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1. Introduction 

PID is one of the earliest and most popular controllers. The improved PID and classical PID 
have been applied in various kinds of industry control fields, as its tuning methods are 
developing. After the PID controller was first proposed by Norm Minorsky in 1922, the 
various PID tuning methods were developing and the advanced and intelligent controls 
were proposed. In the past few decades, Z-N method which is for first-order-plus-time- 
delay model was proposed by Ziegler and Nichols (Ziegler & Nivhols, 1943), CHR method 
about generalized passive systems was proposed by Chien, Hrones and Reswick (Chien et 
al., 1952), and so many tuning methods were developed such as pole assignment and zero-
pole elimination method by Wittenmark and Astrom, internal model control (IMC) by Chien 
(Chien & Fruehauf, 1990). The gain and phase margin (GPM) method was proposed by 
Åström and Hägglund (Åström & Hägglund, 1984), the tuning formulae were simplified by 
W K Ho (Ho et al., 1995). 

In classical feedback control system design, the PID controller was designed according to 
precise model. But the actual industrial models has some features as follows: 

1. The system is time variant and uncertain because of the complex dynamic of industrial 
equipment. 

2. The process is inevitably affected by environment and the uncertainty is introduced. 
3. The dynamic will drift during operation. 
4. The error exists with the dynamic parameter measurement and identification. 

So there are two inevitable problems in control system designing. One is how to design 
robust PID controller to make the closed-loop system stable when the parameters are 
uncertain in a certain range. The other is the performance robustness which must be 
considered seriously when designing PID controllers. The performance robustness is that 
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when the parameters of model change in a certain interval, the dynamic performances of 
system are still in desired range. 

This chapter discusses the new idea mentioned previous – Performance Robustness. Based 
on the famous Monte-Carlo method, the performance robustness criterion is proposed. The 
performance robustness criterion could give us a new view to study the important issue that 
how the PID controller performs while the parameters of model are uncertain. Not only the 
stability, but also the time-domain specifications such as overshoot and adjusting time, and 
the frequency-domain specifications such as gain margin and phase margin can be 
obviously clear on the specification figures.  

The structure of this chapter is as follows. A brief history of Monte-Carlo method is given in 
section 2. The origin, development and latest research of Monte-Carlo method are 
introduced. The performance robustness criterion is discussed in detail. This section also 
contains several formulas to explain the proposed criterion. In section 3, the performance 
robustness criterion is applied on typical PID control systems comparison, the detailed 
comparisons between DDE method and IMC method, and between DDE method and GPM 
method. Finally, section 4 gives out a conclusion. 

2. Monte-Carlo method in performance robustness criterion 

2.1 A brief history of Monte-Carlo method 

Monte-Carlo method is also called random sampling technology or statistical testing 
method. In 1946, a physicist named Von Neumann simulated neutron chain reaction on 
computer by random sampling method called Monte-Carlo method. This method is based 
on the probability statistics theory and the random sampling technology. With the further 
development of computer, the vast random sampling test became viable. So it was 
consciously, widely and systematic used in mathematical and physical problems. The 
Monte-Carlo method is also a new important branch of computational mathematics.  

In the late 20th century, Monte-Carlo method is closely linked the computational physics, 
computational statistical probability, interface science of computer science and statistics, and 
other boundary discipline. In addition, the Monte-Carlo method also plays a role for the 
development of computer science. In order to show the new performance evaluation 
method of mainframe which has multi-program, variable word length, random access and 
time-shared system, the performance of developed computer was simulated and analysed 
on the other computer. The relationship could be clear via the study on different target.  

Large numbers of practical problems on nuclear science, vacuum technology, geological 
science, medical statistics, stochastic service system, system simulation and reliability were 
solved by Monte-Carlo method, and the theory and application results have gained. It was 
used in simulation of continuous media heat transfer and flow (Cui et al., 2000), fluid theory 
and petroleum exploration and development (Lu & Li, 1999). Monte-Carlo method was 
combined with heat network method to solve the temperature field of spacecraft, and the 
steady-state temperature field of satellite platform thermal design was calculated and 
analysed (Sun et al., 2001). In chemical industry, Yuan calculated the stability of heat 
exchanger with Monte-Carlo method, and it was used in selection and design (Yuan, 1999). 
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In power system, Monte-Carlo method was applied in reliability assessment of generation 
and transmission system, the software was design and the application was successful (Ding 
& Zhang, 2000). 

