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1. Introduction

Brane-world scenarios with a 3-brane identified with the observable Universe which is
embedded in a higher-dimensional space-time provide an alternative to the standard 4D
cosmology (Binetruy, Deffayet & Langlois 2000; Binetruy et al., 2000; Collins & Holdom,
2000; Kraus, 1999; Shiromizu; Maeda & Sasaki, 2000), reviews (Durrer, 2005; Maartens, 2004;
Rubakov, 2001). A necessary requirement on these models is that they should reproduce
the main observational cosmological data, the age of the Universe, abundances of elements
produced in primordial nucleosynthesis, etc.

A general property of the models with extra dimensions is that gravity propagates in the
extra dimensions independent of whether the ordinary matter is confined to the brane or not.
This entails a peculiar property of the models with extra dimensions which is absent in the
standard cosmology: gravitons which are produced in reactions of particles of matter on the
brane can escape from the brane and propagate in the bulk (Hebecker & March-Russel, 2001;
Langlois; Sorbo & Rodriguez-Martinez, 2002; Langlois & Sorbo, 2003; Maartens, 2004; Tanaka
& Himemoto, 2003). As a consequence the Einstein equations contain terms accounting for
the graviton emission. Cosmological evolution of matter on the brane is also affected by this
process.

Roughly the energy loss due to the process a + b → G + X can be estimated (Gorbunov &
Rubakov, 2008) as

dρ̂

dt
= − < nanbσa+b→G+XvEG >,

where in the radiation-dominated period of the evolution of the Universe na, nb ∼ T3 and
EG ∼ T. This yields

dρ̂

dt
∼ −κ2T8.

Here T is temperature of the Universe and κ2 = 8π/M3, is the 5D gravitational constant,
where M is the 5D Planck mass,

Below we consider the problem of graviton emission to the bulk in a model with one 3-brane
embedded in the bulk with one infinite extra dimension (Randall-Sundrum type II model
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2 Will-be-set-by-IN-TECH

(Randall & Sundrum, 1999) with matter). In a class of metrics defined below, the 5D model
can be treated in two alternative approaches. In the first approach the brane is moving in
the static 5D space-time, constructed by attaching two AdS spaces to the brane (Birmingham,
1999; Chamblin & Reall, 1999; Collins & Holdom, 2000; Kraus, 1999). In the second approach
the brane is located at a fixed position in the extra dimension, and the metric is time-dependent
(Binetruy, Deffayet & Langlois 2000; Binetruy et al., 2000). We review a method to connect
both approaches.

The Einstein equations including the terms due to graviton production are solved in the
perturbative approach. In the leading order we neglect the graviton production, and include
it in the next order. We perform our calculations in a picture in which the metric is
time-dependent and the brane is located at a fixed position in the extra dimension. In the
leading order solution of the system of 5D Einstein equations is the warped extension of the
metric on the brane to the bulk. Restriction of the 5D metric to the brane has the form of the
FRW metric ds2 = −dt2 + a2(t)ηµνdxµdxν where the scale factor a(t) is determined from the
generalized Friedmann equation (Binetruy, Deffayet & Langlois 2000; Binetruy et al., 2000;
Collins & Holdom, 2000; Kraus, 1999; Maartens, 2004; Mukohyama, Shiromizu & Maeda).
The generalized Friedmann equation is obtained by solving the system of the 5D Einstein
equations. In the 5D models the generalized Friedmann equation contains the terms linear
and quadratic in energy density on the brane. In the leading order the Friedmann equation
does not contain terms due to graviton production which are included in the next order.

Evolution of the energy density on the brane is determined by the Boltzmann equation. The
collision term in the Boltzmann equation accounts for the graviton emission from the brane
resulting from annihilation of the Standard model particles to gravitons. To calculate the
collision term, solving the field equations for fluctuations over the background metric, we
find the spectrum of the tower of Kaluza-Klein gravitons.

Explicit form of the bulk energy-momentum tensor is obtained by identifying the collision
term in the Boltzmann equation which accounts for the loss of energy density on the brane
with the component of the energy-momentum tensor in the 5D conservation equation which
also represents the energy flow from the brane to the bulk (Langlois & Sorbo, 2003).

