
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Transformational Variability Modeling Approach
to Configurable Business System Application

Marcel Fouda Ndjodo1 and Amougou Ngoumou2
1University of Yaounde I

2University of Douala
 Cameroon

1. Introduction

For more than ten years now, adaptation of software systems has become a major challenge

for the software engineering community which has proposed different reference

architectures and systematic approaches to address this challenging research topic. In the

literature, the concept of adaptability is very broad and has many unclear and inconsistent

definitions, with many closed-related types of non functional requirements such as

flexibility, evolvability, transformability, reusability, robustness, configurability, etc. (see

(Subramanian & Chung, 2001a) for a sample of representative definitions). This broad

nature of adaptability makes it critical in practice since one of the problems in dealing with

it is to give a clear and non ambiguous definition of adaptation and adaptability.

This contribution is based on the intuitive definition of N. Subramanian and L. Chung who

consider that “adaptation means change in the system to accommodate change in its

environment”, and “adaptability is the extent to which a system adapts to change in its

environment” (Subramanian & Chung, 2001a, 2001b). Since we also agree with them that,

“software architecture should itself be adaptable for the final software system to be

adaptable”, this chapter, which is a continuation of our earlier work on business component

semantics (BCS) extension and transformation of feature-oriented models (Fouda &

Amougou, 2009, 2010), describes an engineering approach to support adaptation at

architectural level of enterprise systems.

The term enterprise system (ES) came into fashion somewhat recently, but the concept
behind it has been subject to academic discussion for a long time now and has evolved from
an historic development in Business, Computer Science, and Information Systems. Over the
last years, ES have evolved to comprehensive IT-supported business solutions that
presumptively support and enhance organizations in their operations. Often times, ES refer
to the larger set of all large organization-wide packaged applications with a process
orientation. They have to be configured to suit the requirements of an organization
(alignment with organizational requirements). In order to facilitate the alignment process,
most ES solutions provide reference models that describe the functionality and structure of
the system. But, research shows that reference models still are only of limited use to the
configuration process. According to M. Rosemanna and W.M.P. van der Aalst (Rosemanna

www.intechopen.com

Software Product Line – Advanced Topic

44

& van der Aalst, 2003), this is mainly due to a lack of conceptual support for configuration in
the underlying modeling language. Following this line of argumentation, they have defined
a language and a process for the design and usage of configurable reference models in a model-
driven approach towards ES configuration (Recker et al., 2006).

Computer-based systems built using ES are types of information systems (IS) which,
according to Jeffrey L. Whitten and al. (Whitten et al., 2001), are intrinsically linked to an
organization (also referred to, hereafter, as an enterprise) because “an IS is an arrangement
of persons, data, procedures and technology tools which interact to insure the collection,
processing, storage and the diffusion of essential information to the life of an organization”.
Since each enterprise must be adapted permanently to the evolution of its environment,
information systems are therefore intrinsically dynamic due to the fact that any adaptation
of an enterprise to its moving environment triggers an information system change whose
aim is to adapt the IS to its new environment.

A change in an IS, is any observable mutation and/or evolution of one or many of its
building blocks: people, data, processes or interface (Whitten et al., 2001; Zachman, 1987).
We qualify as “major” any change that results in a larger deviation of the information
system definition. While robustness (i.e. the ability to tolerate some deviations in the
environment) can be added to a software system at the design or even implementation
stage, adaptability (i.e. the ability to adapt to larger deviations in the environment) cannot
be added at such late stages. Adaptability can be enforced only if it is considered at the
architecture development stage (Subramanian & Chung, 2001b). We go further in that
direction by considering the IS architecture development stage, i.e. the enterprise process
modeling, should be the initial stage where adaptability is taken in consideration.

Enterprise modeling (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat, 2002)
is a critical building block to establishing an agile, robust enterprise architecture that keeps
pace with the fast moving business. It is the first building block in aligning the IT initiative
with the business objectives. The aim of an enterprise model, named here “business system
architecture” (BSA), is to bring together business operations and IT. The BSA serves as the
foundation, framework and guidepost necessary to understand the enterprise and its
environment.

The aim of this chapter is to propose and illustrate a reusable business component-based

approach to develop BSAs with an innate potential to evolve and adapt to new

requirements. To be more concise, the chapter’s contribution is two-fold: First, it introduces

an adaptable BSA modeling framework covering an architecture description language

which formalizes the FORM engineering assets (Kang et al., 2002, 2003; Lee et al., 2000) as

reusable business components (Ramadour & Cauvet, 2002) which provide domain

knowledge reusable during IS engineering and a generic abstract model for adaptable

business architectures. Second a transformational (Rotenstreich, 1992) engineering process

for adaptable BSA design and use is given.

Our approach is an integrated system product line approach, like PLUSS+ (Eriksson et al.,
2010), in the sense that it extends traditional systems engineering by incorporating ideas
from software product line (SPL) engineering. It integrates a product line method managing
variability with a software engineering methodology. It is based on the traditional domain
engineering–application engineering view of software product line development (van der

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

45

Linden et al., 2007; Weiss & Lai, 1999). SPL engineering is a paradigm to develop software
applications (software-intensive systems and software products) using platforms and mass
customization (Pohl et al., 2005). Developing applications using platforms means to plan
proactively for reuse, to build reusable parts, and to reuse what has been built for reuse.
Building applications for mass customization means employing the concept of managed
variability, i.e. the commonalities and differences in the applications (in terms of
requirements, architecture, components, and test artifacts) of the product line have to be
modeled.

The chapter is organized as follows: section 2 presents the modeling framework, section 3
then outlines the associated transformational engineering process, and section 4 concludes
the chapter.

2. Modeling approach

This section outlines a generic conceptual framework for adaptable BSA. This framework
is generic in the sense that it is not dependent on a specific modeling technique or
method. However, a requirement for the application of our engineering process is that the
engineering method used throughout the process must manage variability (Kang et al.,
2010) in order to facilitate the derivation of model variants from the initial model. The
main idea is to give reusable business component (Ramadour & Cauvet, 2002) semantics
(rBCS) to the assets of a domain-specific architecture design method M by providing for
each structure the context in which it can be reused. The resulting method, named M/BCS
(read “M with business component semantics”), produces M-adaptable domain-specific
architectures.

The model for adaptable BSA specification given in this section is based on a well

established method in the product line engineering research community: the feature-

oriented reuse method (FORM) (Kang et al., 1998).

2.1 Business component semantics

We use the model for conceptual business components specification of P. Ramadour and C.