2.2 Performance robustness criterion based on Monte-Carlo method 

Consider the SISO system as follows: 

 
( )

( )
( )

LsN s
G s e

D s
   (1) 

In this system, N(s) and D(s) are coprime polynomials, and D(s)'s order is greater than or equal 
N(s)'s order, L is rational number greater than or equal to zero. The controlled model is some 
uncertain, and the parameters of N(s) and D(s) are variable in bounded region. So, the model 
is a group of transfer function denoted by {G(s)}. The control system is shown in figure 1.  

PID G
—

r y
u

e

 
Fig. 1. Control system structure 

The controller is PID controller: 

 
1

( ) (1 ) ( )p d
i

u s K T s e s
T s

     (2) 

or 

( ) ( ) ( )i
p d

K
u s K K s e s

s
    

The parameters Kp, Ki, Kd are positive number, and all of the PID controllers compose a 
controller group denoted by {PID}. 

The PID tuning methods are used on the nominal controlled models, and the closed-loop 
systems are obtained. The overshoot %  and adjustment time Ts are considered as dynamic 
performance index. Because the controlled models are a group of transfer function, the 
dynamic performance index is a collection, denoted by: 

  %, ST   (3) 

Obviously, it is a collection of two-dimension vector an area in plane plot. The distance 
between this area and origin reflects the quality of control system, and the size of this area 
shows the dispersion of performance index, that is the performance robustness of control 
system. 
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The comparison study on PID tuning methods should follow the steps below: 

1. Confirm the controlled model transfer function and parameter variety interval, and the 
transfer function group is obtained. 

2. Confirm the compared PID tuning methods, and choose the appropriate experiment 
times N to ensure the dispersion of performance index invariable when the N is larger. 

3. Tuning PID controller for the nominal model. 
4. In every experiment, a specific model is selected from the transfer function group by a 

rule (random in this paper). With the PID controller obtained in step three, the step 
response of closed-loop PID control system is tested, and the overshoot and adjustment 
time could be measured. 

5. Repeat the step 4 N times, and plot the performance index on coordinate diagram. So, 
the N points compose an area on the coordinate diagram. 

6. Repeat the step 3-5 by different tuning methods. 
7. Compare the performance index of different tuning methods. 

In next section, performance robustness is applied on PID control system comparison. 

3. Performance robustness comparisons 

3.1 Performance robustness comparison of typical PID control systems 

In this section, we consider four typical models as follows: 

1. First-order-plus-time-delay model (FOPTD) 

 ( )
1

sLk
G s e

sT



 k, T, L>0.  (4) 

2. Second-order-plus-time-delay model (SOPTD) 

 
1 2

( )
(1 )(1 )

sLk
G s e

sT sT


 
 k, T1, T2, L>0  (5) 

or 

2

2 2( )
2

sLn

n n

G s e
s s


 


 

 0n  , 1 0  ,L>0. 

3. High-order model 

 ( )
(1 )n

k
G s

sT



 k, T>0, 3n  and n N .  (6) 

4. Non-minimum model 

 
1 2

( )
( )

(1 )(1 )
k s a

G s
sT sT

 


 
 k ,T1, T2, a>0.  (7) 

The classical PID tuning methods are showed in table 1. 
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Tuning methods Kp Ti Td 
Z-N 1.2T/kL 2L L/2 
CHR 0.6T/kL T L/2 

Cohen-Coon 
1.35 0.18

1
T L

kL T

  
 

 
0.5 2.5
0.61

L T
L

L T




 
0.37

0.19
T

L
L T

 

IMC 
0.5
( )f

L T

k L T




 T+L/2 
2

LT

L T
 

IST2E 
904.0

968.0









T

L

k  TL

T

/253.0977.0 

0.892

0.316
L

T
T

 
 
 

 

GPM 

p

m

W T

A k
 

124 1
2 p

p

W L
W

T


 
  
 
 

  

LA

AAA
W

m

mmmm
p

)1(

)1(5.0
2 






 

Table 1. Formulas of classical PID tuning method 

If the tuning object is zero overshoot, the selection of IMC method free parameter Tf will 
only correlate to delay-time L. We fit the approximate relation between L and Tf. 

 
3 2

1 2 3 4     L 100

/ 2                                    L 100
f

f

T p L p L p L p

T L

     


 
  (8) 

where 

p1=-1.7385×10-5，p2=3.0807×10-3，p3=0.3376，p4=5.6400. 

The different transfer function models can be simplified and transferred to FOPTD 
model(Xue, 2000). 