Graviton emission changes cosmological evolution of matter on the brane. Time (temperature)
dependence of of the Hubble function determined from the Friedmann equation which
includs the components of the bulk graviton energy-momentum tensor is different from that
in the standard cosmological model. This, in turn, results in a change of abundances of
light elements produced in primordial nucleosynthesis (Steigman; Walker & Zentner, 2001).
Perturbatively solving the system of the Friedmann and 5D conservation equations, we find
the difference of abundances of 4He produced in primordial nucleosynthesis calculated in
the models with and without graviton production. Calculations are performed in the period
of late cosmology, in which in the Friedmann equation the term linear in matter energy
density is dominant. We find that the difference of abundances of 4He calculated in both
models is a small number, much smaller than that estimated in (Hebecker & March-Russel,
2001; Langlois; Sorbo & Rodriguez-Martinez, 2002; Langlois & Sorbo, 2003). We make an
estimate of production of 4He in the period of early cosmology, in which in the Friedmann
equation the quadratic term in matter energy density is dominant. In this period it is
important to account for multiple bounces of gravitons back to the brane (Hebecker &
March-Russel, 2001; Langlois & Sorbo, 2003). Under the assumption that the component
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Graviton Emission in the Bulk and Nucleosynthesis in a Model with Extra Dimension 3

of the graviton energy-momentum tensor representing the bouncing gravitons cancels the
large terms contained in the energy-momentum tensor of the emitted gravitons, we find that
production of 4He is consistent with the result of the standard cosmological model.

The plan of the paper is as follows. After briefly reviewing in Sect. 2 two approaches to
the 5D model, in Sects. 3 and 4 we establish explicit connection between the two pictures.
In Sect. 5, starting from the system of the Einstein equations containing the terms due to
graviton emission to the bulk, we obtain the generalized Friedmann equation. In Sect. 8,
using the results of Sect. 7, we calculate the collision integral in the Boltzmann equation and
find the components of the energy-momentum tensor of the gravitons emitted to the bulk. In
Sects. 9 and 10 we calculate the effect of the graviton emission on abundance of 4He produced
in primordial nucleosynthesis. In Sect. 11 we find condition for bouncing of the emitted
gravitons back to the brane.

2. Two pictures of 3-brane in the 5D space-time

We consider the 5D model with one 3D brane embedded in the bulk. Matter is confined to
the brane, gravity extends to the bulk. In the leading approximation we neglect gravitation
emission from the brane to the bulk. The action is taken in the form

S5 =
1

2κ2

⎡

⎣

∫

Σ

d5x

√

−g(5)(R(5) − 2Λ) + 2
∫

∂Σ

K

⎤

⎦−
∫

∂Σ

d4x

√

−g(4) σ̂ −
∫

∂Σ

d4x

√

−g(4)Lm, (1)

where x4 ≡ y is coordinate of the infinite extra dimension, κ2 = 8π/M3 .

The 5D model can be treated in two alternative approaches. Each approach proves to be
useful for certain problems discussed below. In the first approach metric is non-static, and the
brane is located at a fixed position in the extra dimension (Binetruy, Deffayet & Langlois 2000;
Binetruy et al., 2000). We consider the class of metrics of the form 1

ds2
5 = g

(5)
ij dxidxj = −n2(y, t)dt2 + a2(y, t)ηabdxadxb + dy2 ≡ dy2 + gµνdxµdxν. (2)

The brane is spatially flat and located at y = 0. Making use of the freedom in parametrization
of t, we can make n(0, t) = 0. Reduction of the metric (2) to the brane is

ds2 = dt2 + a2(0, t)ηabdxadxb. (3)

The energy-momentum tensor of matter on the brane is taken in the form

T̂ν
µ = diag δ(y){−ρ̂, p̂, p̂, p̂}. (4)

For the following it is convenient to introduce the normalized expressions for energy density,
pressure and cosmological constant on the brane which all have the same dimensionality
[GeV]

µ =

√

−Λ

6
, σ =

κ2σ̂

6
, ρ =

κ2ρ̂

6
, p =

κ2 p̂

6
. (5)

1 The indices i, j run over 0,...,4, the Greek indices are 0,...,3, and a, b = 1, 2, 3
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In the leading approximation the system of 5D Einstein equations and junction conditions
admits a solution (Binetruy et al., 2000)

a2(y, t) =
a2(0, t)

4

[

e2µ|y|
(

(

ρ + σ

µ
− 1

)2

+
ρw

µ

)

+ e−2µ|y|
(

(

ρ + σ

µ
+ 1

)2

+
ρw

µ

)

(6)

−2

(

(

ρ + σ

µ

)2

− 1 +
ρw

µ

)]

,

n(y, t) =
ȧ(y, t)

ȧ(0, t)
. (7)

The function a(t) = a(0, t) is solution of the generalized Friedmann equation (Binetruy,
Deffayet & Langlois 2000; Binetruy et al., 2000)

H2(t) = −µ2 + (ρ + σ)2 + µρw(t). (8)

Here we introduced the Hubble function H(t) and the so-called Weyl radiation term ρw(t)
(Maartens, 2004; Shiromizu; Maeda & Sasaki, 2000)

H(t) =
ȧ(0, t)

a(0, t)
, ρw(t) = ρw0

(

a(0, t0)

a(0, t)

)4

. (9)

In the second approach the brane separates two static 5D AdS spaces attached to both sides of
the brane (Birmingham, 1999; Chamblin & Reall, 1999; Collins & Holdom, 2000; Kraus, 1999).
The bulk actions are as the bulk part of the action (1). The metrics, which are solutions of the
Einstein equations, are

ds2 = − fi(R)dT2 +
dR2

fi(R)
+ µ2

i R2dxadxa, (10)

where

fi(R) = µ2
i R2 − Pi

R2
.