Cauvet (Ramadour & Cauvet, 2002) to define reusable domain-specific architecture assets. In

this model, a business component integrates both reusable knowledge (object structures)

and contextual knowledge guiding the reuse of the component. The context of a structure

specifies specific requirements (set of constraints) accomplished by the structure and

therefore indicates the suitable situation(s) in which a structure can be reused. The three

levels of contextual constraints (business goals, business processes and business rules)

considered by the model to specify conceptual business components clearly indicate that the

conceptual business components of Ramadour and Cauvet are closely-related to enterprise

process models assets (Bernus, 2003; Fox & Gruninger, 1998; Lankhorst, 2004; Vernadat,

2002). In this model, each business component has three constituents: a name, a descriptor

and a realization:

 Descriptors explain when and why use components. A descriptor has an intention and a
context. The intention is the expression of the generic modeling problem. The term
“generic” here means that this problem does not refer to the context in which it is

www.intechopen.com

Software Product Line – Advanced Topic

46

supposed to be solved. The context of a business component details its main business
activity (domain) in terms of atomic and non atomic sub activities (process) and explains
the choice of one alternative and not the other (common, optional, variabilities).

 Realizations provide solutions to the modeling problems expressed in the descriptor
sections. Solutions are the reusable part of the business component; they may have
adaptation points that are parameters whose values are fixed at the reuse moment.

We use the formal language Z to formalize this business component model in order to allow

a rigorous study of its properties. Due to space constraints, this model cannot be given here.

Figure 1, gives the specification skeleton, where 処 A denotes the set of finite subsets of A and

Class is the set of classes of objects (as used in the object-oriented terminology). The detailed

specification is given in (Fouda & Amougou, 2009).

 BusinessComponent = =[name: Text; descriptor:Descriptor; realization: Realization]

 Descriptor = = [intention : Intention ; context : Context]

 Intention = = [action: EnginneeringActivity; target: Interest]

 Context = = [domain : Domain ; process : 処 Context]

 Realization = = [solution: Solution; adaptationpoints : AdaptationPoints ]

 Interest = Domain  BusinessObjects

 Domain = = [action: BusinessActivity; target : BusinessObjects ]
 BusinessActivity == [common: BusinessActivity ;
 optional: 処 BusinessActivity;
 variabilities: 処 処 BusinessActivity

 atomic: Boolean]
 BusinessObjects = = 処 Class

Fig. 1. A formal specification of a business component

The types of solutions depend on the types of the business components. A solution can be a

system decomposition, an activity organization or an object description, or anything else

depending on the intention of the component. If this intention is to implement an activity of

a product line engineering method (e.g. feature analysis), then the type of the solution is

necessarily a kind of asset produced by the method (e.g. a feature model).

The BCS approach for adaptable business system architecture, which is advocated here, is a

way to envelop assets of a product line engineering method with a domain knowledge

layer. This layer, which indicates the purpose intended by the asset and the constraints it

solve, provides the context in which it can be reused. It formally defines the extent to which

the asset adapts to change in its environment. This additional layer is in fact an “adaptability

information layer”.

2.2 Business architecture description language

FORM/BCS architecture description language is specified through the description of its four
main concepts: feature business components, subsystem architecture business components,
process architecture business components, module business components and adaptable
system architectures.

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

47

2.2.1 Feature business component

In FORM, a feature model of a domain gives the “intention” of that domain in terms of

generic features which literally marks a distinct service, operation or function visible by

users and application developers of the domain. FORM/BCS specifies a feature model of a

domain as a business reusable component of that domain which captures the commonalities

and differences of applications in that domain in terms of features (Figure 2).

The type Feature specifies business activities. A business activity is caused by an event which

is applied to a target set of objects. Features have a generalization (in the sense of object-

oriented analysis) and decomposition. A feature’s decomposition gives the set of its

common (sub) features which indicate reuse opportunity, the set of its optional (sub)

features and the set of its groups of alternate (sub) features.

Fig. 2. The feature business component model

2.2.2 Subsystem architecture business component

A subsystem architecture business component (Figure 3) describes a system in terms of

abstract high level subsystems and the relationships between them. Graphically, the

solution of a subsystem architecture business component is represented as a symmetric

boolean matrix in which rows and columns represent the different subsystems of the

business component and the values of the matrix indicate the existence of links between

these subsystems.

Fig. 3. The subsystem business component model

www.intechopen.com

Software Product Line – Advanced Topic

48

2.2.3 Process architecture business component

A process architecture business component represents a concurrency structure in terms of
concurrent business activities to which functional elements are allocated; the deployment
architecture shows an allocation of business activities to resources (Figure 4).

The type ProcessArchitecture specifies process architectures. A process architecture is a set of
business activities (tasks) and classes of objects (data). Each business activity operates on a
class of objects (data accesses) and business activities exchange messages between them in
the form of actions call or with the environment (null).

Fig. 4. The process business component model

2.2.4 Module business component

Module business components are refinements of process business architecture components.
A module business component may be associated with a set of relevant features. Also,
alternative features may be implemented as a template module or a higher level module
with an interface that could hide all the different alternatives (Figure 5).

Fig. 5. The module business component model

A business module has a name, a list of parameters, a code in a pseudo language and a
description which defines the task done by the module and the modules required for its
execution, some of them are included in the module and some others are external.

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

49

2.2.5 Adaptable system architecture

FORM-based adaptable business architectures (Figure 6) have four perspectives or views:

 The service view, which is a set of feature business components (the functional
perspectives), provides the solution for the analysis of the service provided by a
business organization.

 The system view, which is a set of subsystem business components (the structural
perspectives), gives the solution for the decomposition of a business organization.

 The process view, which is a set of process business components (the procedural
perspectives), provides the solution for the description of the processes of a business
organization.

 The logical view, which is a set of module business components (the logical
perspectives), gives the solution for the specification of application modules associated
to sub processes or tasks of a business organization.

The reusable business components defining adaptable system architectures can be stored in
a database which can be requested using engineering by reuse operators developed by P.
Ramadour (Ramadour, 2001): search, selection, adaptation, and composition operators.

Fig. 6. The Adaptable business architecture model

3. Adaptable architectures engineering

In this section, we describe a system engineering methodology for the production and use of
adaptable business architectures. Systems engineering focuses on stakeholder needs and the
required functionality early in the development cycle to synthesize an overall system design
that captures those requirements from a total life-cycle perspective. Our approach is an
integrated system product line approach, like PLUSS+ (Eriksson et al., 2010), in the sense
that it extends traditional systems engineering by incorporating ideas from software
product line engineering. It integrates a product line method managing variability with a
software engineering methodology. It is based on the traditional domain engineering–
application engineering view of software product line development (van der Linden et al.,
2007; Weiss & Lai, 1999).

The purpose of domain engineering is to develop a product line’s reusable core assets to
provide a production capability for products (Northrop, 2002) and the purpose of
application engineering is to generate new systems utilizing the assets developed by domain
engineering. We refer to the domain engineering activities of our methodology as horizontal
engineering process and the application engineering activities as vertical engineering process to

www.intechopen.com

Software Product Line – Advanced Topic

50

indicate that the purpose of application engineering is to refine business architectures at
more low levels of abstraction (Figure 7).