Suppose the FOPTD (4).  

Calculate the first and second derivative and then we obtain 

 1

1

( )
( ) 1

G s T
L

G s Ts


  


  (9) 

and 

 
2 2

1 1
2

1 1

( ) ( )
( ) ( ) (1 )

G s G s T

G s G s Ts

  
  

 
. (10) 
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when s=0, 

 1

1

(0)
(0)ar

G
T L T

G


      (11) 

and 

 2 21

1

(0)
(0) ar

G
T T

G


    (12) 

We can get L and T from equation above, and the system gain can be obtained directly by 
k=G(0). 

So, in actual application, if we have the transfer functions, the more accurate FOPTD 
equivalent models will be get. 

For example, the transfer function is 

 3
1

( )
(20 1)

G s
s




.  (13) 

The approximate FOPTD model is  

 25.36
1

1
( )

34.64 1
sG s e

s



. (14) 

The step response is shown in figure 2. 

For FOPTD model (4), the L/T is very important. So, there are three cases to be discussed L<T, 
L≈T and L>T. The parameters and simulation results are shown in table 2, 3, figure 3, 4 and 5. 

 
Fig. 2. Step response comparison (the solid line is original system and the dotted line is 
approximate system) 
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  CHR    IMC    Pole assignment 

           

GPM     IST2E 

Fig. 3. Simulation results of FOPTD model when L<T (the abscissa represents overshoot and 
the ordinate represents adjustment time) 

 

 CHR    IMC    Pole assignment 

 

 GPM    IST2E     Z-N  

Fig. 4. Simulation results of FOPTD model when L≈T (the abscissa represents overshoot and 
the ordinate represents adjustment time) 
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 CHR    IMC    Pole assignment 

        

GPM     Cohen 

Fig. 5. Simulation results of FOPTD model when L>T (the abscissa represents overshoot and 
the ordinate represents adjustment time) 

In order to compare different method visualized, the figures which have too long 
adjustment time or too large overshoot are not included in figure 3, 4, 5, 7 and 8. 
 

L T k
L<T [18,22] [180,220] 1
L≈T [18,22] [18,22] 1
L>T [180,220] [18,22] 1

Table 2. Parameters of FOPTD model 

 

  CHR IMC Pole 
assignment GPM IST2E Cohen Z-N 

L<T 

Overshoot
(%) 

2.08~4.08
(3.10)

1.49~3.41
(2.48)

1.37~10.6
(4.54)

2.04~12.9
(5.86)

1.75~14.3
(4.42)

64.4~122 
(91.2) 

49.6~102 
(74.3) 

Adjustment 
time 

62.2~88.6
(81.6)

57.4~86.1
(77.2)

60.7~117
(83.2)

58.1~120
(89.7)

44.1~75.5
(56.3)

113~477 
(181) 

105~214 
(140) 

L≈T 

Overshoot
(%) 

6.22~13.5
(9.83)

0~4.27
(1.13)

0~9.03
(4.20)

0.50~10.9
(5.93)

1.40~15.2
(7.48)

21.6~52.5 
(36.8) 

0.57~12.0 
(3.58) 

Adjustment 
time 

122~147
(138)

46.3~72.3
(54.8)

64.3~126
(83.4)

61.2~125
(91.6)

41.3~95.4
(64.3)

74.8~225 
(136) 

70.5~128 
(90.1) 

L>T 

Overshoot
(%) 

7.11~16.6
(11.6)

0~13.6
(4.01)

1.36~7.79
(4.34)

2.20~9.94
(5.65)

Not
stable 0 0 

Adjustment 
time 

940~1147
(1051)

681~821
(743)

635~1137
(815)

602~1140
(855)

Not
stable

1571~1701 
(1642) >6000 

Table 3. Performance index of FOPTD model 
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For SOPID model (5), we choose 1 2, [16,24]T T   and [80,100]L . The nominal parameters 
are T1=T2=20, L=90. The simulation results are shown in table 4 and figure 6. 

 

 CHR    IMC    Pole assignment 

 

   GPM             IST2E     Cohen       

 

Z-N 

Fig. 6. Simulation results of SOPTD model (the abscissa represents overshoot and the 
ordinate represents adjustment time) 

For High-order model (6), we choose [16,24]T   and [0.8,1.2]k . The nominal parameters 
are T=20, k=1 and n=3. The simulation results are shown in table 5 and figure 7. 
 

