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1. Introduction  

Diverse molecules interact with proteins to produce a biological function. Proteins exhibit 
many interactions with other molecules including other proteins, nucleic acids, 
carbohydrates, lipids, minerals, metabolites, and chemical compounds, resulting in diverse 
roles within and/or between cells. Some of these proteins locate in subcellular organelles, 
where they modulate biochemical reactions, and some other proteins locate in membranes 
mediating various stimuli to signaling pathways. Cellular systems can be represented as 
complex networks. We may consider the molecules as nodes and the associations among the 
molecules as edges in the network. In this network, all kinds of the molecular interactions 
can be referred to as an interactome. Even though all kinds of the interactome are important, 
we here focus on protein-protein interactions (PPIs) since they are fundamental in cellular 
systems. To function correctly, a protein should interact with other proteins in the context of 
complex formation, signalling pathways and biochemical reactions. To perform a specific 
biological function, these interactions need to be specifically formed with proper interacting 
partners at the right time and locations.  

Given the knowledge of genome sequencing on model organisms including human, we 
have elucidated a large number of unknown molecular structures and interactions within 
nucleic acids. In the post-genomic era, functional genomics is an emerging area of research 
that seeks to annotate every bit of information of the genome structure with relevant 
biological function. Still, many proteins (or genes) remain functionally unannotated 
(Apweiler et al, 2004; Sharan et al, 2007). These missing links between structures and 
functions need to be resolved to understand complex biological phenomena including 
human diseases, development and aging. 

Protein function is widely defined in several different ways. It is highly context- and 
condition-dependent, which means that proteins participate in most biological processes. 
There have been various attempts to categorize the protein functions (Bork et al, 1998). One 
of them categorized the protein function into three parts: molecular function, cellular 
function and phenotypic function. First, the molecular function is defined as biochemical 
reactions performed by proteins. Second, the cellular function is defined as various 
pathways associated with proteins. Lastly, the phenotypic function is defined as an 
integration of all physiological subsystems to environmental stimuli. 

www.intechopen.com



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

66

Aside from the conceptual definition, many annotation efforts on protein function have been 
undertaken (Table 1). One of these efforts, the Gene Ontology (GO) consortium (Ashburner 
et al, 2000), made a standard and multi-labelled hierarchical annotation on proteins in the 
category of biological process, molecular function and cellular component. The GO 
consortium is regularly accumulating annotations on proteins according to GO category in 
open databases. In this chapter, we consider the three kinds of GO terms in annotation of 
protein function. 

Many experimental techniques are available for discovering the protein function, such as 
gene knockout and transcript knockdown, but these approaches are low-throughput and 
time-consuming. In recent decades novel high-throughput techniques have been developed, 
and we are now able to analysis genome-wide data, which is broadening our biological 
insights. Computational methods are necessary for analysing the massive quantity of data 
and they are complementary with the low- and high-throughput experimental methods. 

In this chapter, we first introduce PPI data available through public databases and compare 
the contents of major databases. We also describe PPI detection methods by experimental 
and computational approaches. Next, network- and non-network-based computational 
methods for the identification of protein function are described. Finally, computational 
prediction methods of protein subcellular localization, especially by exploiting PPI data, are 
shown. 

 

Databases Description 

GO The Gene Ontology project/consortium 

COGs Clusters of Orthologous Groups of proteins 

ENZYME A repository of information relative to the nomenclature of enzymes 

Pfam 
A database of protein families that includes their annotations and 
multiple sequence alignments  

PROSITE Database of protein domains, families and functional sites  

HAMAP High-quality Automated and Manual Annotation of microbial Proteomes 

UniProt The Universal Protein Resource 

FunCat 
MIPS (Munich Information Center for Protein Sequences) Functional 
Catalogue 

DAVID The Database for Annotation, Visualization and Integrated Discovery 

FANTOM A database for functional annotation of the mammalian genome 

ANNOVAR 
Functional annotation of genetic variants from high-throughput 
sequencing data 

EFICAz A genome-wide enzyme function annotation database 

KEGG Kyoto Encyclopedia of Genes and Genomes 

Table 1. Databases for the functional annotation of genes and proteins. 

2. PPI data 

PPI can be considered as one kind of protein interactome. Proteins mutually interact in the 

biological context for specific functions. Given the knowledge of a single gene, expressing 
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distinct transcripts and protein isoforms, a protein also interacts with other proteins 

including itself to give specific function. PPIs are defined as  physical interactions between 

protein pairs (Bonetta, 2010). There are also non-physical interactions such as genetic and 

functional interactions. Genetic interaction is typically defined as when two genes are 

simultaneously perturbed, with the quantitative phenotype being more or less than 

expected (Mani et al, 2008). Functional interaction between two proteins is a much broader 

concept than other experiment-derived interactions. It may include any functionally 

associated gene/protein pairs which are integrated and predicted from heterogeneous data. 

We will explain these computational prediction methods later in this section. 

The physical interactions between protein pairs also can be either direct or indirect. Binary 

interaction is an example of a direct interaction while indirect interaction includes subunits 

of protein complex. To give a specific function, proteins often form a large complex 

including direct and indirect interaction among the participant proteins. These interactions 

are also separable according to their binding lifetime. Some interactions between protein 

pairs are transient, with the interactions associating and dissociating under particular 

physiological conditions. On the other hand, some of proteins form stable complexes where 

the participants in the complexes permanently interact with each other. Various PPI types 

are defined in standard and annotated across many PPI databases (Cote et al, 2010; Kerrien 

et al, 2007). 

2.1 PPI databases 

Currently, there are 132 PPI databases indexed by the Pathguide (Bader et al, 2006; accessed 

23 Dec 2011). The quantity of physical interactions to date is 386,495 across all species when 

integrated among major 11 databases by the iRefWeb (Turner et al, 2010; accessed 23 Dec 

2011). The PPI data derived from both high- and low-throughput experiments are altogether 

deposited into any of primary databases which manually curate experimental results. These 

primary databases include not only physical interactions but also genetic interactions and 

annotate standard minimal information about a molecular interaction (MIMIx) (Orchard et 

al, 2007). There is an inconsistency problem related to the literature curation across different 

databases (Turinsky et al, 2010). Turinsky et al. confirmed that the agreement between 

curated interactions from 15,471 papers shared across nine databases was only 42% for 

interactions and 62% for proteins. This result was averaged between any two databases 

curated from the same publication. Some of the primary databases altogether formed a 

consortium called IMEx (The International Molecular Exchange) to enhance the quality of 

literature curation efforts.  