Specific

module

architecture

business

component

Specific

feature

business

component

Specific

Process

architecture

business

component

Service view

refinement

System view

refinement

Logical view

refinement

Domain Component Database

Reusable feature

business component

database

Reusable process

architecture business

component database

Reusable subsystem

architecture business

component database

Module

Architecture

Business

Component

Feature

Business

Component

Process

Architecture

Business

Component

Domain

Analysis

System view

design Logical view

design

Selected

Feature

Business

Component

Selected Subsystem

Architecture Business

Component

Selected Module

Architecture

Business

Component

Horizontal Engineering Process

V
e
rtic

a
l E

n
g
in

e
e
rin

g
 P

ro
c
e
s
s

Database

Activity

Component storage

Component reuse

Legend:

Domain refinement

Reusable module

architecture business

component database

Process view

design
Subsystem

Architecture

Business

Component

Specific Domain Component Database

Reusable specifique feature

business component database

Reusable specific process

architecture business

component database

Reusable specific

subsystem architecture

business component

database

Reusable specific

module architecture

business

component

database

Process view

refinement
Specific

Subsystem

architecture

business

component

Selected Process

Architecture Business

Component

Domain

Application

Domain

Fig. 7. The adaptable business architecture engineering process

The horizontal process, which corresponds to the “engineering for reuse” approach, gives

the possibility to analyze a product line domain and develop adaptable architectures of that

domain. These abstract reusable models can be refined (“engineering by reuse” approach)

by the vertical engineering process in order to derive the specific business components of an

application domain, which is to configure a suitable application from domain engineering.

3.1 Horizontal engineering process

The horizontal engineering process has been done in (Fouda & Amougou, 2010). It is a
transformational method (Partsch, 1992; Rotenstreich, 1992), based on a set of provably
semantics-preserving derivation rules called constructors.

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

51

The aim of a constructor is to transform, according to a formal rule called the construction
schema, a kind of architectural artifact (the input type of the constructor) to another kind of
architectural artifact (the output type of the constructor) by preserving all the system
properties incorporated in any given input. The definition of a constructor therefore has
three parts: the specification of the input type, the specification of the output type and, the
specification of the construction rule which defines, through a construction schema and a set
of semantics rules, how to build a semantics preserving output from a given input.

The horizontal engineering process has three constructors: the system view constructor which
supports the system view design activity, the process view constructor which supports the
process view design activity and the logical view constructor which support the logical view
design activity. The service view of a system is the starting point of the process; this view is
therefore obtained by applying any relevant requirement analysis technique.

3.1.1 System views design

The purpose of the system view design activity is to derive system views from service

views. This activity is carried by the total function SVC, the system view constructor, whose

purpose is to construct structural perspectives from functional perspectives of

organizations. Figure 8, which intensively uses the adaptable business architecture model

defined in section 2, specifies the system view constructor. In that figure, any text inside

/* */ is a comment which explains the formal notation.

Input: A functional perspective fp of an organization.

Output: A structural perspective SVC(fp) of the organization.

Construction schema:
 SVC (fp) = (SVC.name(fp), SVC.descriptor(fp), SVC.realization(fp))

Semantics rules:

1. SVC.name(fp) = text
/* text is any text used by the designer to name the reusable business component
modeling the structural perspective */

2. SVC.descriptor(fp) = (SVC.intention(fp), SVC.context(fp))
2.1. SVC.intention(fp) = <(decompose)ACTION (domain(descriptor(fp))TARGET)>,

/* The intention of the structural perspective SVC(fp) is to decompose the
business domain of fp */

2.2. SVC.context(fp) = context(descriptor(fp))
/* The context of SVC (fp) is the same as the context of fp */

3. SVC.realization(fp) = (SVC.solution(fp), SVC.adaptation_points(fp))
3.1. SVC.solution(fp) = (SVC.subsystems(fp), SVC.links(fp))

3.1.1. SVC.subsystems(fp) is the partition of the solution of the realization of fp
defined as follows:

3.1.1.1. SVC.subsystems(fp)  処 処 Feature

3.1.1.2. (F  SVC.subsystems(fp)) = decomposition(solution(realization(fp)))

3.1.1.3.  F1, F2  SVC.subsystems(fp) , F1  F2  F1 F2 = ))

3.1.1.4.  F SVC.subsystems(fp),  f Feature , g Feature,

((f  F  g  F) 

( h  F  (objects(f)  objects(h)  )  (objects(g)  objects(h)  ))).

www.intechopen.com

Software Product Line – Advanced Topic

52

3.1.2. SVC.links(fp)= {(F,G) SVC.subsystems(fp)×

SVC.subsystems(fp)/(f,g)F×G  decomposition(f)  decomposition(g) ≠ }

3.2. SVC.adaptation_points(fp) = {(ss,subsystemrealizations(ss))  ss

SVC.subsystems(fp)  ss  adaptation_points(realization(fp)) ≠ }

3.2.1. subsystemrealizations(ss) = {ss’:Subsystem   f ss,g ss’ / g 

featurerealizations(f)   g ss’, f  ss / g  featurerealizations(f)}

3.2.2. featurerealizations(f) = { g:Feature  common(f)  common(g) V 

variabilities(f), (  h  common(g)  h  V)  optional(g)  optional(f)}

Fig. 8. The system view construction rule

3.1.2 Process view design

The purpose of the process view design activity is to derive process views from system

views of organizations. This activity is carried by the total function PVC, the process view

constructor, whose purpose is to construct procedural perspectives from structural

perspectives of organizations. Figure 9 defines the process view constructor.

Input: A structural perspective sp of an organization.

Output: A set of procedural perspectives PVC(sp) of the organization.

Construction schema:

 PVC(sp) = {(PVC.name(p), PVC.descriptor(p), PVC.realization(p))  p  process(sp)}

Semantics rules:

1. PVC.name (p) = text.
/* text is any text used by the designer to name the reusable business component
modeling the procedural perspective */

2. PVC.descriptor(p) = (PVC.intention(p), PVC.context(p))
2.1. PVC.intention(p) = (describe)ACTION (p)TARGET

/* The intention of the process architecture built from p  process(sp) is to
describe p */

2.2. PVC.context(p) = (domain(sp), {p})
/* The business activity of the process architecture constructed from the

process p process (sp) is the same as the main activity of sp and it has only
one sub activity p */

3. PVC.realization(p) = (PVC.solution(p), PVC.adaptation_points(p))
3.1. PVC.solution(p) =

 (PVC.tasks(p), PVC.datas(p), PVC.dataaccess(p), PVC.messages(p))
3.1.1. PVC.tasks(p) = decomposition(action(domain(p)))

/* Tasks of the process architecture constructed from p process (sp) are
obtained by decomposing the action of the domain of p */

3.1.2. PVC.data(p) = target(domain(p))

/* The data of the process architecture constructed from p  process(sp)
are the business objects of the target of the domain of p */

3.1.3. PVC.dataaccess(p) = {(t, c)  decomposition(action(domain(p))) ×

target(domain(p)) / decomposition(t)  operations(c) ≠}

/* The task t of the process architecture constructed from p process (sp)
can operate on a class of object c only if some subtasks of t are operations

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

53

of the class c */

3.1.4. PVC.messages(p) = {(t1, t2)  (decomposition (action(domain(p)))) 2 /

decomposition (t1)  decomposition (t2) ≠}

/* Two tasks t1 and t2 of the process architecture constructed from p
process (sp) can exchange messages only if some subtasks of t1 are
subtasks t2 */

3.1.5. PVC.adaptation_points(p)) = {(t1, A)  t1 PVC.tasks(p)  A = {t2 :

BusinessActivity  common(t1)  common(t2) ( V  variabilities(t1),   g

 common(t2)  g  V) 

optional(t1)  optional(t2)}  #A > 1}
/* Adaptation points of the process architecture constructed from p in
process(sp) are tasks of the process architecture for which we have more
than one realization */

Fig. 9. The process view construction rule

3.1.3 Logical view design

The purpose of the logical view design activity is to derive logical views from process views.