 CHR IMC Pole 
assignment GPM IST2E Cohen Z-N 

Overshoot 
(%) 

6.20~17.1
(11.7)

0~4.44
(0.65)

0.25~11.0
(4.66)

0~1.41
(0.17) 0 0 0 

Adjustment 
time 

504~623
(577)

202~394
(365)

272~543 
(370)

389~505
(434)

394~518
(436)

627~719 
(665)

1927~1983 
(1956) 

Table 4. Performance index of SOPTD model 
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  CHR    IMC    Pole assignment  

 

GPM         IST2E     Z-N 

Fig. 7. Simulation results of High-order model (the abscissa represents overshoot and the 
ordinate represents adjustment time) 

 

 CHR IMC Pole 
assignment

GPM IST2E Cohen Z-N 

Overshoot 
(%) 

1.79~22.3
(11.1) 

0~17.8 
(6.46) 

0~5.93 
(0.420) 

0~6.59 
(0.820) 

0~26.9 
(12.3) 

5.49~35.3 
(20.0) 

0.493~21.4 
(9.79) 

Adjustment 
time 

77.9~238
(174) 

57.5~188
(118) 

122~277 
(187) 

134~290
(189) 

56.0~204
(128) 

69.1~185 
(113) 

48.4~170 
(117) 

Table 5. Performance index of High-order model 

For Non-minimum model (7), we choose 1 [4.5,5.5]T  , 2 [0.36,0.44]T  , [1,1.5]a  and 
[3.2,4.8]k . The nominal parameters are T1=5,T2=0.4, a=1.25 and k=4. The simulation 

results are shown in table 6 and figure 8. 

 

       CHR        IMC        Pole assignment 
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GPM     IST2E 

Fig. 8. Simulation results of Non-minimum model (the abscissa represents overshoot and the 
ordinate represents adjustment time) 

 

 CHR IMC Pole 
assignment GPM IST2E Cohen Z-N 

Overshoot(%) 2.56~7.27
(5.00) 

0~4.13 
(1.79) 

1.10~5.04 
(3.38) 

0~2.16 
(0.554) 

1.68~5.99
(3.75) 

Not 
stable 

Not 
stable 

Adjustment 
time 

3.18~12.7
(7.37) 

3.14~7.38
(4.78) 

1.76~5.06 
(2.83) 

4.49~11.1
(6.95) 

2.04~7.16
(3.39) 

Not 
stable 

Not 
stable 

Table 6. Performance index of Non-minimum model 

From the simulation results above, it is clear that the GPM method and IMC method are 
superior to other compared tuning methods. 

3.2 Performance robustness comparison of DDE and IMC 

The desired dynamic equation method (DDE) is proposed for unknown models. This two-
degree-of-freedom (2-DOF) controller designing can meet desired setting time, and has 
physical meaning parameters (Wang et al., 2008).  

In this section, we consider 15 transfer function models as follows. 

1

1
( )

( 1)(0.2 1)
G s

s s


   
(15) 

2 3

( 0.03 1)(0.08 1)
( )

(2 1)( 1)(0.4 1)(0.2 1)(0.05 1)

s s
G s

s s s s s

  


      
(16) 

3 2

2(15 1)
( )

(20 1)( 1)(0.1 1)

s
G s

s s s




    
(17) 

4 4

1
( )

( 1)
G s

s


  
(18) 

5

1
( )

( 1)(0.2 1)(0.04 1)(0.0008 1)
G s

s s s s


     
(19) 
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2

6 2

(0.17 1)
( )

( 1) (0.028 1)

s
G s

s s s




   
(20) 

7 3

2 1
( )

( 1)

s
G s

s

 


  
(21) 

8 2

1
( )

( 1)
G s

s s


  
(22) 

9 2
( )

( 1)

se
G s

s




  

(23) 

10 2

1
( )

(20 1)(2 1)

sG s e
s s


   

(24) 

11 2

1
( )

(6 1)(2 1)

ss
G s e

s s

 


   
(25) 

0.3

12

(6 1)(3 1)
( )

(10 1)(8 1)( 1)

ss s
G s e

s s s

 


    
(26) 

13

2 1
( )

(10 1)(0.5 1)

ss
G s e

s s




   
(27) 

14

1
( )

s
G s

s

 


 
(28) 

15

1
( )

1

s
G s

s

 


 . 
(29) 

 