Since we have plenty of primary databases, comprehensive integration of those primary 

databases has become an intriguing research field. Such meta-databases minimize 

redundancy and inconsistency that are limitations of the primary databases (Turinsky et al, 

2010). Moreover, functional interaction databases consist of both experimentally-detected 

and computationally-predicted data. Sometimes, these predicted and experimental PPIs 

need to be distinguished for the degree of confidence. They both give useful information but 

should be separated according to the relevant evidence codes. There are also species-specific 

functional interaction databases (Lee et al, 2011; Lee et al, 2010a). 
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Type Name Description URL 

Primary 
databases 

BioGRID 
Physical and genetic 
interaction 

http://thebiogrid.org 

MINT Physical interaction http://mint.bio.uniroma2.it 

IntAct Physical interaction http://www.ebi.ac.uk/intact 

DIP Physical interaction http://dip.doe-mbi.ucla.edu 

BIND 
Physical and genetic 
interaction 

http://bond.unleashedinformatics.
com 

Phospho-
POINT 

A human kinase 
interactome resource 

http://kinase.bioinformatics.tw 

PIG Host-Pathogen interactome http://pig.vbi.vt.edu 

SPIKE 
A database of highly 
curated human signaling 
pathways 

http://www.cs.tau.ac.il/~spike  

MPPI 
The MIPS mammalian PPI 
database 

http://mips.helmholtz-
muenchen.de/proj/ppi 

HPRD Human physical interaction http://www.hprd.org 

CORUM 
Mammalian protein 
complexes 

http://mips.helmholtz-
muenchen.de /proj/corum 

Meta-
databases 

APID 
Agile Protein Interaction 
DataAnalyzer

http://bioinfow.dep.usal.es/apid 

MiMi 
Michigan Molecular 
Interactions

http://mimi.ncibi.org 

UniHI Unified Human Interactome http://www.mdc-berlin.de/unihi 

iRefWeb Interaction Reference Index http://wodaklab.org/iRefWeb 

DASMI 
Distributed Annotation 
System for Molecular 
Interactions

http://dasmi.de/dasmiweb.php 

HIPPIE 
Human Integrated Protein-
Protein Interaction 
rEference 

http://cbdm.mdc-
berlin.de/tools/hippie 

HAPPI 
Human Annotated and 
Predicted Protein 
Interaction database

http://bio.informatics.iupui.edu/
HAPPI 

Functional 
databases 

STRING 
Search Tool for the Retrieval 
of Interacting 
Genes/Proteins 

http://string-db.org 

Gene-
MANIA 

Multiple Association 
Network Integration 
Algorithm

http://genemania.org 

Functional
-Net 

Species-specific functional 
gene networks 

http://www.functionalnet.org 

Table 2. List of PPI databases. 
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Contents BIND BioGRID DIP HPRD IntAct MINT MPPI 

Biological role (PSI-MI) O O 

Experimental role (PSI-MI) O O 

Taxonomy ID O O 

Interaction category O O 

Interaction title 

Interaction type (Text) O 

Interaction type (PSI-MI) O O O 

Interactor type (peptide, 
protein)     

O O 
 

Detection method (Text) O O 

Detection method (PSI-MI) O O O O 

Evidence (PMID or doi-
number)      

O 
 

PubMed ID O O O O O O 

BioGRID ID O

HPRD ID O

NCBI Gene ID O O O

Protein ID O O O 

ID type O O O 

Protein accession number O O

UniProt ID O

Link to source ID O O O O 

Description O O

Confidence score O O 

Table 3. Contents of primary PPI databases. Available contents are colored in grey with “O” 

shape. 

We have listed some of the major primary databases, meta-databases, and functional 

databases in Table 2. Comparisons among the primary databases are shown in Table 3. We 

compared various features including interaction types, detection methods, references, and 

biological and experimental roles. This information would be valuable for researchers when 

they need to select and integrate various PPI data bases. 
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2.2 Methods for PPI identification 

There are two major ways to determine PPIs. One is an experimental detection and the 
other is computational prediction. The former method is more reliable and well-
established in both small and large scales while the latter method is based on the 
characteristics of accumulated protein interactions. In this section, we will briefly describe 
both approaches. 

2.2.1 Experimental detection methods for PPIs  

Experimental detection of interactions between protein pairs is achieved by various 

methods. Here, we describe only two representative methods: yeast two-hybrid (Y2H) 

(Suter et al, 2008) and mass spectrometry (MS) (Berggard et al, 2007). These methods both 

detect physical PPIs but the type of PPIs is different. As previously stated, direct and binary 

PPIs are distinct from protein groups in a complex and this type of PPI is detected only by 

Y2H method. This method uses a transcription factor found in yeast which consists of two 

other domains. Y2H method relies on an artificial insertion of a protein coding sequence to 

one of the domains and another protein inserted on the other domain using a plasmid. PPI 

can be assessed by confirming phenotype of the target gene of the transcription factor. The 

Y2H method can detect PPIs in large-scale and the sensitivity is high, enabling detection of 

even weak transient PPIs. But, since the experiment is done only in the nucleus, the real 

location information of such PPIs is hard to annotate, which obscures the detailed biological 

interpretation. Moreover, Y2H detects only binary interactions and results in a high rate of 

false positive, which are noteworthy limitations. 