This activity is carried by the total function LVC, the logical view constructor, whose

purpose is to derive logical perspectives from procedural perspectives of organizations.

Figure 10 defines the logical view constructor.

Input: A procedural perspective pp of an organization.

Output: A set of logical perspectives LVC(pp) of the organization.

Construction schema:

 LVC.descriptor(t), LVC.realization(t)) 

 t  process(p), p process(pp)}

Semantics rules:

1. LVC.name (t) = text
/* text is any text used by the designer to name the reusable business component
modeling the logical perspective */

2. LVC.descriptor(t) = (LVC.intention(t), LVC.context(t))
2.1. LVC.intention(t) = <(implement)ACTION (t)TARGET>

/* The intention of the module architecture built from a task t process(p) and

p process(pp), is to implement t */

2.2. LVC.context(t) = (domain(pp), {t})
3. LVC.realization(t) = (LVC.solution(t), LVC.adaptation_points(t))

3.1. LVC.solution(t) = (LVC. pseudonym (t), LVC.parameters(t), LVC.task(t),
LVC.included(t),), LVC.external(t), LVC.specification(t))
3.1.1. LVC. pseudonym (t) = text’

/* text’ is any text used by the designer to name the solution of the

module architecture component constructed from the task t process(p),

for any p process(pp) */

3.1.2. LVC.parameters(t) is a set of business objects of the domain of t.
3.1.3. LVC.task(t) = action(domain(t))

/* The task of the solution of the module architecture constructed from

www.intechopen.com

Software Product Line – Advanced Topic

54

the context t is the action of the domain of t */

3.1.4. LVC.included(t) = {m:Module  task(m)  decomposition(action

(domain(t)))  specification(m)  ˝˝ }
/* Modules included in the module architecture constructed from the
context t are modules for which the task is a subtask of t and the
specification is not empty*/

3.1.5. LVC.external(t) = {m:Module  task(m)  decomposition(action (domain(t)))

 specification(m) = ˝˝ }
/* External modules in the module architecture constructed from the
context t are module for which the task is a subtask of t and the
specification is empty */

3.1.6. LVC.specification(t) = {specification(m)  m  LVC.included(t) 
LVC.required(t)}
/* The specification of the module architecture constructed from the
context t is the set of specifications of subtasks of t */

3.2. LVC.adaptation_points(t) = {(m1, A)  m1 LVC.included(t)  A = {m2 : Module

 common(task(m1))  common(task(m2))  ( V  variabilities(task(m1)),   g 

common(task(m2))  g  V)  optional(task(m1))  optional(task(2))}  #A > 1}
/* Adaptation points of the module architecture of a context t are modules
included in the module architecture of t for which we have more than one
realization */

Fig. 10. The logical view construction rule

3.2 Vertical engineering process

The purpose of the vertical engineering process is to generate new systems utilizing the assets
developed by horizontal engineering. Its ultimate goal is to configure a suitable business
application from domain engineering. It refines architectural assets of a domain to low level
assets of an application domain of that domain. This engineering process is also a
transformational method based on a set of provably semantics-preserving refinement rules
called refiners. The process has four refiners: the service view refiner which supports the service
view refinement activity, the system view refiner which supports the system view refinement
activity, the process view refiner which support the process view refinement activity and the
logical view refiner which supports the logical view refinement activity (see Figure 7).

3.2.1 Service view refinement

The purpose of the service view refinement activity is to derive a service view of an
application domain of a domain from the service view of that domain. This activity is
carried by a total function FMR, the functional model refiner, defines in Figure 12, which
refines feature business components, i.e. functional perspectives, of a domain to specific
business components of an application domain by using decompositions of non atomic
services of input feature business components. A service view refinement is triggered by a
decomposition of an abstract service of the service view. Any decomposition defines an
application domain since it specifies a specific manner to implement the service.
Decompositions define how abstract (common and optional) services of domains are
implemented in application domains.

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

55

Figure 11 shows an example of a decomposition of an abstract service (career management

of state personnel governed by the general status of the public service or the labor code: C11)

of the Cameroon civil servant management information system which has been used as a

case study for the method (Atsa et al., 2010). In this decomposition, the abstract service C11 is

implemented only by four common actions; one of these actions (the recruitment process:

C111) is itself decomposed in four optional actions.

common(C11) = { C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination,

contractualize, engage}, {}}])ACTION(candidates, applications, competitive examinations,

civil servants governed by the general status or the labor code, decisions)TARGET(If the

candidate has succeeded a competitive examination or has obtained a diploma giving the

right to absorption or the Presidency of the Republic has given the authorization)DETAIL

 C112 = (advance)ACTION (applications, civil servants governed by the general

status or the labor code, decisions) TARGET

 C113 = (liquidate) ACTION (applications, civil servants governed by the general

status or the labor code, decisions) TARGET

 C114 = (transfer) ACTION (civil servants governed by the general status or the

labor code, decisions) TARGET }

optional(C11) = {}

variabilities(C11) = {}

Fig. 11. Decomposition of the non atomic service C11

The refinement of a service view (see Figure 12 for the formal definition) replaces the
decomposed service by its decomposition and integrates the new variability constraints in
the new model.

Input:

- A functional perspective fp of an organization
- A decomposition D of an abstract service s of fp

Output: A specific functional perspective FMR(fp,D) of an application domain

Construction schema:
FMR (fp,D)= (FMR.name(fp,D), FMR.descriptor(fp,D), FMR.realization(fp,D))

Semantics rules:
1. FMR.name(fp,D) = name(fp)
2. FMR.descriptor(fp,D) = (FMR.intention(fp,D), FMR.context(fp,D))

2.1. FMR.intention(fp,D) = intention(descriptor(fp))
2.2. FMR.context(fp,D) = (FMR.domain(fp,D), FMR.process(fp,D))

2.2.1. FMR.domain(fp,D) = domain(context(descriptor(fp)))

2.2.2. FMR.process(fp,D) = {(f, )  f  D}

 if process(context(descriptor(fp))) = 
/* In this case, s is the main activity of fp and D defines its sub
activities */

and
FMR.process(fp,D) = process(context(descriptor(fp)))

 if process(context(descriptor(fp)))  .
/* A refinement of a sub activity of fp doesn’t change the context of fp */

www.intechopen.com

Software Product Line – Advanced Topic

56

3. FMR.realization(fp,D) = (FMR .solution(fp,D), FMR. adaptation_ points (fp,D))

3.1. FMR.solution(fp,D) = solution(realization(fp))  decomposition(s) =D
/* D is the decomposition of the service s in the solution of the new business
component */

3.2. FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp))

 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of fp doesn’t change if D decomposes s
only in common sub services */

and

FMR. adaptation _points (fp,D) = adaptationpoints (realization(fp)) 
 {(s,variants(s,D))}

 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of s induced by the
decomposition D is created if D defines optional or variable subservices of s */

Fig. 12. The service view refinement rule

Figure 14 shows the result of the refinement of the service view of the civil servant
management information system (Figure 13) based on the decomposition given in Figure 11.