Below we consider the case µ1 = µ2 and P1 = P2. Reduction of the 5D metric to the brane is

ds2 = −dt2 + R2
b(t)dxadxa. (11)

Trajectory of the moving brane is defined through the proper time t on the brane as

R = Rb(t), T = Tb(t), where − f (Rb)Ṫ
2
b + f−1(Rb)Ṙ2

b = −1.

The junction conditions on the brane are (Binetruy, Deffayet & Langlois 2000; Binetruy et al.,
2000; Chamblin & Reall, 1999; Collins & Holdom, 2000; Kraus, 1999; Shiromizu; Maeda &
Sasaki, 2000)

[hk
i ∇knj] = τij −

1

3
τhij. (12)

Here hij = gij − ninj is the induced metric on the brane, vi = ±(Ṫb, Ṙb, 0) and ni =

±(−Ṙb, Ṫb, 0) are velocity and normal vector to the brane, τij = (ρ + p)vivj + phij.
2 [X]

2 Here and below prime and dot denote differentiation over y and t.
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Graviton Emission in the Bulk and Nucleosynthesis in a Model with Extra Dimension 5

denotes the difference of expressions calculated at the opposite sides of the brane. From
the spatial components (a, b = 1, 2, 3) of the junction conditions follows the generalized
Friedmann equation

(

Ṙb

Rb

)2

= −µ2 + (ρ + σ)2 +
P

R4
b

. (13)

Equation (13) is of the same form as (8). a2(0, t) can be identified with µ2R2
b(t), and the term

ρw(t) = ρw0/a4(t) can be identified with the term P/µR4
b(t). Below we set σ = µR2

b(t) and

a2(0, t) are interpreted as scale factors of the Universe. 3 .

3. Geodesic equations in the picture with static metric

To prepare necessary relations for establishing connection between the two pictures, we
consider the geodesic equations in the picture with the static metric and moving brane. Let y
be a parameter along a geodesic. Geodesic equations are

d2T

dy2
+ 2ΓT

TR
dT

dy

dR

dy
= 0 (14)

d2xa

dy2
+ 2Γa

bR

dxb

dy

dR

dy
= 0 (15)

d2R

dy2
+ ΓR

RR

(

dR

dy

)2

+ ΓR
TT

(

dT

dy

)2

+ ΓR
ab

dxa

dy

dxb

dy
= 0, (16)

where the Christoffel symbols calculated with the metric (10) are

ΓT
TR =

f ′

2 f
, ΓR

RR = − f ′

2 f
, ΓR

TT =
1

2
f f ′, ΓR

ab = −ηab f µ2R, Γa
Rb =

δa
b

R
.

Here (T, R) ≡ (T±, R±) are coordinates in the AdS spaces at the opposite sides of the brane.
Integrating the geodesic equations, we obtain

dT±

dy
=

E±

f (R)
,

dxa

dy
=

Ca

µ2R2
,

(

dR±

dy

)2

= f (R)(CR±)2 + E±2 − Ca2 f

µ2R2
, (17)

where (E±, Ca, CR±) are integration parameters. (dT/dy, dR/dy, dxa/dy) are the
components of the tangent vector to the geodesic which we normalize to unity. Imposing
normalization condition

dxi

dy

dxj

dy
gij = 1, i = T, R, a

we obtain that (CR±)2 = 1.

Let us consider the foliation of the hypersurface (T, R, xa = 0) by geodesics (T(y, t), R(y, t))
that intersect the trajectory of the brane (Tb(t), Rb(t)) and at the intersection point are
orthogonal to it (cf. (Mukohyama, Shiromizu & Maeda)). The geodesics are subject to the

3 From the fit of the cosmological data in the leading approximation of the present model it follows
that σ2 = µ2(1 + O(H2

0 /µ2)), where H0 is the present-time Hubble parameter (Iofa, 2009a;b). For

µ ∼ 10−12GeV correction is ∼ 10−60.
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initial conditions at y = 0 : R±(0, t) = Rb(t), T±(0, t) = Tb(t). We consider solutions of the
geodesic equations even in y: T+(y) = T−(−y), R+(y) = R−(−y)

dT±(y)
dy

=
Eε(y)

f (R)
,

dR±(y)
dy

= αε(y)
(

f (R) + E2
)1/2

, (18)

where α = ±1, and E+(t) = E−(t) = E(t).