Another method in this category is based on mass-spectrometry (MS). The MS analyzes the 

mass of molecules rapidly and accurately. If the weight of all proteins in question is known, 

this information can be linked to the specific protein. This method is powerful when protein 

co-complexes are examined. Although it cannot provide details on the direct-level of 

interactions, the grouping of the proteins in a complex can be revealed. For this method, one 

protein (“bait”) and all of interacting partners in a complex are pulled out and separated by 

electrophoresis. Finally, all the constructs derived from electrophoresis are used for MS. This 

method yields many false positive results when the sampling strategy is thoroughly 

different. This sampling might include fake interactions resulting in a high rate of false 

readings. There are many strategies related to this problem (Bousquet-Dubouch et al, 2011; 

Gingras et al, 2007). The experimental results obtained with MS-based methods are different 

from those obtained with binary methods (Y2H). Data derived from co-complex 

experiments cannot directly assign a binary interpretation. An algorithm is needed to 

translate group-based observations into pairwise interactions. 

2.2.2 Computational prediction methods for PPIs 

While recent reviews (Lees et al, 2011; Pitre et al, 2008; Shoemaker & Panchenko, 2007; 

Skrabanek et al, 2008; Xia et al, 2010) have discussed computational prediction methods for 

PPIs in details, we here briefly introduce some of approaches that are widely used. 

Although the amounts of experimental resources of PPIs are growing rapidly, proteome-

wide PPIs information is still lacking and mostly limited on several model organisms. Given 

www.intechopen.com



 
Protein Interactome and Its Application to Protein Function Prediction 

 

71 

wide types of indirect but genome-wide resources, we can enhance our understanding of 

overall protein interactome. Methods in prediction of direct physical PPIs are less 

investigated than those of functional association between protein pairs. These functional 

association methods of PPIs can give information of which protein pairs have same 

biological process and potential physical interactions. 

The first data used in these prediction methods is genomic sequences. Co-occurrence-based 

methods use assumption that if gene pairs are co-inherited across evolutionary processes 

(i.e. species), they are considered as functionally associated (Barker & Pagel, 2005; Bowers et 

al, 2004; Pellegrini et al, 1999). These methods applied to microorganisms and successfully 

discovered novel participants of known pathway (Carlson et al, 2004; Luttgen et al, 2000). 

Other similar methods based on this genomic sequence use the information of gene fusion 

events (Marcotte et al, 1999; Reid et al, 2010; Zhang et al, 2006) and gene neighbourhood 

(Ferrer et al, 2010; Itoh et al, 1999; Koonin et al, 2001). Another type of data used is amino 

acid (AA) sequences and the interface of interacting protein pairs are composed of specific 

AA residues (Tuncbag et al, 2008; Tuncbag et al, 2009). This knowledge is reflected in the co-

evolution of specific interface residues between interacting proteins and by alignments of 

multiple sequences, the results are highly correlated with physical PPIs (Pazos et al, 2005). 

Commonly occurring domain pairs are also considered in this context (Eddy, 2009; Finn et 

al, 2010; Stein et al, 2009; Yeats et al, 2011) and simple AA sequence such as 3-mers of 

interacting residues can be used (Ben-Hur & Noble, 2005). Another well-known information 

is homology of PPIs across different species. Methods on this information simply find PPIs 

which are conserved across species, called interologs (Matthews et al, 2001). Here, any 

known PPIs regarded as query to find conserved interactions across species using an 

ortholog database. There are many algorithms which follow this approach (Kemmer et al, 

2005; Persico et al, 2005). Aside from the sequence-level data, structural information is also a 

valuable resource to predict PPIs, especially a protein 3D structure. (Aloy & Russell, 2003; 

Ezkurdia et al, 2009; Hosur et al, 2011; Shoemaker et al, 2010; Singh et al, 2010; Zhang et al, 

2010). A huge amount of genome-wide gene expression profiles are another useful data to 

predict PPIs and they are investigated to define gene co-expression patterns of any pairs and 

consider higher correlation degree as higher probability of PPIs (Grigoriev, 2001; Lukk et al, 

2010; Stuart et al, 2003). As shown in the earlier section, there are many literature-curated 

PPI databases. While those approaches are based on the manual inspection, such PPIs 

information can be automatically extracted using a text-mining algorithm (Blaschke et al, 

2001; Szklarczyk et al, 2011; Tikk et al, 2010). 

3. Computational prediction methods for protein function 

Even before the prevalence of genome sequencing technologies, typical experimental 

identification on a protein function has been executed. Such identification has focused on a 

specific target gene or protein, or a small set of protein complexes. Gene knockout, knockdown 

of gene expression, and targeted mutations are some methods for protein function 

identification (Recillas-Targa, 2006; Skarnes et al, 2011). Such low-throughput experiments 

were replaced by high-throughput experiments including genome sequencing and 

determination of the protein interactome. Computational methods followed by massively 

archived data have been developed for better analysis. Based on the assumption that structural 
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similarity correlates with functional similarity, homology-based functional annotation across 

organisms has now become a trivial approach (Aloy et al, 2001; Gaudet et al, 2011). 

3.1 Non-network based approaches 

Classical computational methods use features from only a single protein in prediction of 

protein function (Bork et al, 1998). These approaches use a set of features like amino acid 

sequences, genome sequences, protein structures (2D and 3D), phylogenetic data, and gene 

expression data. PSI-BLAST (Altschul et al, 1997) and FASTA (Mount, 2007) are popular 

sequence alignment tools used to reveal homologous proteins between known and 

unknown (query) proteins. Proteins with similar sequences are assumed to have similar 

functions. Moreover, protein folding patterns are also preserved enough to identify 

homologs (Huynen et al, 1998; Sanchez-Chapado et al, 1997). The comparative genomics 

across different species is a powerful approach for analysing functional annotation of 

proteins. In fact, it has been suggested that correlation of sequence-structure is much 

stronger than that of sequence-function (Smith et al, 2000; Whisstock & Lesk, 2003). So many 

approaches take the sequence to structure to function route for protein function prediction 

(Fetrow & Skolnick, 1998). 

Likewise, these data are showing only single aspect of functional features conserved 

during evolution. Data derived from different sources can be inter-connected it should be 

integrated to analyse simultaneously (Kemmeren & Holstege, 2003). We next show that 

PPI networks potentially enrich functional relationship between protein pairs that may 

not be detectable from other genomic data such as primary or higher level sequence 

structure. 