Name :Functional model of the Cameroonian civil servant management information system

Descriptor :
 Intention :(Analyze)ACTION((manage)ACTION(State personals and salaries)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
 Process : C1 = (manage)ACTION(civil servants career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C1 */
 C11 = (manage)ACTION(decisions, personnels governed by the general status or the
 labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, university lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

57

Realization :
 Solution :

c

c
1

c
3 c

5

c
11

c
12

c
13

c
41 c

42
c

43

c
2

c
4

c
44

c
21 c

22
c

23
c

24c
14

c
15

c
25

 Adaptation points : {
 (c, {{c1, c3, c4, c5}, {c1, c2, c3, c4, c5}}),
 (c1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15} et {c11, c12, c13, c14, c15}}),
 (c2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (c4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 13. Service view of Cameroon civil servant management IS

 . . .
 /* sub-process of C11 */
C111 = (recruit = [{}, {absorb by qualification, absorb by competitive examination, contractualize,

engage}, {}}])ACTION(candidates, applications, competitive examinations, civil servants

governed by the general status or the labor code, decisions)TARGET(If the candidate has

succeeded a competitive examination or has obtained a diploma giving the right to

absorption or the Presidency of the Republic has given the authorization)DETAIL

C112 = (advance)ACTION (applications, civil servants governed by the general status or the labor

code, decisions) TARGET

C113 = (liquidate) ACTION (applications, civil servants governed by the general status or

the labor code, decisions) TARGET

C114 = (transfer) ACTION (civil servants governed by the general status or the labor code, decisions)

TARGET

…
Realization :
 Solution :

c

c
1

c
3 c

5

c
11

c
12

c
13

c
41 c

42
c

43

c
2

c
4

c
44

c
21 c

22
c

23
c

24c
14

c
15

c
25

c
111

c
112

c
113

c
114

 . . .

Fig. 14. A refined service view of Cameroon civil servant management IS

3.2.2 System view refinement

The purpose of the system view refinement activity is to derive a system view of an

application domain of a domain from the system view of that domain. This activity is

www.intechopen.com

Software Product Line – Advanced Topic

58

carried by a total function SMR, the structural model refiner, defines in figure 16, which

refines subsystem business components, i.e. structural perspectives, of a domain to specific

business components of an application domain by using decompositions of non atomic

services in subsystems of input subsystem business components. A system view refinement

is triggered by a decomposition of an abstract service in a subsystem of the subsystem view.

Any decomposition defines an application domain since it specifies a specific manner to

implement the service. Decompositions define how abstract services of domains are

implemented in application domains. Figure 15 shows an example of a decomposition of an

abstract service (career management of state personnels: C1) of the Cameroon civil servant

management information system.

 common(C1) = {C11 = (manage)ACTION(decisions, personnels governed by the general
 status or the labor code)TARGET }

 optional(C1) = { C12 = (manage)ACTION(decisions, magistrates)TARGET,
 C13 = (manage)ACTION(decisions, univerties’s lecturers)TARGET,
 C14 = (manage)ACTION(decisions, police officers)TARGET,
 C15 = (transfer)ACTION(decisions)TARGET }
 variabilities(C1) = {}

Fig. 15. Decomposition of the non atomic service C1

In this decomposition, the abstract service C1 is implemented by one common action and
four optional actions.

The refinement of a system view (see Figure 16 for the formal definition) replaces the

decomposed service by its decomposition and integrates the new variability constraints in

the new model.

Input:
- A structural perspective sp of an organization,
- A decomposition D of a non atomic service c in a subsystem ss of sp.

Output: A specific system view perspective SMR(sp,D) of an application domain

Construction schema:
SMR (sp,D)= (SMR .name(sp,D), SMR .descriptor(sp,D), SMR .realization(sp,D))

Semantics rules:
1. SMR .name(sp,D) = name(sp)
2. SMR .descriptor(sp,D) = (SMR .intention(sp,D), SMR .context(sp,D))

2.1. SMR .intention(sp,D) = intention(descriptor(sp))
2.2. SMR .context(sp,D) = (SMR .domain(sp, D), SMR .process(sp,D))

2.2.1. SMR .domain(sp,D) = domain(context(descriptor(sp)))

2.2.2. SMR .process(sp,D) = {(f, )  f  D}

 if process(context(descriptor(sp))) = 
and
SMR .process(sp,D) = process(context(descriptor(sp)))

 if process(context(descriptor(sp)))  

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

59

3. SMR .realization(sp,D) = (SMR .solution(sp,D), SMR . adaptation _points (sp,D))
3.1. SMR .solution(sp,D) = (SMR .subsystems(sp,D), SMR .links(sp, D))

3.1.1. SMR .subsystems(sp,D) = subsystems(solution(realization(sp)))
/* A system view refinement of a system doesn’t change its subsystems */

3.1.2. SMR .links(sp,D) = links(solution(realization(sp)))

 {(ss, t), t  subsystems(solution(realization(sp))) 

  g  t, D  decomposition(g) ≠ }
 /* A refinement of the subsystem ss triggered by the decomposition D creates a
new link between ss and any other subsystem which is not disjoint with D */

3.3. SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp))

 if (optional(D) =   variabilities(D) = )
/* The set of adaptation points of sp doesn’t change if D decomposes c only in
common sub services */

and

SMR . adaptation _points (sp,D) = adaptationpoints (realization(sp)) 
 {(ss, variants(ss,D))}

 if optional(D) ≠   variabilities(D) ≠ 
/* A new adaptation point based on the variants of ss induced by the decomposition D is
created if D defines optional or variable subservices of c */

Fig. 16. The system view refinement rule

Figure 18 shows the result of the refinement of the system view of the civil servant

management information system (Figure 17) based on the decomposition of Figure 15.