The normalized velocity of the brane and the normal vector to the brane are

vi
b = (Ṫb, Ṙb), ni±

b = ηε(y)

(

Ṙb

f (Rb)
, f (Rb)Ṫb

)

, (19)

where η = ±1. From (17), setting Ca = 0, we obtain the tangent vector to the geodesic

ui± =

(

Eε(y)

f (R)
, αε(y)

√

f (R) + E2

)

, (20)

By construction, at the intersection point with the trajectory of the brane the tangent vector to
a geodesic is parallel to the normal to the trajectory of the brane,

ui |y=0||ni
b. (21)

Substituting Ṫb = ξ
√

f (Rb) + Ṙ2
b/ f (Rb), where ξ = ±1, we have

E = ηṘb, α = ξη. (22)

Integrating Eq.(18) for R, we express coordinate R in the hyperplane Ca = 0 through
coordinates (y, t)

R2(y, t) = R2
b(t)

[

cosh(2µy) +
H2

2µ2
(cosh(2µy)− 1)±

√

1 +
H2

µ2
− P

R4
bµ2

sinh(2µ|y|)
]

. (23)

Here H2 = (Ṙb(t)/Rb(t))
2. Substituting H2 from the Friedmann equation (13) with σ = µ,

we transform (23) to the form (6) with σ = µ. Thus, we can identify

µ2R2(y, t) = a2(y, t). (24)

4. Integration of geodesic equations and connection between two forms of the

metric

In the following we consider the metric (10) with P = 0, i.e. f (R) = µ2R2. In the hyperplane
xa = const we set Ca = 0. Integrating Eq. (18)

dR±(y, t)

dy
= αε(y)

√

µ2R2(y, t) + E2 (25)

we obtain

R±(y, t) = Rb(t) cosh µy + α

√

Ṙ2
b

µ2
+ R2

b sinh µ|y|. (26)
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Using the Friedmann equation

H2 = Ṙ2
b/R2

b = ρ2 + 2µρ (27)

omitting (±) we rewrite (26) as

R(y, t) = Rb(t)

(

cosh µy + αβ

(

1 +
ρ

µ

)

sinh µ|y|
)

, (28)

where β ≡ sign(Rb(t)). To identify µ2R2(y, t) with

a2(y, t) =
a2(0, t)

4

[

e2µ|y|
(

ρ

µ

)2

+ e−2µ|y|
(

ρ

µ
+ 2

)

− 2
ρ

µ

(

ρ

µ
+ 2

)

]

, (29)

(cf. (6)) we set
αβ = −1.

and obtain

R(y, t) =
Rb(t)

2

[

e−µ|y|
(

ρ

µ
+ 2

)

− eµ|y| ρ

µ

]

. (30)

Also we have
dR(y, t)

dy
= −ε(y)

µRb

2

[

e−µ|y|
(

ρ

µ
+ 2

)

+ eµ|y| ρ

µ

]

. (31)

Introducing y0, such that

eµy0 =

(

ρ

ρ + 2µ

)1/2

(32)

we express R(y, t) and R′(y, t) as

R(y, t) = − HRb(t)

µ
sinh(µ|y|+ µy0), R′(y, t) = −ε(y)HRb(t) cosh(µ|y|+ µy0). (33)

Substituting in Eq. (18) for T(y, t) expression (33) for R(y, t), and integrating the equation, we
have

T±(y, t) = − 1

µE

cosh(µ|y|+ µy0)

sinh(µ|y|+ µy0)
+ C±(t). (34)

Taking C+(t) = C−(t) = C(t), we obtain that the limits y = 0 of T±(y, t) from both sides of
the brane are the same .

To determine C(t), first, we consider transformation of the metric (10) from coordinates
R(y, t), T(y, t) to coordinates y, t. We have

ds2 = dy2

(

−µ2R2T′2 +
R′2

µ2R2

)

+ 2dtdt

(

−µ2R2ṪT′ +
ṘR′

µ2R2

)

(35)

+dt2

(

−µ2R2Ṫ2 +
Ṙ2

µ2R2

)

+ µ2R2dxa2.

On solutions of the geodesic equations (18) the coefficient at dy2 is ε2(y). The coefficient at
dydt is zero, if

Ṫ =
Ṙ R′

µ4R4 T′ =
Ṙ R′

µ2R2(ε(y)E)
, (36)
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where in the second equality we have used (18). Substituting (36) in the coefficient at dt2 and

using (18) and (33), we obtain Ṙ2/Ṙb
2
= n2(y, t) (cf. (6)).

Writing (34) as

T(y, t) = −R′(y, t)/ε(y)

µ2R(y, t)E
+ C(t) (37)

and taking the time derivative, we obtain

Ṫ =
ṘR′

µ2R2(ε(y)E)
− 1

µ2R

d

dt

(

R′/ε(y)

E

)

+ Ċ (38)

The first term in the rhs of (38) is the same as (36). Remarkably, substituting explicit
expressions (33) for R and R′, we find that the second term in the right-hand side of (38)
is independent of y

1

µ2R

d

dt

(

R′ε(y)
E

)

=
ηẏ0(t)

Ṙb(t)
. (39)

Choosing

Ċ = η
ẏ0

Ṙb
,

we obtain Ṫ in the form (36). To conclude, we have transformed the metric (10) to the form
(2).