3.2 Network-based approaches 

As we mentioned in the Introduction, biological function is never achieved by a single 

protein. Rather, proteins dynamically interact with each other and the interacting partners 

adopt similar performances for specific functions. With a plethora of data being generated 

by high-throughput proteomic experiments, it has become possible to use proteome-wide 

PPI patterns in protein function prediction. Among a broad type of protein interactome, a 

PPI network generates well-known data that is invaluable in prediction of protein 

function. It is possible to annotate the function of undefined proteins according to its 

neighbours that are functionally annotated. This assumption is based on simple idea 

called “guilt-by-association”, and we consider an association by possible physical 

interaction in any condition and, sometimes, functional association are given with 

relevant evidence score. 

Here, we review the general network-based approaches in predicting protein functions. 

These approaches are categorized into two methods for better description. The first one is 

a straightforward method of inferring protein function based on the topological structure 

of a PPI network. The other method first identifies distinct sub-networks from a whole 

PPI network. These sub-networks are also referred to as functional modules since they 

perform specific biological functions such as protein complexes, and metabolic and 

signalling pathways. Functional modules are detected by a broad variety of clustering 
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algorithms and, thereafter, each module is annotated with appropriate functional 

association. In this section, basic concepts and pioneering studies on this corresponding 

approaches are introduced.  

3.2.1 Direct annotation of protein function using PPI network 

3.2.1.1 Neighbourhood approaches 

Direct functional annotation considers the correlation of the network distance between two 

proteins, which means the closer the two proteins are in the network the more similar are 

their functions. One of the earliest studies extrapolated only adjacent neighbours within an 

entire PPI network. This simple approach used information of the immediate 

neighbourhood and took the most common functions up to three among its neighbours. In 

spite of the effectiveness, accuracy was achieved by 72% (Schwikowski et al, 2000). 

However, this method lacked significance values for each association and the full network 

topology was not considered in the annotation process. A strategy was proposed to tackle 

the first problem of assigning statistical significance (Hishigaki et al, 2001). This was done by 

using
2

χ .-like scores and, instead of using the immediate neighbours, the n-neighbourhood 

of a protein that consists of proteins with distance of k-links to the protein is considered. 

Simply put, the neighbours of adjacent neighbours are taken into account with the 

frequencies of all the distance of in this neighbourhood. For an unknown protein, the 

functional enrichment in its n-neighbourhood in identified with 
2

χ test, and the top ranking 

functions are assigned to the unknown protein. In another approach, the shared 

neighbourhood of a pair of proteins are considered besides from the neighbourhood of the 

protein of interest. Chua et al. investigated the correlation between functional similarity and 

network distance (Chua et al, 2006). They developed a functional similarity score, called the 

FS-weight measure, which gives different weights to proteins depending on their network 

distance from the query protein. This approach showed higher accuracy when employing 

indirect interactions and its functional association. 

3.2.1.2 Global optimization approaches 

Although the neighbourhood approach is very attractive and effective by its simplicity, 

shortcomings arise when there is not enough number of protein neighbours and sufficiently 

annotated proteins. To overcome this issue, several approaches that utilize the entire 

topology of the network have been proposed. These global approaches attempt to optimize 

annotation of function-unknown protein using the topology of a whole network. One of the 

first studies that took this approach used the theory of Markov random fields, which 

determines the probability of a protein having a certain function (Deng et al, 2004). This 

theory is then used to determine the joint probability of the whole interaction network 

regarding to a certain function. This formulation is transformed to that of the conditional 

probability of a protein having a certain function given the annotations of its interaction 

partners. After that, the Gibbs sampling technique is iteratively applied to determine the 

stable values of this probability for each protein. This approach resulted in higher 

performance than those of neighbourhood-based approaches (Chua et al, 2006; Hishigaki et 

al, 2001; Schwikowski et al, 2000) when utilized to the yeast PPI data.  
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Additional attempts according to this approach had been followed. Here, the objective 

function is defined for the whole network, which is a sum of the following variables 

(Vazquez et al, 2003). 

1. The number of neighbours of a protein having the same function as itself. 
2. The number of neighbours of a protein having the function under consideration. 

Thus, this function estimates the number of pairs of interacting proteins with no common 

functional annotation. Since a high value of this function is biologically undesirable, it is 

minimized using a simulated annealing procedure. As expected, this approach 

outperformed the majority rule-based strategy on the Saccharomyces cerevisiae interaction 

data (Schwikowski et al, 2000), since the latter tried to optimize only the second factor 

above. An additional advantage of this approach was that multiple annotations of all 

proteins were obtained in one shot, unlike earlier approaches which ran independent 

optimization procedures for different functions. 

The above discussion shows that a wide variety of approaches based on principles of global 

optimization have been proposed in the literature and many more are in the pipeline. The 

most accurate results in the field of function prediction from PPI networks have also been 

achieved by these approaches, which is intuitively acceptable since they extract the 

maximum benefit from the knowledge of the structure of the entire network. 

3.2.2 Indirect annotation of protein function 

This approach uses a protein interaction network, not directly for annotation, but identifies 

functional modules first and then assigns functions to unknown proteins based on their 

membership in the functional modules. This is based on the assumption that most biological 

networks are organized as distinct sub-networks to give specific functions (Hartwell et al, 

1999). We assume that proteins in the same module participate in a similar biological process. 

Modular patterns and dense regions are found in the PPI network (Gavin et al, 2006).  

3.2.2.1 Distance-based clustering approaches 

To find biologically significant modules, clustering algorithms can be applied efficiently. 

Clustering is a popular unsupervised learning algorithm that does not use any prior 

information about the class label. There are two widely-used ways of clustering: topology-

based or distance-based. The key procedure in distance-based clustering is to select the 

similarity measure between two proteins to detect modules. The distance between two 

proteins (also called as nodes) in a network is usually defined as the number of interactions 

(also called as edges) on the shortest path between them. However, there is a serious 

problem in this hierarchical clustering, known as the ‘ties in proximity’ problem (Arnau et 

al, 2005). This means that the distance between many protein pairs are identical.  