Name :Structural Model of the Cameroonian civil servant management information system
Descriptor :
Intention :(Decompose)ACTION((manage)ACTION(career, salaries, training, natwork, mail,
 system)TARGET)TARGET
Context :
Domain : C = (manage)ACTION(career, salaries, training, network, mail, system)TARGET
Process : C1 = (manage)ACTION(career)TARGET
 C2 = (manage)ACTION(salaries)TARGET
 C3 = (manage)ACTION(training)TARGET
 C4 = (manage)ACTION(attributions)TARGET
 C5 = (manage)ACTION(mail)TARGET
 /* sub-process of C2 */
 C21 = (transfer)ACTION(decisions)TARGET
 C22 = (calculate)ACTION(salaries)TARGET
 C23 = (manage)ACTION(workstation)TARGET
 C24 = (manage)ACTION(profiles, workstations)TARGET
 C25 = (manage)ACTION(connections, workstations)TARGET
 /* sub-process of C4 */
 C41 = (manage)ACTION(workstations)TARGET
 C42 = (manage)ACTION(profiles, workstations)TARGET
 C43 = (manage)ACTION(connections, workstations)TARGET
 C44 = (manage)ACTION(transactions, workstations)TARGET
 …

www.intechopen.com

Software Product Line – Advanced Topic

60

Realization :
 Solution:
 Sub-systems: {SS1 = {c1}, SS2 = {c2}, SS3 = {c3}, SS4 = {c4}, SS5 = {c5}}

 Links: {SS2  SS5}
 Adaptation points: {
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 17. A system view of Cameroon civil servant management IS

 . . .
 /* sous-processus de C1 */
 C11 = (manage)ACTION(decisions, personals governed by the general status or
 the labor code)TARGET
 C12 = (manage)ACTION(decisions, magistrates)TARGET
 C13 = (manage)ACTION(decisions, universities’s lecturers)TARGET
 C14 = (manage)ACTION(decisions, police officers)TARGET
 C15 = (transfer)ACTION(decisions)TARGET
 …

 Liens: {SS1  SS2, SS2  SS4}
Adaptation points: {
 (SS1, {{c11, c15}, {c11, c15, c12}, {c11, c15, c13}, {c11, c15, c14}, {c11, c12, c13, c15}, {c11,
 c13, c14, c15}, {c11, c12, c14, c15}, {c11, c12, c13, c14, c15}}),
 (SS2, {{c21, c22, c23, c24}, {c21, c22, c23, c24, c25}}),
 (SS4, {{c41, c42}, {c41, c42, c43},{c41, c42, c44},{ c41, c42, c43, c44}})
 }

Fig. 18. A refined system view of Cameroon civil servant management IS

3.2.3 Process view refinement

The purpose of the process view refinement activity is to derive a process view of an

application domain of a domain from the process view of that domain. This activity is

carried by a total function PMR, the procedural model refiner, defines in Figure 20, which

refines process business components of a domain to specific business components of an

application domain by using decompositions of non atomic tasks of input process business

components. A process view refinement is triggered by a decomposition of a task of the

process view. Any decomposition defines an application domain since it indicates a specific

manner to implement the task. Decompositions define how abstract tasks of domains are

implemented in application domains. Figure 19 shows an example of a decomposition of an

abstract task (recruitment of state personnels governed by the general status of the public

service or the labor code: C111, see Figure 11) of the Cameroon civil servant management

information system.

 recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}]

Fig. 19. Decomposition of the non atomic service C111

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

61

In this decomposition, the abstract task of C111 is implemented by four optional tasks.

The refinement of a process view (see Figure 20 for the formal definition) replaces the
decomposed task by its decomposition and integrates the new variability constraints in the
new model.

Input:
- A procedural perspective pp of an organization,
- A decomposition D of a non atomic task t of pp.

Output: A specific procedural perspective PMR(pp,D) of an application domain

Construction schema:
PMR (pp,D)= (PMR .name(pp,D), PMR .descriptor(pp,D), PMR .realization(pp,D))

Semantics rules:
1. PMR .name(pp,D) = name(pp)
2. PMR .descriptor(pp,D) = descriptor(pp)
3. PMR .realization(pp, D) = (PMR .solution(pp,D), PMR . adaptation _points (pp,D))

3.1. PMR .solution(pp, D) = (PMR .tasks(pp,D), PMR .datas(pp,D),
 PMR .datasaccess(pp,D), PMR .messages(pp,D))
3.1.1. PMR .tasks(pp,D) = tasks (solution(realization(pp)))
3.1.2. PMR .data(pp,D) = data(solution(realization(pp)))
3.1.3. PMR .dataaccess(pp,D) = dataaccess(solution(realization(pp))) \

 {(t, c)  u tasks(solution(realization(pp))),

 (u, c)  datasaccess(solution(realization(pp))) 

 D  decomposition (u) ≠  }

3.1.4. PMR .messages(pp,D) = messages(solution(realization(pp))) 

 {(t, u)  D  decomposition (u) ≠  }

3.2. PMR. Adaptation_ points (pp,D) = adaptationpoints (realization(pp))

 if (optional(D) =   variabilities(D) = )
and

PMR .adaptation_points(pp,D) = adaptationpoints (realization(pbc)) 
 {(t, variants(t,D))}

 if optional(D) ≠   variabilities(D) ≠ 

Fig. 20. The process view refinement rule

Figure 22 shows the result of the refinement of the process view of the civil servant
management information system (Figure 21) based on the decomposition of Figure 19.

Name: Procedural model of career management of personals governed by the general status or the
 labor code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (describe)ACTION((manage = [{recruit, advance, liquidate, transfer}, {},
 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET)TARGET
 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process : C11 = (manage = [{recruit, advance, liquidate, transfer}, {},

www.intechopen.com

Software Product Line – Advanced Topic

62

 {}])ACTION(candidates, applications, competitive examinations, civil servants
 governed by the general status or the labor code, decisions)TARGET
 /* sub process of the process C11*/
 C111 = (recruit)ACTION(candidates, applications, competitive examinations, civil
 servants governed by the general status or the labor code, decisions)TARGET(If
 the candidate has succeeded a competitive examination or has obtained a
 diploma giving the right to absorption or the Presidency of the Republic has
 given the authorization)DETAIL
 C112 = (advance)ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET

 C113 = (liquidate) ACTION (applications, civil servants governed by the general
 status or the labor code, decisions) TARGET
 …
Realization :
 Solution :
 tasks: decomposition(action(C11))
 data: target(C11)

 dataaccess: {(t, c)  decomposition(action(C11)) × target(C11) /

 decomposition(t)  operations(c) ≠}

 messages: {(t1, t2)  decomposition (action(C11)) × decomposition
 (action(C11)) /

 decomposition (t1)  decomposition (t2) ≠}

 Adaptation points: {}

Fig. 21. A prrocess view of Cameroon civil servant management IS

 Process :
 . . .
 C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL
 . . .
Realization :
 Solution :
 . . .
 Adaptation points:
 {(recruit, {{absorb by qualification}, {absorb by competitive
 examination}, {contractualize}, {engage}, { absorb by qualification, absorb by

competitive examination }, { absorb by qualification, contractualize},
{ absorb by qualification, engage}, {absorb by competitive examination, contractualize},
{ absorb by competitive examination, engage}, {contractualize, engage},{ absorb by
qualification, absorb by competitive examination, contractualize}, { absorb by qualification,
absorb by competitive examination, engage}, { absorb by competitive examination,
contractualize, engage}, { absorb by qualification, contractualize, engage}, { absorb by
qualification, absorb by competitive examination, contractualize, engage}}) }

Fig. 22. A refined process view of Cameroon civil servant management IS

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

63

3.2.4 Logical view refinement

The purpose of the logical view refinement activity is to derive a logical view of an application
domain of a domain from the logical view of that domain. This activity is carried by a total
function LMR, the logical model refiner, defines in Figure 24, which refines module business
components of a domain to specific business components of an application domain by using
decompositions of non atomic business activities of input module business components.

