 _ 0.5789) 38 2
5060 0.8633 11.1105 0.5800) 0.4200) 0.53556 36 208
042 0.8278 10,6044 0.7000] _0.4400 _0.700€ 30 21
5193 0.81560 8.1077  0.5800 0.4200 0.5405 37 20
6276 0.8043 8.0482  0.6739 0.4348  0.6538 2% 17
5068 0.8020 7.7789  0.6939 04490 0.6875 32 2
5615 0.8195 6.9800] _0.6000 0.4400 _0.5758 33 19
975 0.8314 6.2982 0.7200 0.4400| 0. 70008 30 21
3261 0.8530 5.7678  0.6600 0.4200 0.612¢ 31 T
978 0.8142 5.5027 0. 7000) 0.4200) 0.6552 29 19

Fig. 12. The ranking of z-score about exchangeable proteins (r=50%).

included a considerable number of combinations in which combinatorial effect is inferred.
However, the results are quite different between the two parameters of r that we used in our
expeirment. This may be because the number of samples is not sufficient for statistical
analysis, and we hope to clarify the validity of our method in detail in our future work.
Further, we confirmed that we can exchange protein of A with D when D has strong
correlation with A, and we found that the combinatorial effect is still strong even when A is
exchanged with D.

In the future, we would like to perform more experiments to further validate our proposed
method. In addition, we would like to develop an algorithm for the analytical computation
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of the statistical distribution under the assumption of no combinatorial effect, i.e., we would
like to compute the distribution shown in Figure 6 without simulation. If such fast
computation is possible, it enables us to easily vary the threshold r, and it also enables us to
compute a more accurate analysis. Finally, we also would like to find the known interactions
in our results verify the value of this data-mining method.
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