To solve this problem, a network clustering method was developed to identify modules in 

the biological network based on the fact that each node has a unique pattern of shortest path 

lengths to every other node. But for a specific module in the network, the nodes/members 

of the module shared similar pattern of shortest path lengths (Rives & Galitski, 2003). 

Another study used the hierarchical clustering method with the shortest path length 
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between proteins as a distance measure to overcome the ‘ties in proximity’. This was 

achieved by exploiting equally valid hierarchical clustering solution with a random select 

when ties are met (Arnau et al, 2005). Although many methods in the similarity measures 

have been proposed, a single validation for such methods is insufficient. For this, two 

evaluation schema are suggested, which are based on the depth of a hierarchical tree and 

width of the ordered adjacency matrix (Lu et al, 2004). Furthermore, there are various types 

of cellular network with distinct modular patterns, and so network-specific methods should 

be investigated in the future.  

3.2.2.2 Graph-based clustering approaches 

Dissecting functional modules in a large PPI network is the same problem of graph 

partitioning and clustering. One of the pioneering method using this network topology-

based concept was the MCODE (molecular complex detection algorithm) (Bader & Hogue, 

2003). This method predicts complexes in a large PPI network consisting of three processes. 

First, the nodes of the network are weighted by their core clustering coefficients (the density 

of the largest k-core of its adjacent neighbourhood), and then densely connected modules 

are identified in a greedy fashion. The use of this coefficient instead of a standard clustering 

coefficient was proposed, as it increases the weights of densely interconnected graph 

regions while giving small weights to the less connected nodes. The next step is to filter or 

add proteins based on the connectivity criteria. This method was applied to large-scale PPI 

networks and given as a plug-in for the Cytoscape (Kohl et al, 2011). 

Another similar study to find complexes and functional modules is based on super 

paramagnetic clustering. This method used an analogy to the physical features of a 

heterogeneous ferromagnetic model to detect densely connected clusters in a large graph 

(Spirin & Mirny, 2003). There is also an algorithm called the restricted neighbourhood 

search clustering (RNSC), which starts with an initial random cluster assignment and then 

proceeds by reassigning nodes to maximize the partition’s score. Here, the score represents 

an intra-connectivity in the cluster, not an inter-connectivity across other clusters. The RNSC 

algorithm is known to perform better than the MCODE algorithm (King et al, 2004). The 

Markov clustering algorithm (MCL) is another fast and scalable clustering algorithm based 

on simulation of random walks on the underlying graph (Pereira-Leal et al, 2004). This 

algorithm has an assumption that a random walker in natural clusters (i.e. dense region of 

the graph) sparsely goes from one to another natural cluster. Such clusters in a whole graph 

are structurally identified by the MCL algorithm. It starts by measuring the probabilities of 

random walks through the graph to build a stochastic "Markov" matrix, by alternating two 

operations: expansion and inflation. The expansion takes the squared power of the matrix 

while the inflation takes the Hadamard power of a matrix, followed by a re-scaling. 

Therefore the resulting matrix is remained as stochastic. Clusters are detected by alternation 

of expansion and inflation until the graph is partitioned into distinct subsets where no paths 

between these subsets are available. This algorithm can be efficiently implemented to 

weighted and large dense graphs. Various PPI networks were applied using the MCL 

algorithm to find functional modules such as protein complex (Krogan et al, 2006). 

It is true that a protein might have multiple functions and this characteristics of a protein 

leads to overlap of different modules. That means graph partitioning in a strict manner 
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might not be reasonable for the PPI network. However, most current methods are based on 

the hard-partition algorithms, meaning that each protein can belong to only one specific 

module. To handle this limitation, a clustering algorithm based on the information flow was 

suggested. This algorithm efficiently identified the overlapping clusters in weighted PPI 

network by integrating semantic similarity between GO function terms (Cho et al, 2007). 

Since the common proteins in the overlapping modules are interpreted as a connecting 

bridge across the different modules, biologically significant and functional sub-networks 

could be identified. Still, there are few clustering methods identifying such overlapping 

modules. Novel clustering methods for this theme are required with enhancement of 

prediction accuracy. 

4. Prediction of protein subcellular localization 

4.1 Introduction 

Proteins should move to specific locations after synthesis to work in our body correctly. 

Thus, knowing subcellular localization of proteins is important to understand their own 

functions. Unicellular organisms like budding and fission yeasts can find systematic protein 

localization by experimental studies. However, such studies could not be performed well in 

higher eukaryotes such as Caenorhabditis elegans, Drosophila melanogaster, or mammals 

because of large-scale proteome sizes and technical difficulties associated with protein 

tagging.  

Therefore, bioinformatical approaches to develop efficient methods are required instead of 

wet experiments. Actually, many computational methods to predict subcellular localization 

of protein have been proposed over several decades. A considerable number of 

computational classification methods have been developed for this purpose. Typically these 

algorithms input list of features and output subcellular localizations of target proteins. The 

features contain various characteristics of the proteins. Molecular weight, amino acid 

content and codon bias can be the features. Input features for prediction of subcellular 

localization can be broadly categorized into four categories: protein sorting signals, 

empirically correlated characteristics, sequence homology with known answer sets, and 

other sources (Imai & Nakai, 2010). 

During the training phase, in the methods, learning utilizes a set of gold-standard proteins 

whose localizations are well known. This set consists of the feature vectors. After the 

training phase, a model is constructed to recognize those features or patterns of features that 

are useful and then predicts the subcellular localization of proteins whose localization is 

unknown. Various algorithms have been used to construct a model for prediction of sub-

cellular localization. 

In the field of bioinformatics, there are several problems to resolve for predicting subcellular 
localization of proteins. First, there are generally too many classes (localization). According 
to Huh et al, 22 distinct localizations exist in budding yeast. Next, one protein may have 
multiple different localizations (Huh et al, 2003). This is referred to a multi-label 
classification problem and traditional classification algorithms have a limit on handling the 
multi-label problem well. Another problem is that there may be a higher dimensional 
feature space for prediction. More than tens of thousands features exist in some cases. 
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Another issue is that data for each localization is too imbalanced. All these characteristics 
make the prediction difficult. More importantly, the localization prediction is sometimes 
difficult to achieve sufficient performance when we use information of single proteins only. 
Recently, large-scale protein-protein interaction networks have been elucidated in yeast, fly, 
worm, and human. To interact physically, two proteins should localize to the same or 
adjacent subcellular localization. That means we can get useful information of a protein 
from its interacting neighbours. Thus, we can improve the localization prediction 
performance particularly using PPI networks.  