A logical view refinement is triggered by a decomposition of a business activity of the
logical view. Any decomposition defines an application domain since it specifies a specific
manner to implement the business activity. Decompositions define how (common business
activities, optional business activities, variability) abstract business activities of domains are
implemented in application domains. Figure 23 shows example of a decomposition of an
abstract business activity (absorption by qualification belonging to optional(action (C111))) of
the Cameroon civil servant management information system.

 absorb by qualification = [{}, {prepare = [{initiate, validate, append visa,
 remove validation, modify, delete}, {}, {}], sign}, {}]

Fig. 23. Decomposition of the non atomic business activity "absorption by qualification"

In this decomposition, the abstract business activity "absorption by qualification" is
implemented by two optional business activities.

The refinement of a logical view (see Figure 24 for the formal definition) replaces the
decomposed business activity by its decomposition and integrates the new variability
constraints in the new model.

Input:
- A logical perspective lp of an organization,
- A decomposition D of a non atomic business activity a of lp.

Output: A specific logical view perspective LMR(lp, D) of an application domain

Construction schema:
 LMR (lp,D)= (LMR .name(lp,D), LMR.descriptor(lp,D), LMR .realization(lp,D))

Semantics rules:
1. LMR .name(lp,D) = name(lp)
2. LMR.descriptor(lp,D) = descriptor(lp)
3. LMR .realization(lp,D) = (LMR .solution(lp,D), LMR . adaptation _points (lp,D))

3.1. LMR .solution(lp,D) = solution(realization(lp))
3.2. LMR. Adaptation_ points (lp,D) = adaptationpoints (realization(lp))

 if (optional(D) =   variabilities(D) = )
and

LMR . adaptation _points (lp,D) = adaptationpoints (realization(lp)) 
 {(m, variants(m))}

 if optional(D) ≠   variabilities(D) ≠ 

Fig. 24. The logical view refinement rule

www.intechopen.com

Software Product Line – Advanced Topic

64

Figure 26 shows the result of the refinement of the logical view of the civil servant
management information system (Figure 25) based on the decomposition of Figure 23.

Name: Logical model of the recruitment of personals governed by the general status or the labor
 code in the Cameroonian civil servant management information system.
Descriptor :
 Intention : (specify) ACTION ((recruit = [{}, { absorb by qualification, absorb by
 competitive examination, contractualize, engage}, {}}])ACTION(candidates,
 applications, competitive examination, civil servants governed by the general
 status or the labor code, decisions)TARGET(If the candidate has succeeded a
 competitive examination or has obtained a diploma giving the right to
 absorption or the Presidency of the Republic has given the authorization)DETAIL
)TARGET

 Context :
 Domain : C = (manage)ACTION(career, salaries, training, network, mail,
 system)TARGET
 Process: C111 = (recruit = [{}, {absorb by qualification, absorb by competitive
 examination, contractualize, engage}, {}}])ACTION(candidates, applications,
 competitive examinations, civil servants governed by the general status or the
 labor code, decisions)TARGET(If the candidate has succeeded a competitive
 examination or has obtained a diploma giving the right to absorption or the
 Presidency of the Republic has given the authorization)DETAIL

 /* sub process of the process C111 */
 (absorb by qualification)ACTION ({decision, civil servants governed by the
 general status}) TARGET

 (absorb by competitive examination)ACTION ({decision, civil servant governed
 by the general status}) TARGET
 (contractualize)ACTION ({decision, civil servant governed by the labor code})

 TARGET

 (engage)ACTION ({decision, civil servant governed by the labor code }) TARGET
Realization :

 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examination, civil servants,
 decisions};
 task: < {}, {absorb by qualification, absorb by competitive examination, contractualize,
 engage}, {}>;
 include: 処 Module;
 external: 処 Module]
 specification: PseudoCode
 Adaptation points :
 {}

Fig. 25. A logical view of Cameroon civil servant management IS

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

65

 . . .
Realization :
 Solution :
 pseudonym : recruit;
 parameters: {candidates, applications, competitive examinations, civil servants, decisions};
 task: < {}, {absorb by qualification = [{}, {prepare = [{initiate, validate, append visa, remove

validation, modify, delete}, {}, {}], sign}, {}], absorb by competitive examination,

contractualize, engage}, {}>;

 include: 処 Module;
 external: 処 Module]
 specification: PseudoCode
 Adaptation points :
 {(absorb by qualification,
 {{prepare},
 {sign},
 {prepare, sign}})
 }

Fig. 26. A refined logical view of Cameroon civil servant management IS

4. Conclusion

Until the last decade, variability could be defined either as an integral part of development

artefacts or in a separate variability model. Concerning the first trend, many research

contributions have suggested the integration of variability in traditional software

development diagrams or models such as use case models (Oliviera et al., 2005), feature

models (Kang et al., 2002; Bashroush et al., 2008), message sequence diagrams (Ziadi, 2004),

class diagrams (Clauss, 2001; Ziadi, 2004), and activity diagrams (Razavian et al., 2008) to

represent variability. Many others approaches have been proposed that suggest to define the

variability information in a separate “orthogonal variability model” (OVM) which,

according to Pohl et al. (2005), is a model that explicitly defines the variability of a software

product line. In this chapter, we have presented an approach that tries to reconcile the two

precedent orientations. The main idea is to envelop assets of a domain-specific design

method managing variability with a domain knowledge layer which provides for each asset

the context in which it can be reused. The domain knowledge layer is in fact an OVM that

highlights the variability of the assets.

The resulting SPL engineering methodology has domain engineering activities, referred to

as the horizontal engineering process, whose aim is to develop a product lines’s reusable

core assets to provide a production capability for products, and application engineering

activities, referred to as the vertical engineering process, whose aim is to generate new

systems utilizing the assets developed by horizontal engineering; The ultimate goal of the

www.intechopen.com

Software Product Line – Advanced Topic

66

vertical engineering process is therefore to configure a suitable business application from

domain engineering.

5. References

Atsa, E.R., Fouda, N.M., Priso, E.N. & Abessolo, A.G. (2010). Improving the quality of

service of a public service workflow based on ant theory: A case study in

Cameroon. The Electronic Journal of Information Systems in Developing Countries,

Vol.41(1),pp. 1-15.