Case 
DDE-PID settings Approximation IMC settings 

0h  1h l sdt { , , , }P I DK K K b  k    1  2  { , , }C I DK    

G1(PI) 2.35 - 3 2 {4.12,7.83,3.33} 1 0.1 1.1 - {5.5,0.8} 
G2(PI) 0.45 - 13 10 {0.80,0.35,0.77} 1 1.47 2.5 - {0.85,2.5} 
G2PID 0.61 1.6 8 9 {2.02,0.86,1.44,1.94} 1 0.77 2 1.2 {1.30,2,1.2} 
G3(PI) 2 - 7 2.5 {1.71,2086,0.43} 1.5 0.15 1.05 - {2.33,1.05} 
G3PID 16 8 4 3 {24,40,4.5,20} 1.5 0.05 1 0.15 {6.67,0.4,0.15} 
G4(PI) 0.45 - 16 12 {0.65,0.28,0.63} 1 2.5 1.5 - {0.3,1.5} 
G4PID 0.59 1.5 12 15 {1.33,0.49,0.96,1.28} 1 1.5 1.5 1 {0.5,1.5,1} 
G5(PI) 2 - 5 3 {2.4,4,2} 1 0.148 1.1 - {3.72,1.1} 
G5PID 16 8 1 3 {96,160,18,80} 1 0.028 1.0 0.22 {17.9,0.22,0.22} 
G6(PI) 0.14 - 31 29 {0.33,0.045,0.32} 1 1.69  - {0.296,13.5} 
G6PID 0.85 1.9 2 13 {9.66,4.26,5.92,9.23} 1 0.358  1.33 {1.40,2.86,1.33} 
G7(PI) 0.53 - 30 16 {0.35,0.18,0.33} 1 3.5 1.5 - {0.214,1.5} 
G7PID 0.60 1.5 31 11 {0.57,0.23,0.38,0.55} 1 2.5 1.5 1 {0.3,1.5,1} 
G8(PI) 0.12 - 35 33 {0.30,0.036.0.29} 1 1.5  - {0.33,12} 
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Case 
DDE-PID settings Approximation IMC settings 

0h  1h l sdt { , , , }P I DK K K b  k    1  2  { , , }C I DK    

G8PID 0.32 1.1 8 15 {1.46,0.40,1.39,1.42} 1 0.5  1.5 {1.5,4,1.5} 
G9(PI) 0.63 - 15 10 {0.71,0.42,0.67} 1 1.5 1.5 - {0.5,1.5} 
G9PID 1 2 18 12 {1.17,0.56,0.67,1.11} 1 1 1 1 {0.5,1,1} 
G10(PI) 0.11 - 3 38 {3.37,0.35,3.33} 1 2 21 - {2.25,16} 
G10PID 0.03 0.4 1 11 {3.67,0.33,10.4,3.64} 1 1 20 2 {10,8,2} 
G11(PI) 0.14 - 9 28 {1.13,0.16,1.11} 1 5 7 - {0.7,7} 
G11PID 0.07 0.5 3 15 {1.80,0.24,3.51,1.78} 1 3 6 3 {1,6,3} 
G12(PI) 1.33 - 1.1 3 {10.3,12.1, 9.09} 0.23 0.3 1 - {7.41,1} 
G13(PI) 0.5  3 8 {3.50,1.67,3.33} 0.65 1.25 4.5 - {2.88,4.50} 
G14(PI) 0.4 - 15 10 {0.69,0.27,0.67} 1 1  - {0.5,8} 
G15(PI) 0.8 - 18 5 {0.64,0.76,0.59} 1 1 1 - {0.5,1} 

Table 7. Controller parameters 

The DDE and IMC method are used on them to compare the performance robustness. The 
controller parameters are shown in table 7. 10% parameter perturbation is taken for 
performance robustness experiment with 300 times.  

In order to compare the two methods easily, we divide them into four types shown in table 8. 
 