4.2 Computational prediction of protein subcellular localization 

4.2.1 Single-protein feature based localization predictions 

Table 4 summarizes previous studies that have used the features of single proteins. The 

studies for prediction of subcellular localization have the following trends. The first is an 

increase in the number of predicting localizations. At first, Nakashima & Nishikawa 

predicted localization of a protein that is inter-cellular or extra-cellular using Amino Acid 

(AA) and Pair coupled Amino Acid (PairAA) (Nakashima & Nishikawa, 1994). After their 

study, many studies tried to increase the number of distinct localizations to predict. For 

example, Gardy et al predicted five distinct subcellular localization including ‘cytoplasmic’, 

‘inner membrane’, ‘periplasmic’, ‘outer membrane’ and ‘extra-cellular’ (Gardy et al, 2003). 

Nair & Rost predicted ten distinct subcellular localizations (Nair & Rost, 2003). Also, Chou 

& Cai predicted 22 distinct subcellular localizations that experimentally identified 

localization of Huh et al. (Chou & Cai, 2003).  

The second trend is handling of a multi-label problem. A protein can localize to several sub-

cellular locations. However, most of these studies did not consider multiple localization 

property, but rather assumed that a protein has a single representative localization. Also, the 

accuracy of prediction is lower when the number of distinct localizations for a protein is 

increased. Some researchers have been tried to address this issue (Lee et al, 2006).  

Another tendency is the development of a classification algorithm for an elaborate and 

efficient model construction. Least distance algorithm, artificial neural network, a nearest 

neighbour approach, a Markov model, a Bayesian network approach, and support vector 

machine (SVM) were used to archive the goal. Some studies mixed several algorithms. Lee 

et al. developed an algorithm that reflects of property of the prediction task (Lee et al, 2006). 

They developed an extended Density-induced Support Vector Data Description (D-SVDD) 

classification algorithm to handle well the issues related to class imbalance, higher 

dimensionality, multi-label, and many distinct classes. The classical D-SVDD algorithm can 

handle only one-class classification tasks. Thus, Lee et al. extended it to handle multi-label 

classification tasks.  

4.2.2 Network-based localization prediction 

As mentioned earlier, two proteins that localize to same or adjacent subcellular localization 
have a tendency to interact with each other. That means two proteins can be a tag protein to 
one other for subcellular localization. Therefore, if a molecular network such as PPIs is 
available, we may take advantage of the PPI network for the prediction. Several studies 
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tried to predict subcellular localization using network data. This section consists two parts: 
first one is a brief explanation of the study by Lee et al. (Lee et al, 2008), which is the 
cornerstone of the network-based approach for location prediction using PPI network. We 
describe a methodology to generate of feature vectors for a protein in the aforementioned 
study and introduce a DC-kNN classifier for the prediction. The second part is a summary 
of the network-based approaches from the work of Lee et al. to the present. 

 

Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 

(Nakai & 
Kanehisa, 1991) 

Expert Systems SignalMotif 4 X X 

(Nakai & 
Kanehisa, 1992) 

Expert Systems AA, SingalMotif 14 X X 

(Nakashima & 
Nishikawa, 1994) 

Scoring System AA, diAA 2 X X 

(Cedano et al, 
1997) 

LDA using 
Mahalanobis distance

AA 5 X X 

(Reinhardt & 
Hubbard, 1998) 

ANN Approach AA 3, 4 X X 

(Chou & Elrod, 
1999) 

CDA AA 12 X X 

(Yuan, 1999) Markov Model AA 3, 4 X X 
(Nakai & Horton, 

1999) 
k-NN approach SignalMotif 11 X X 

(Emanuelsson et 
al, 2000) 

Neural network SignalMotif 4 X X 

(Drawid & 
Gerstein, 2000) 

CDA 
Gene Expression 

Pattern
8 X X 

(Drawid & 
Gerstein, 2000) 

Bayesian Approach 
SignalMotif, 
HDEL motif

5, 6 X X 

(Cai et al, 2000) SVM AA 12 X X 
(Chou, 2000) Augumented CDA AA, SOC factor 5, 7, 12 X X 

(Chou, 2001) 
LDA using various 
distance measures

pseuAA 5, 9, 12 X X 

(Hua & Sun, 2001) SVM AA 4 X X 
(Chou & Cai, 

2002) 
SVM SBASE-FunD 12 X X 

(Nair & Rost, 
2002) 

Nearest Neighbor 
Approach

functional 
annotation

10 X X 

(Cai et al, 2003) SVM 
SBASE-FunD, 

pseuAA 
5 X X 

(Cai & Chou, 
2003) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA
3, 4 X X 

(Chou & Cai, 
2003) 

LDA using various 
distance measures 

pseuAA 14 X X 

(Pan et al, 2003) Augumented CDA pseuAA with filler 12 X X 
(Park & Kanehisa, 

2003) 
SVM AA, diAA, gapAA 12 X X 

(Zhou & Doctor, 
2003) 

Covariant discrinant 
algorithm

AA 4 X X 

(Cai et al, 2003) SVM 
SBASE-FunD, 

pseuAA
5 X X 
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Author(s) Method(s) Feature(s) # Classes Multi-label Imbalanced 

(Gardy et al, 2003) SVM, HMM, Baysian 
AA, motif, 

homlogy analysis
5 X X 

(Reczko & 
Hatzigerrorgiou, 

2004) 
ANN Approach AA, SingalMotif 3 X X 

(Huang & Li, 
2004) 

fuzzy k-NN diAA 11 X X 

(Cai & Chou, 
2004) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
3, 4 X X 

(Chou & Cai, 
2005) 

Nearest Neighbor 
Approach 

FunDC(5875D), 
pseuAA 

3, 4 X X 

(Bhasin & 
Raghava, 2004) 