Bashroush, R., Spence, I., Kilpatrick, P., Brown, T.J., Gillan, C. (2008). Multiple Views Models

for Variability Management in Software Product Lines. Second International

Workshop on Variability Modeling of Software Intensive System (VaMoS’08), Essen,

Germany.

Bernus, P. (2003). Enterprise Models For Enterprise Architecture and ISO9000:2000. Annual

Reviews in Control, 27, pp. 211-220.

Clauss, M. (2001). Generic Modelling Using UML Extensions for Variability. Workshop on

Domain Specific Visual Languages, pp 11-18.

Eriksson, M., Börstler, J. & Borg, K. (2010). A Systems Product Line Approach, In: Applied

Software Product Line Engineering, Kyo C. Kang, Vijayan Sugumaran, Sooyong Park,

pp. 109-139, Crc Press, Taylor & Francis Group, ISBN 978-1-4200-6841-2, Boca

Raton.

Fouda, N.M. & Amougou, N. (2009). The Feature Oriented Reuse Method with Business

Component Semantics. International Journal of Computer Science and Applications, Vol.

6, No. 4, pp 63-83.

Fouda, N.M. & Amougou, N. (2010). Product Lines’ Feature-Oriented Engineering for

Reuse: A Formal Approach. International Journal of Computer Science Issues, Vol. 7,

Issue 5, pp 382-393.

Fox, M.S. & Gruninger, M. (1998). Enterprise Modeling, AI Magazine Fall 1998, pp. 109-

121.

Kang, K.C., Lee, K., Lee, J. & Kim, S. (2003). Feature-Oriented Product Line Software

Engineering: Principles and Guidelines. Domain Oriented Systems Development:

Perspectives and Practices, K. Itoh et al., eds., pp. 29-46.

Kang, K.C., Sugumaran, V. & Park, S. (2010). Software Product Line Engineering: Overview

and Future Direction, In: Applied Software Product Line Engineering, Kyo C. Kang,

Vijayan Sugumaran, Sooyong Park, pp. 3-14, Crc Press, Taylor & Francis Group,

ISBN 978-1-4200-6841-2, Boca Raton.

Kang, K.C., Kim, S., Shin, E. & Huh, M. (1998). "FORM: A Feature-Oriented Reuse Method

with Domain-Specific Reference Architectures", Annals of Software Engineering, Vol.

5, pp. 143-168.

Kang, K.C., Lee, J. & Donohoe, P. (2002). Feature-Oriented Product Line Engineering. IEEE

Software, Vol. 19, no. 4, pp. 58-65.

Lankhorst, M. (2004). Enterprise Architecture Modeling – The Issue of Integration. Advanced

Engineering Informatics, 18, pp 205-216.

www.intechopen.com

Transformational Variability Modeling Approach to Configurable Business System Application

67

Lee, K., Kang, K.C. & Choi, W. (2000). Feature-Based Approach to Object-Oriented

Engineering of Applications for Reuse. Software-Practice and Experience, 30, pp.1025-

1046.

Northrop, L. (2002). SEI’s software product line tenets. IEEE Software 19 (4): 32–40.

Oliviera, E.A., Gimenes, I., Huzita, E., Maldonado, J.C. (2005). Variability Management

Process for Software Product Lines. In Proc. of CASCON 2005, Toronto, Canada.

Partsch, H.A. (1990). Specification and transformation of programs: A Formal Approach To

Software Development. Springer-Verlag New York, Inc. New York, USA.

Pohl, K., Bockle, G., Linden, F.V.D., (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer-Verlag Berlin, Heidelberg.

Ramadour, P. & Cauvet, C. (2002). Approach and Model for Business Components

Specification, Proceeding of the 13th International Conference on Database and

Expert Systems Applications, Lecture Notes In Computer Science; Vol. 2453, pp 628-

637.

Ramadour, P. (2001). Modèles et langage pour la conception et la manipulation de

composants réutilisables de domaine. PhD thesis, Université d'Aix-Marseille III,

Marseille, France.

Razavian, M., Khosravi, R. (2008). Modeling Variability in Business Process Models Using

UML. Fifth International Conference on Information Technology: New Generations, Las

Vegas, USA.

Recker, J., Mendling, J., van der Aalst, W. & Rosemann, M. (2006). Model-driven Enterprise

Systems Configuration, Proceeding of the 18th International Conference of Advanced

Information Systems Engineering, CAiSE 2006, Luxembourg, Lectures Notes in

Computer Science, Vol. 4001, pp. 369-383, Springer.

Rosemanna, M. & van der Aalst, W.M.P. (2003). A Configurable Reference Modelling

Language. QUT Technical Report, FIT-TR-2003-05, Queensland University of

Technology, Brisbane, Australia.

Rotenstreich, S. (1992). Transformational Approach to Software Design. Information Software

Technology, Volume 34, Issue 2, pp 106-116.

Subramanian, N. & Chung, L. (2001a). Software Architecture Adaptability: An NFR

Approach, Proceeding of the 4th International Workshop on Principles of Software

Evolution, New-York, USA, ACM Digital Library.

Subramanian, N. & Chung, L. (2001b). Metrics for Software Adaptability, Software Quality

Management Conference.

van der Linden, F., Schmid, K. & Rommes, E. (2007). Software product lines in action: The best

industrial practice in product line engineering, Berlin: Springer-Verlag.

Vernadat, F.P. (2002). Enterprise Modeling and Integration (EMI): Current Status and

Research Perspectives. Annual Reviews in Control, 26, pp. 15-25.

Weiss, D.M. & Lai, C.T.R. (1999). Software product line engineering: A family-based software

development process, Boston: Addison-Wesley Longman.

Whitten, J.L., Bentley, L.D. & Dittman, K.C. (2001). Systems Analysis and Design Methods, 5th

ed., McGraw-Hill Companies, Inc.

Zachman, J. (1987). A Framework for Information System Architecture. IBM Systems Journal,

Vol. 26(3).

www.intechopen.com

Software Product Line – Advanced Topic

68

Ziadi, T. (2004). Manipulation de Lignes de Produits en UML. Phd Thesis, Université de

Rennes I, France.

www.intechopen.com

Software Product Line - Advanced Topic

Edited by Dr Abdelrahman Elfaki

ISBN 978-953-51-0436-0

Hard cover, 122 pages

Publisher InTech

Published online 04, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The Software Product Line (SPL) is an emerging methodology for developing software products. Currently,

there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques

have been developed to assist engineers in dealing with the complications of variability management. The

principal goal of modelling variability techniques is to configure a successful software product by managing

variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a

successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL

and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of

the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new

techniques for modelling and new methods for SPL analysis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Marcel Fouda Ndjodo and Amougou Ngoumou (2012). Transformational Variability Modeling Approach to

Configurable Business System Application, Software Product Line - Advanced Topic, Dr Abdelrahman Elfaki

(Ed.), ISBN: 978-953-51-0436-0, InTech, Available from: http://www.intechopen.com/books/software-product-

line-advanced-topic/transformational-variability-modeling-approach-to-configurable-business-system-

application

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