5. Generalized Friedmann equation with the graviton emission terms included

In this section, keeping in mind application of the results of this section to calculation of
primordial nucleosynthesis, we derive the generalized Friedmann equation containing the
bulk energy-momentum tensor due to the graviton emission from the brane to the bulk. We
use formulation based on the metric (2). Dynamics of the model is contained in the system of
5D Einstein equations

Gij ≡ Rij −
1

2
gijR = κ2T

(5)
ij − gijΛ − δ

µν
ij

√

−g(4)
√

−g(5)
δ(y)gµνκ2σ̂. (40)

Here T
(5)
ij is the sum of the energy-momentum tensor of matter confined to the brane T̂ij (11)

and the bulk energy-momentum tensor Ťij.

The components of the Einstein tensor Gij(y, t) are

G00 = 3

[

ȧ2

a2
− n2

(

a′′

a
+

a′2

a2

)]

(41)

G44 = 3

[(

a′2

a2
+

a′n′

a n

)

− 1

n2

(

ȧ2

a2
− ȧṅ

a n
+

ä

a

)

]

(42)

G04 = 3

(

n′

n

ȧ

a
− ȧ′

a

)

. (43)
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Graviton Emission in the Bulk and Nucleosynthesis in a Model with Extra Dimension 9

The components Gij(y, t) satisfy the relations (cf. (Binetruy et al., 2000))

G0
0 − G0

4
ȧ

a′
=

3

2a′a3
F′ (44)

G44 − G04
a′

ȧ
=

3

2ȧa3
Ḟ, (45)

where

F = (a′a)2 − (ȧa)2

n2
(46)

The functions a(y, t) and n(y, t) satisfy junction conditions on the brane 4

a′(0, t)

a(0, t)
= −σ − ρ(t),

n′(0, t)

n(0, t)
= 2ρ(t) + 3p(t)− σ (47)

Reparametrization of t allows to set n(0, t) = 1, i.e. t is the proper time on the brane.

Eq. (45) can be rewritten as

Ḟ = −µ2 ˙(a4)− κ2

6
(a4)′Ť04 +

κ2

6
˙(a4)Ť44. (48)

On the brane, at y = 0, using junction conditions and setting σ ≃ µ, we have

Ḟ = µ2 ˙(a4) +
2κ2a4

3
(ρ + µ)Ť04 +

2κ2a3 ȧ

3
Ť44. (49)

Integrating (48) in the interval (t, tl), where the initial time tl is defined below, we obtain

F(0, t)=µ2a4(0, t)+
2κ2

3

t
∫

tl

dt′Ť04(t
′)(ρ(t′)+µ)a4(0, t′)+

2κ2

3

t
∫

tl

dt′Ť44(t
′)ȧ(0, t′)a3(0, t′)−C,

(50)
where C is an integration constant. Substituting expression (46) for F and using the junction
conditions, we rewrite (50) in a form of the generalized Friedmann equation (cf. (Binetruy,
Deffayet & Langlois 2000; Binetruy et al., 2000))

H2(t) = ρ2(t) + 2µρ(t) + µρw(t)−
2κ2

3a4(0, t)

t
∫

tl

dt′
[

Ť04(t
′)(ρ(t′) + µ) + Ť44(t

′)H(t′)
]

a4(0, t′).

(51)
On the brane, at y = 0, substituting the expressions for n′/n and a′/a from the junction
conditions (47), we transform the (04) component of the Einstein equations (43) to the form

ρ̇ + 3H(ρ + p) =
κ2Ť04

3
. (52)

On the other hand, the same equation, which is the generalization of the conservation equation
for the energy-momentum tensor of the matter confined to the brane to the case with the
energy-momentum flow in the bulk, is obtained by integration of the 5D conservation law
∇iT

i
0 = 0 across the brane (Tanaka & Himemoto, 2003).

4 We assume invariance y ↔ −y.
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6. Period of late cosmology

The generalized Friedmann equation contains the terms linear and quadratic in the energy
density ρ. The period, in which the term linear in energy density is dominant, i.e. ρ/µ < 1 is
called the period of late cosmology. Graviton production by hot matter is sufficiently intensive
in the radiation-dominated period of cosmology. In the radiation-dominated phase of the
Universe condition of late cosmology is

ρr(T)

µ
=

κ2ρ̂r(T)

6µ
=

4π3g∗(T)T4

90µM3
≃ 4π3g∗(T)T4

90(µMpl)2
< 1, (53)

where we used that µM2
pl/M3 ≃ 1 Iofa (2009a;b). Taking µ ∼ 10−12GeV, we find that the

approximation of late cosmology is valid up to the temperatures of order 5 · 102GeV.