SVM AA, diAA 4 X X 

(Lee et al, 2006) PLPD 
AA, diAA, 

gapAA, 
InterProFunD 

22 O O 

(Chou & Shen, 
2007) 

Nearest Neighbor 
Approach 

GO, 
InterProFunD, 

pseuAA 
22 O X 

(Shatkay et al, 
2007) 

SVM 
SignalMotif, AA, 
text-based feature

11 X X 

(Garg et al, 2009) k-NN, PNN 

AA, sequence 
order, 

physicochemical 
properties 

11 X X 

(Zhu et al, 2009) SVM AA, PSSM 14 O X 
(Shen & Burger, 

2010) 
SVM 

AA, groupedAA, 
gapAA,, GO 

4 X X 

(Mei et al, 2011) SVM 
AA, diAA, 

gapAA, GO 
10 O X 

(Wang et al, 2011) Frequent Pattern Tree
Motif, Overall-

sequence 
12 X X 

(Mooney et al, 
2011) 

N-to-1 Neural 
Network 

BLAST 5 X O 

(Tian et al, 2011) PCA, WSVM PesAA 20 X X 

(Pierleoni et al, 
2011) 

SVM 
AA, ChemAA, 
protein length, 

GO 
3 X X 

Table 4. Summary of previous methods for prediction of protein subcellular location.  

4.2.2.1 Generation of feature vectors 

Lee et al. used three types of feature to predict the localization and integrated these features 

(Lee et al, 2008). These are single protein features (S) and two kinds of network 

neighbourhood features (N and L).  

Seven S features were based on a protein’s primary sequence and its chemical properties. 

Amino acid composition frequencies (AA), adjacent pair amino acid frequencies (diAA) and 

pair-wise amino acid frequencies with a gap which is length of 1 (gapAA) from a protein’s 
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primary sequence were used. Also, three kinds of chemical amino acid compositions 

(chemAA) were generated from normalized hydrophobicity (HPo), hydrophilicity (HPil), or 

side-chain mass (SCM). Also, they combined these chemical properties into pseudo-amino 

acid composition (pseuAA), which is another S feature vector. Occurrences of known 

signalling motifs in the primary protein sequence (Motif) are also used as one of the S 

features. The last S feature encoded functional annotations of the protein from Gene 

Ontology (GO) (Ashburner et al, 2000). Figure 1 provides an example. 

N network features are summary of S features from neighbourhood of a protein. Knowledge 

for neighbours of a protein comes from PPI data, which are pooled from various databases 

such as BioGRID (Stark et al, 2011), DIP (Salwinski et al, 2004) and SGD (Engel et al, 2010). L 

network features are summary of location distribution of interacting neighbours. Figure 2A 

shows a relationship among the three PPI databases. It shows that a single protein 

interaction database covers a different part of the whole reported interactions. The diagonal 

pattern in Figures 2B-D shows that interacting protein pairs share similar localization 

information. For example, a protein in an “ER to Golgi” tends to interact with other proteins 

which localized in the “ER to Golgi” more than other localizations. 

 
 

 
 

Fig. 1. Summary of feature generation scheme for a single protein (adapted from Lee et al, 2008). 
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Fig. 2. Correlation between known localizations and protein interactions of yeast proteins. 
(A) The number of interactions (inside the circles) and the fraction of interactions whose 
proteins share localization information (outside the circles) of three interaction databases: 
BiG, DIP and SGD. (B-D) They show that interacting protein pairs have similar localization 
information in DIP, BiG and SGD (adapted from Lee et al, 2008). 

4.2.2.2 Divide-and-Conquer k-Nearest Neighbour (DC-kNN) Classifier 

After generating feature vectors, large-scale feature vectors with a high order may generate. 

A high dimensional feature vectors generally cause some problems like curse-of-

dimensionality. In other words, data from higher dimensional feature vectors usually require 

a corresponding amount of inputs and it, sometimes, causes an over-fitting problem to a 

given dataset (Guyon et al, 2002). Also some feature vectors may be useless in constructing a 

model for a specific localization. Thus, individual model for different subcellular 

localizations may require different sets of useful feature sets. Therefore, extraction for 

feasible feature vectors for individual localizations may be needed to construct robust and 

reliable prediction models. 

To construct a prediction model, Lee et al. proposed a DC-kNN classifier which is a variety 

of a k-Nearest Neighbours classification algorithm. A DC-kNN classifier tackles high-

dimensional features in a divide-and-conquer manner. Briefly mentioning, a DC-kNN has 

three main steps (Figure 3): dividing, choosing, and synthesizing. In the dividing step, the 

full feature vector is divided into m meaningful subsets. After the dividing step, the k-

nearest neighbours are chosen for each protein and for each subvector. In the synthesizing 

step, results of kNNs of individual m sets are synthesized to produce confidence scores 
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using an average of Area under the ROC curve (AUC) for each localization. DC-kNN finds a 

feasible combination of feature sub-vectors for each label (localization) based on a feature 

forward selection approach.  

 

Fig. 3. Brief description of a DC-kNN (adapted from Lee et al, 2008). 

4.2.3 Results of location prediction 

Lee et al. first compared prediction performance of a DC-kNN for localization prediction 

with different feature sets: S features only, N features only, L features only, all features 

together (S+N+L), and random guesses. N and L features are generated using DIP 

(Salwinski et al, 2004). Performance of each case was evaluated by the technique of leave-

one-out cross-validation (LOOCV). Proteins of Saccharomyces cerevisiae (n=3914) (Huh et al, 

2003) were used for the LOOCV. They used three different performance metrics: Top-K, 

Total, and Balanced. These metrics were used to summarize the results of 3914 LOOCV 

runs. Top-K measurement considers as correct if at least one of the real localization of a 

protein is in the top-K predictions. Total measurement counts all the correctly predicted 

localizations based on the number of real localizations of test data. Balanced measure 

calculates the averaged fraction of correctly predicted proteins in each localization. As a 

result, every classifier showed clearly better performance than random guess (Figure 4A), 

and combination of S, N, and L features showed the highest performance. 