No. Type Model 
1 Normal model G1、G9、G12、G13

2 High-order model G3、G4、G5、G10 
3 Non-minimum model G2、G7、G11、G15

4 Model with integral G6、G8、G14 

Table 8. Four types of models 

The Normal model is simple and easy to control. The simulation results are shown in table 9 
and 10. 
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Model Controller Step response 
Performance robustness 
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Table 9. Simulation results of Normal model 

 

Model Method 
Overshoot(%) Adjustment time(s) 

Scope Mean Variance Scope Mean Variance 

G1 
DDE-PI 0~3.19 0.76 0.75 0.83~1.03 0.89 0.001 
IMC-PI 20.0~24.1 21.5 2.36 0.82~1.34 0.90 0.002 

G9 

DDE-PI 0 ~8.74 3.15 5.07 5.88~9.13 6.68 1.19 
IMC-PI 1.25~11.4 6.50 5.10 4.88~9.84 7.54 2.75 

DDE-PID 0~2.00 0.240 0.13 5.87~7.34 6.61 1.15 
IMC-PID 0~0.011 0 0 4.88~9.84 7.54 2.87 

G12 
DDE-PI 1.59~7.51 3.12 0.57 1.42~3.98 1.80 0.102 
IMC-PI 14.0~32.4 20.2 10.23 2.98~5.41 4.25 0.209 

G13 
DDE-PI 5.03~10.5 7.22 1.36 8.19~12.5 11.1 0.53 
IMC-PI 4.43~8.50 6.27 0.74 4.70~16.6 13.7 5.81 

Table 10. Performance index of Normal model 

For Normal model, the control effects of two tuning method are similar. Because the IMC 
method is based on FOPTD model and SOPTD model, the approximation error can be 
ignored and the DDE method is effective. 

Most of High-order model is series connection of inertial element in industry field 
(Quevedo, 2000). But, the simple PID is hard to control them because of the delay cascaded 
by inertial elements. The simulation results are shown in table 11 and 12. 
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Model Controller Step response 
Performance robustness 
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Model Controller Step response 
Performance robustness 
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Table 11. Simulation results of High-order model 

 

Model Method 
Overshoot(%) Adjustment time(s) 

Scope Mean Variance Scope Mean Variance 

G3 

DDE-PI 0.09~5.54 1.24 1.47 1.18~1.53 1.34 0.004 
IMC-PI 5.87~21.5 12.5 9.91 0.94~1.53 1.14 0.011 

DDE-PID 0.43~0.72 0.53 0.004 1.19~1.21 1.20 0 
IMC-PID 18.3~31.5 25.5 8.82 1.09~1.23 1.16 0 

G4 

DDE-PI 0~6.92 2.18 4.97 7.96~11.8 9.15 1.81 
IMC-PI 1.35~8.83 4.89 4.71 8.38~16.3 11.9 10.2 

DDE-PID 0.12~6.35 2.15 4.49 6.51~9.72 7.53 0.935 
IMC-PID 6.48~17.5 11.9 10.4 8.04~10.7 9.45 0.764 

G5 

DDE-PI 0.08~6.51 3.17 1.92 1.31~2.14 1.40 0.04 
IMC-PI 12.2~17.2 14.7 1.50 1.09~1.73 1.25 0.007 

DDE-PID 0.47~0.73 0.61 0.004 1.23~1.23 1.23 0 
IMC-PID 17.4~23.5 19.3 1.92 1.07~1.14 1.09 0 

G10 

DDE-PI 0~4.03 1.42 1.39 22.0~22.6 22.5 0.084 
IMC-PI 17.6~26.1 21.5 3.15 16.3~20.2 18.3 1.00 

DDE-PID 0.014~1.46 0.287 0.05 9.63~10.8 10.1 0.055 
IMC-PID 15.1~23.7 19.5 3.73 18.9~19.7 19.7 0.168 

Table 12. Performance index of High-order model 

It is clear that DDE method is as fast as IMC method on High-order model, but the 
overshoot is almost zero. DDE method also has good performance robustness especially on 
G3 and G5. 

The Non-minimum model has the zeros and poles on right half complex plane or time 
delay. The simulation results are shown in table 13 and 14. 
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Model Controller Step response 
Performance robustness 
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Table 13. Simulation results of Non-minimum model 
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Model Method 
Overshoot 