Without the Weyl radiation term, the function a2(y, t) (29) has the minimum equal to zero at
the point |ȳ|

e2µ|ȳ| = 1 +
2µ

ρ
. (54)

In the region 0 < |y| < |ȳ| and for ρ/µ ≪ 1 the functions a(y, t) and n(y, t) = ȧ(y, t)/ȧ(0, t)
can be approximated as

a(y, t) ≃ a(0, t)e−µ|y| (55)

n(y, t) ≃ e−µ|y|,

and the approximate 5D metric is

ds2 ≃ dy2 + e−2µ|y|(−dt2 + a2(0, t)ηabdxadxb). (56)

7. Fluctuations of the background metric

in the models with extra dimensions, in interactions of particles of the hot plasma on the brane,
are produced not only massless gravitons, but the whole Kaluza-Klein tower of gravitons.
Gravitons are fluctuations over the background metric. To calculate the energy loss from the
brane due to graviton emission we need the spectrum of gravitons. The part of the action
quadratic in fluctuations is

I =
1

2

∫

d5x

√

−g(5)
[

(R − Λ(5))

(

−1

2
h

j
i h

i
j +

1

4
h2

)

− R
j
i h

i
jh + 2R

j
i h

k
j hi

k (57)

+
1

2

(

2hqi;khik;q − hik;qhik;q + h,qh,q − 2h,ih
ik

;k

)

]

.

The action I is invariant under the gauge transformations

h̃kl = hkl − (∇kξl +∇lξk), (58)

where ∇ is defined with respect to the background metric. The gauge freedom allows to
set the components h4i to zero. There remain residual gauge transformations, allowing for
subsequent simplifications.
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With the full metric gµν(y, t) (2) it is complicated to solve the equations for hµν analytically. To
solve the equations, instead of the exact metric, in the regions 0 < y < ȳ and y > ȳ we use the
approximate metrics with the separated dependence on y and t. In the region 0 < y < ȳ, we
use the approximate metric (56). In the region y > ȳ the approximate metric is

ds2 = dy2 + e2µy

(

−dt2 +
a2(0, t)

4

(

ρ

µ

)2

ηabdxadxb

)

. (59)

In the metrics (56) and (59), using the residual gauge transformations and field equations for
hij, it is possible to transform hij to the traceless, transverse form hµ

µ = 0, Dµhµν = 0 (Iofa,
2011).

Equations for the eigenmodes are considered in the next subsection. We show that the norm
of the function h>m is smaller than that of h<m . Effectively, in the period of late cosmology, this
allows to consider the contribution from the region 0 < y < ȳ only.

We obtain the spectrum

mn ≃ µe−µȳ
(

nπ +
π

2

)

(60)

and the normalized eigenmode hm(0)

hm(0) ≃ (µe−µȳ)1/2. (61)

For the following we need the sum ∑n h2
mn

(0), where mn is determined by (60). Because of a
narrow spacing between the levels, we change summation to integration and obtain

∑
n

h2
mn

(0) ≃
∫

dm eµȳ

µπ
µe−µȳ =

∫

dm

π
. (62)

The integral (62) is independent of ȳ. The same measure of integration was obtained in
Langlois; Sorbo & Rodriguez-Martinez (2002), where the authors used the graviton modes
of the Randal-Sundrum II model (Randall & Sundrum, 1999) without matter, in which case
the integration over y extends to infinity and the spectrum is continuous. Similarity of the
results can be traced to the fact that we performed calculations in the period of late cosmology
neglecting the terms of order O(ρ/µ) as compared to unity.

7.1 Equations for eigenmodes

In the background of the approximate metric (56), in the region 0 < y < ȳ, in the gauge
Dµhµν(y, x) = 0, h

µ
µ(y, x) = 0, the (µν) components of the field equations for fluctuations are

h′′µν − 4µ2hµν + b−1(y)DρDρhµν + δ(y)4µhµν = 0. (63)

We expand the functions h
µ
ν (x, y) as

h
µ
ν (x, y) = ∑

m
φ

µ

(m)ν
(x)hm(y),

where the functions h<m(y) satisfy the equation 5

h′′m(y)− 4µ2hm(y) + e2µ|y|m2
<

hm(y) + δ(y)4µhm(y) = 0. (64)

5 Wherever it does not lead to ambiguity, we omit the (sub)superscripts < and >.
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Solution of the equation

h′′m(y)− 4µ2hm(y) + e2µ|y|m2
<

hm(y) = 0 (65)

is
h<m(y) = C1 J2(m̃eµ|y|) + C2N2(m̃eµ|y|), (66)

where
m̃ =

m<

µ
.