Figures 4A and 4B inform that information of neighbourhood acquired from a PPI 

database improves prediction performance. However, Figure 4C illustrates that acquiring 

more information does not always contribute to an improvement of performance. On the 

contrary, additional information can decrease prediction performance. To find the 

necessary feature vectors for each localization, Lee et al. used a DC-kNN and found 

feasible subsets using the prepared feature vectors for individual localizations (Figures 4C 

and 4D). Using the selected features for individual localizations, the average of the AUC 

values was 0.94. 
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Fig. 4. (A) Shows performance of the classifiers by input from various kinds of feature. 
(B) shows performance for combination of feature vectors. (C) shows averaged AUC of the 
classifier for each localization based on feature selection using a DC-kNN. (D) shows 
selected feature sets for each of 22 localizations in yeast (adapted from Lee et al, 2008). 
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Based on the methodology, Lee et al. applied their method to the prediction of the 
localizations of genome-wide yeast proteins. Surprisingly, they also validated novel 
localizations of 61 proteins. For example, Huh et al. reported that Noc4/Ypr144c and 
Utp21/Ylr409c were localized in the nucleus (Huh et al, 2003). However, the proposed 
method developed by Lee et al. predicted the localization of the both proteins as the 
nucleolus. They revaluated for both proteins using new experiments and finally confirmed 
the previous results of Huh et al. had errors (Figures 5A and 5B). The correct prediction 
mainly owes to the fact that Lee et al. combined evidence from multiple interacting partners. 
For example, Noc4 interacts with many other proteins known to exist in the nucleolus, so we 
can assume that Noc4 localizes nearby or directly in the nucleolus. They confirmed the 
assumption by the network neighbours (Lee et al, 2008) (Figure 5C). 

The number of localizations and known PPIs for yeast proteins are larger than those for 
other organisms. In other words, some organisms have less information on known 
localization and protein interaction, which might make the location prediction difficult 
based on a PPI network. Lee et al. evaluated their method using yeast data with some 
random missing information (Lee et al, 2008). As a result relatively robust results were 
obtained with less information. For example, the average number of neighbours of a protein 
in yeast is 27 and the number in worm is three. Decrement in the number of neighbours 
from yeast to worm was 9-fold. However, the average of AUC value decreased from 0.94 
(yeast) to 0.87 (worm) (Figure 6). In other words, their method can be easily applied, not 
only to yeast but to other species with less known localization and/or interaction 
information. Actually they predicted subcellular localization of fly, human, and Arabidopsis 
(Lee et al, 2008; Lee et al, 2010b) using protein interactions. The results of both works 
showed that the prediction worked well for the other organisms and could find real 
localizations of some unknown proteins (Figures 6-7). 

They also compared a DC-kNN with two previous popular methods, ISort (Chou & Cai, 
2005) and PSLT2 (Scott et al, 2005). ISort is a comprehensive sequence-based machine 
learning method. ISort can predict more than 15 compartments. PSLT2 is a previous method 
that used a protein interaction network to predict subcellular localizations. They compared 
to DC-kNN with ISort and PSLT2 using both total and balanced measures. As illustrated in 
Figure 8, DC-kNN outperformed both methods in total and balanced measurement. 

4.2.4 Other network-based methods 

After the study of Lee et al. in 2008, several studies based on network-based approaches 
tried to predict subcellular localization. Mintz-Oron et al. used a constraint-based method 
for predicting subcellular localization of enzymes based on their embedding metabolic 
network, relying on a parsimony principle of a minimal number of cross-membrane 
metabolite transporters (Mintz-Oron et al, 2009). They showed that their method 
outperformed pathway enrichment-base methods. Another group constructed a decision 
tree-based meta-classifier for identification of essential genes (Acencio & Lemke, 2009). 
Their method relied on network topological features, cellular localization and biological 
process information for prediction of essential genes. Tung & Lee integrated various 
biological data sources to get information of neighbour proteins in a probabilistic gene-
network (Tung & Lee, 2009). They predicted the subcellular localization using a Fuzzy k-
nearest neighbour classifier. Lee et al. curated IntAct Arabidopsis thaliana PPI dataset    
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Fig. 5. (A, B) represent results of new experiments for Noc4/Ypr144c and Utp21/Ylr409c. 
(C) shows the interacting neighbours of Ypr144c (adapted from Lee et al, 2008).  
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Fig. 6. Averaged AUC values across different organisms (adapted from Lee et al, 2010b). 

 

Fig. 7. Generated models for the location prediction for Fly (A), Human (B), and Arabidopsis 
(C) (adapted from Lee et al, 2008 and Lee et al, 2010b). 
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Lee et al. curated IntAct Arabidopsis thaliana PPI dataset (Aranda et al, 2010) using the DC-
kNN method, which was proposed before and which showed good performance (Lee et al, 
2010b). They also showed that the DC-kNN is applicable to other organisms. Kourmpetis et 
al. predicted a function of proteins in Saccharomyces cerevisiae based on network data, such as 
PPI data (Kourmpetis et al, 2010). They took a Bayesian Markov Random field analysis 
method for prediction and predicted the functions of 1170 un-annotated Saccharomyces 
cerevisiae proteins. 

 

Fig. 8. Performance comparison of Isort, PSLT2 and DC-kNN (adapted from Lee et al, 2008). 

5. Conclusions 

We reviewed on PPI databases and the methods for detection of PPIs. Then, the 

computational methods of protein function prediction were briefly reviewed. We finally 

discussed that the prediction of protein function, especially the subcellular localization, 

shows outstanding performance when using PPIs data. This is because real biological 

functions are maintaining through a cascade of PPIs. Moreover, the computational 

approaches are very much promising when compared to the experimental identification 

especially for the false reading corrections. Functional genomics is an ongoing field in 

systems biology and this must be done well to drive further progress. We are facing other 

issues concerning the lack of conditional protein interactomes. We have identified and 

accumulated only static information at the molecular level in cells to make a scaffold of 

cellular systems. Computational methods should be applied to this conditional analysis 

when sufficient data become available and the next field of utilization would be 

personalized medicines, such as the early diagnosis with specific markers and treatments 

with specific drug targets. 
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