(%) 
Adjustment time 

(s) 
Scope Mean Variance Scope Mean Variance 

G2 

DDE-PI 0~1.24 0.099 0.058 8.52~9.72 8.92 0.05 
IMC-PI 0.60~7.31 4.20 1.78 4.85~9.14 5.87 2.01 

DDE-PID 1.91~6.09 3.76 0.967 5.65~9.07 6.21 0.91 
IMC-PID 6.36~13.7 10.1 2.51 6.52~8.31 7.55 0.18 

G7 

DDE-PI 0~8.38 2.10 5.24 9.47~16.0 11.1 2.49 
IMC-PI 0~6.53 2.30 2.74 10.1~18.1 11.6 3.47 

DDE-PID 0.06~12.1 2.93 9.71 6.09~12.3 8.37 3.54 
IMC-PID 0~12.1 3.49 10.7 5.62~12.3 7.87 4.03 

G11 

DDE-PI 0~5.53 1.46 1.93 22.6~32.6 23.7 1.16 
IMC-PI 3.22~11.7 7.47 2.98 15.4~32.6 27.1 15.4 

DDE-PID 0.043~3.0 0.507 0.272 19.0~23.3 20.7 0.91 
IMC-PID 11.6~21.8 16.7 4.99 18.7~25.7 22.4 2.31 

G15 
DDE-PI 0~2.82 0.66 0.567 2.07~3.45 2.73 0.007 
IMC-PI 0~0.69 0.07 0.015 2.50~3.95 3.23 0.112 

Table 14. Performance index of Non-minimum model 

For Non-minimum model, the two method has similar step response, but the undershoot is 
smaller with DDE method. DDE method also has good performance robustness. 

Integral is the typical element in control system. If a system contains an integral, it will 
not be a self-balancing system. It is open-loop unstable and easy to oscillate in close-loop. 
So it is hard to obtain a good control effect. The simulation results are shown in table 15 
and 16. 

The simulation results of Model with integral shows that the overshoot of IMC method is 
much larger than DDE method, and DDE method is much quicker than IMC method. The 
performance robustness of DDE method is better than IMC method. 

The comprehensive comparison is shown in table 17. 
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Model Controller Step response 
Performance robustness 
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Table 15. Simulation results of Model with integral 

 

Model Method 
Overshoot(%) Adjustment time(s) 

Scope Mean Variance Scope Mean Variance 

G6 

DDE-PI 1.99~5.64 3.68 1.15 11.6~16.2 12.5 2.09 
IMC-PI 29.3~37.0 33.2 5.24 19.4~23.1 21.2 1.29 

DDE-PID 0.544~6.33 2.70 2.21 4.29~11.0 6.07 1.63 
IMC-PID 38.4~53.5 46.0 17.8 8.97~10.3 9.53 0.139 

G8 

DDE-PI 0.353~2.3 1.19 0.33 13.4~14.4 13.9 0.0756 
IMC-PI 34.1~42.3 38.5 6.41 16.6~18.6 17.3 0.358 

DDE-PID 1.19~3.95 1.97 0.69 5.58~6.15 5.83 0.028 
IMC-PID 24.2~36.8 30.3 13.8 10.8~11.2 11.0 0.029 

G14 
DDE-PI 2.13~4.66 3.64 0.53 3.71~4.03 3.88 0.008 
IMC-PI 19.2~21.2 20.1 0.33 14.5~14.8 14.7 0.011 

Table 16. Performance index of Model with integral 

 

 DDE method IMC method 
Rise time Slow Fast 

Adjustment time Relatively fast Relatively fast 
Overshoot Small Large 

Performance robustness Good General 
IAE Large Small 

Demand of model Relative order Precise 

Table 17. Comparison of DDE method and IMC method 
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3.3 Performance robustness comparison of DDE and GPM 

In this section, we also consider the four typical models shown in table 18. 
 

No. Types of models Mathematical 
form Examples Parameters 
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perturbation. 
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Table 18. Four types of typical model 

According to desired adjustment time and prospective gain margin ~ phase margin to 
design controller in each DDE and GPM methods. Within nominal parameter, design PI 
controller for FOPTD model, design PID controller for SOPTD model, high-order model and 
non-minimum model. Proceed performance robustness experiment within 10%  parameter 
perturbation. In order to keep the comparison impartial, select adjustment time of GPM 
method as the desired adjustment time. Controller parameters are shown in table 19, results 
of Monte-Carlo simulation are shown in table 20, comparison of performance indices is 
shown in table 21. 

Simulation results show that DDE method has better performance robustness than GPM 
method generally. Apparently, the points on overshoot ~ adjustment time plane of DDE 
method concentrate more together near the bottom left corner than GPM method. Except the 
GP3 result, the points on gain margin ~ phase margin plane of DDE method are more 
concentrated than GPM method. 
 