The terms with δ(y) are taken into account by the boundary condition

[

dhm(y)

dy
+

2

m̃
hm(y)

]

y=0+

= 0

which yields the relation C1 J1(m̃) + C2N1(m̃) = 0. The eigenfunctions (66) take the form

h<m<
(y) = C

[

(N1(m̃)J2(m̃eµ|y|)− J1(m̃)N2(m̃eµ|y|)
]

. (67)

Introducing the functions

fk(y) = N1(m̃)Jk(m̃eµ|y|)− J1(m̃)Nk(m̃eµ|y|)

we obtain the norm of hm

||h<m<
||2 = 2C2

ȳ
∫

0

e2µy f 2
2 (y)dy =

C2

µ

[

e2µȳ
(

f 2
2 (ȳ)− f1(ȳ) f3(ȳ)

)

−
(

f 2
2 (0)− f1(0) f3(0)

)]

.

(68)
Typical masses (energies) of the emitted Kaluza-Klein gravitons are of order of temperature
of the Universe T. In the case of small µ ∼ 10−12 GeV we have m/µ ≫ 1. Substituting the
asymptotics of the Bessel functions, we obtain

||h<m<
||2 =

C2

µ

(

2

πm̃

)2

(eµȳ − 1). (69)

In the region y > ȳ we use the metric in (59) with the increasing exponent. The equations for
the eigenmodes h> is

h′′m(y)− 4µ2hm(y) + e−2µ|y|m2
>

hm(y) = 0. (70)

The eigenfunctions are

h>m>
(y) = C̃1 J2(m̃e−µy)− C̃2N2(m̃e−µy), (71)

where m̃ = m>/µ. For large y, such that m̃e−µy ≪ 1, the function N2(m̃e−µy) ∼ (m̃e−µy)−2

rapidly increases, and to have normalizable eigenfunctions we set C̃2 = 0. The norm of the
function h>m(y) is

||h>m>
||2 = C̃2

1

∞
∫

ȳ

e−2µy J2
2 (m̃e−µy)dy = C̃1

2 e−2µȳ

2µ
[J2

2 (m̃e−µȳ)− J1(m̃e−µȳ)J3(m̃e−µȳ)]. (72)

354 Astrophysics

www.intechopen.com



Graviton Emission in the Bulk and Nucleosynthesis in a Model with Extra Dimension 13

At temperatures T ≫ µ at which production of gravitons is sufficiently intensive, the
argument of the Bessel function

m̃e−µȳ ∼ T

µ

(

ρ

µ

)1/2

∼ T

µ
g1/2
∗ (T)

T2

µMpl

is large and we can substitute the asymptotics of the Bessel functions

h>m>
(y) = C̃1

√

2

πm̃
eµȳ/2 cos(m̃(eµȳ − 1)). (73)

Instead of sewing the oscillating functions h<m(y) and h>m(y), we sew the envelopes of their
asymptotics

2C

πm̃<

e−µȳ/2 = C̃1

(

2

πm̃>

)1/2

eµȳ/2 (74)

giving

C̃1 = Ce−µȳ

√

2

π

√
m̃>

m̃<

The norm (72) is smaller than (69). Effectively, we neglect the contribution from the region
y > ȳ and impose the condition hm(ȳ) = 0, which yields us the spectrum (60). Using the
norm (69), we obtain the normalized eigenmode hm(0) (61).

8. Production of Kaluza-Klein gravitons

In this section we calculate the rate of production of Kaluza-Klein gravitons in interactions
of particles of the hot matter on the brane in the radiation-dominated period. The leading
contribution to this process is given by the annihilation reactions ψi + ψ̄i → G, where ψ and ψ̄
are the standard model particles on the brane (vector, spinor, scalar) and G is a state of mass
mn from the graviton Kaluza-Klein tower. Production of Kaluza-Klein gravitons is calculated
with the interaction Lagrangian

I = κ
∫

d4x
√

−ḡ hµν(0, x)Tµν(x),

where Tµν is the energy-momentum of particles on the brane. Evolution of energy density of
matter on the brane is determined from the Boltzmann equation (Gorbunov & Rubakov, 2008;
Kolb & Turner, 1990)

dρ̂

dt
+ 4Hρ̂ = −∑

n
∑

i

∫

d3 p

(2π)3

∫

d3k1

(2π)32E1

d3k2

(2π)32E2
f i
1(E1) f i

2(E2)|Mi
n|2(2π)4δ4(k1 + k2 − p).

(75)
Here f i are the Bose/Fermi distributions of colliding particles and Mi

n is the amplitude of the
annihilation reaction. The square of the annihilation amplitude is (Langlois & Sorbo, 2003)

|Mi
n|2 = Ai

κ2

8
h2

n(0)s
4, (76)

where Ai = As, Av, A f = 2/3, 4, 1 for scalars, vectors and fermions and s2 = (k1 + k2)
2.