Types of 
models 

DDE method GPM method 
Settings PID parameters Settings PID parameters 

tsd h0 h1 l k Kp Ki Kd b Am Pm Kc Ti Td Kp Ki Kd 
FOPTD  

Gp1 
12.5 0.8  11.6 10 0.93 0.68 0 0.86 3 60° 0.52 1 0 0.52 0.52 0 

SOPTD  
Gp2 

7.7  2.6 21.6 10 1.28 0.78 0.58 1.2 3 60° 0.52 1 0.5 0.78 0.52 0.26 

High-order 
Gp3 

20.8  0.96 6.5 10 1.51 0.36 1.69 1.48 3 60° 0.57 1.89 1.89 1.14 0.3 1.08 

Non-
minimum 

Gp4 
13  1.54 13.4 10 1.19 0.44 0.86 1.15 3 60° 0.33 1 1 0.66 0.33 0.33 

Table 19. Controller parameters 

www.intechopen.com



 
Performance Robustness Criterion of PID Controllers 

 

207 

Types 
of 

models 

Time-domain performance robustness Frequency-domain performance 
robustness 
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Table 20. Monte-Carlo simulations 

 

Types 
of 

models 

Tuning 
method 

Overshoot 
(%)

Adjustment time
(s) Gain margin Phase margin 

(°) 

Scope Mea
n 

Varian
ce Scope Mea

n 
Varian

ce Scope Mea
n 

Varian
ce Scope Mea

n 
Varian

ce 

GP1 

DDE 
method 0.00-3.20 0.35 0.0000 6.76-8.77 7.47 0.08 2.03-

3.03 2.50 0.05 65.72-
70.76 68.23 1.08 

GPM 
method 

0.00-
14.04 5.75 0.0009 3.43-7.11 5.75 0.73 2.46-

3.78 3.02 0.06 53.68-
65.33 60.11 6.52 

GP2 

DDE 
method 0.05-9.19 1.61 0.0003 4.08-8.61 5.53 0.89 2.69-

4.48 3.46 0.12 67.33-
71.59 69.46 0.85 

GPM 
method 

3.14-
22.26 12.79 0.0021 5.43-9.16 6.77 0.33 2.44-

3.81 3.02 0.08 53.78-
67.15 60.07 9.24 

GP3 

DDE 
method 

0.00-
0.35 0.01 0.0000 15.94-

18.79 17.13 0.41 3.23-
10.05 6.04 2.65 30.71-

75.76 71.34 84.1 

GPM 
method 

5.38-
26.78 16.63 0.0023 9.25-

17.28 12.66 5.83 1.70-
5.94 3.52 1.19 27.95-

80.70 61.67 196 

GP4 

DDE 
method 

0.00-
1.28 0.09 0.0000 7.19-

11.02 9.78 1.54 2.86-
3.60 3.23 0.04 68.07-

71.38 69.80 0.58 

GPM 
method 

10.35-
25.67 18.10 0.0013 9.73-

17.88 13.45 7.60 2.17-
3.98 3.06 0.30 35.61-

65.80 52.75 76.8 

Table 21. Comparison of performance index 
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The detailed comparison is shown in table 22. Obviously, DDE method has better 
performance than GPM method. Especially in time-domain, DDE method has nearly zero 
overshoot and equivalent adjustment time compared with GPM method. In most industry 
field, the unknown model is inevitable, the simple tuning method, small overshoot and 
good performance robustness are needed. So the 2-DOF DDE method is available for 
industry field to meet the high performance requirement. 

 
 
 
 

DDE Method GPM Method 

   

Controller Structure 2-DOF 1-DOF 

Approximation of Model No Yes 

Demand of Model Relative Order Precise 

Complicacy of Tuning Method Simple Simple 

Design Basis Time-domain Frequency-domain 

Overshoot Small Large 

   

Performance 
Robustness 

Time-domain Good Bad 

Frequency-domain Mostly Good Mostly Bad 

    

Table 22. Comparison of DDE method and GPM method 

4. Conclusions 

Combined the Monte-Carlo method, this chapter gives a new method to test the 
performance robustness of PID control system. This method do not need complex 
mathematical reasoning, but the simple simulations and visible results are easy to be 
accepted by engineers. The large numbers of simulations have been done to study the 
performance robustness of different PID tuning method with the proposed criterion. We 
can see that the IMC method and GPM method are superior to other classical method. 
Then the DDE method which does not base on precise model is compared with IMC 
method and GPM method. The simulation results show that the DDE method perform 
better than the other two methods in general, especially on the models which the  
IMC method and GPM method have to design controllers based on approximate model. 
So, the proposed performance robustness criterion is effective to test PID type 
controller. 

Although PID control is the most popular control method in the industry field, the 
advanced control theory is developing all the time. We are making effort to apply proposed 
performance robustness criterion on other type controller. 
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