The sum over the graviton states is transformed to the integral as in (62). Integrating over the
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angular variables of the momenta of interacting particles, we obtain Boltzmann equation in
the form

dρ̂

dt
+ 4Hρ̂ = − κ2 ∑i Ai

8(2π)4

∫

dmeµȳ

µ
h2

m(0)m
4
∫

dk1dk2 f (k1) f (k2)(k1 + k2)θ

(

1 −
∣

∣

∣

∣

1 − m2

2k1k2

∣

∣

∣

∣

)

.

(77)
Integrating over m, we obtain (cf. (Hebecker & March-Russel, 2001; Langlois & Sorbo, 2003))

dρ̂

dt
+ 4Hρ̂ = − κ2 ∑i Ai

8(2π)4

(2k1k2)1/2
∫

0

dmm4
∫

dk1dk2 f (k1) f (k2)(k1 + k2) (78)

= − κ2 A315ζ(9/2)ζ(7/2)T8

π328
,

where the sum extends over relativistic degrees of freedom

A = ∑
i

Ai =
2gs

3
+ g f (1 − 2−7/2)(1 − 2−9/2) + 4gv. (79)

In the high-energy period, when all the standard model degrees of freedom are relativistic,
A = 166, 2.

Eq.(78) has the same form as Eq.(52) and the right hand side of (78) can be identified with the
component Ť04 of the bulk energy-momentum tensor (Langlois & Sorbo, 2003).

The energy-momentum tensor of the emitted gravitons is taken in the form of free radiation
of massless particles (Langlois & Sorbo, 2003)

Ťij(x) =
∫

d5 p
√

−gδ(pi p
i) f̃ (x, p)pi pj, (80)

where f̃ (x, p) is the phase space density of the distribution function of gravitons.

Expanding the graviton momentum pi in the orthonormal basis vi
b, ni

b (19), we have

pi = Evi
b + mni

b + paei
a,

where pi p
i = −E2 + m2 + pa pa. Substituting these expressions in (80), we obtain

Ťnu = uinjTij = −1

2

∫

d3 pdm m f (E, m, pa)

∣

∣

∣

∣

E=
√

m2+p2

(81)

The interaction tern in (75) can be rewritten as

1

(2π)5

∫

d3 p
dm

π

∫

d3k1

2E1

d3k2

2E2
f i
1(E1) f i

2(E2)∑
i

|Mi
n|2δ4(k1 + k2 − p) (82)

Comparing (81) and (82), one determines f (E, m, pa) and calculates the other components of
Ťij

Ťnn(0, t) =
3Aζ(9/2)ζ(7/2)

2π4
κ2T8, Ťuu(0, t) =

21 Aζ(9/2)ζ(7/2)

8π4
κ2T8. (83)

In the basis (19), the components Ťnu and Ťnn are equal to Ť04 and Ť44 .
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9. Graviton emission in the bulk in the period of late cosmology and

nucleosynthesis

To estimate the effect of the graviton emission on nucleosynthesis we solve perturbatively
the system of the generalized Friedmann equation (51) and the 5D conservation equation
(52). In the period of late cosmology the leading approximation of the Friedmann equation
coincides with that in the standard cosmological model. Supposing that the terms with the
bulk energy-momentum tensor do not alter the leading-order results significantly, we treat
these terms perturbatively. The Weyl radiation term and the term quadratic in radiation
energy density can be treated perturbatively also.

The Friedmann equation can be written as

H2 ≃ 2µρ − I04 − I44. (84)

Using the expressions (83) for the components Ťij, we obtain

I04 =
2κ2

3a4(0, t)

∫ t

tl

dt′Ť04(0, t′)(µ + ρ(t′))a−4(0, t′) = (85)

µρ(t)A04

(

1

12

(

1

µtl
− 1

µt

)

+
1

288

(

1

(µtl)3
− 1

(µt)3

))

,

and

I44 =
2κ2

3a4(0, t)

∫ t

tl

dt′Ť44(t
′)(2µρ(t′))1/2a−4(0, t′) =

µρ(t)A44

48

(

1

(µtl)2
− 1

(µt)2

)

, (86)

Here we substituted

κ2Ť04 = A04ρ2 = −315 A ζ(9/2)ζ(7/2)

29π3

(

180

g∗π2

)2

ρ2(t) (87)

κ2T44 = A44ρ2 =
3 A ζ(9/2)ζ(7/2)

4π4

(

180

g∗π2

)2

ρ2(t) (88)

The integrals have a strong dependence on the value of the lower limit. Therefore, in the
integrand the slowly varying functions can be taken at the times when all the Standard
model degrees of freedom are relativistic. In this period A = 166.2, g∗(T) = 106.7 and
A04 ≃ −0.126. In the leading approximation ρ(t) ≃ 1/8µt2 and 1/µtl ≃ (8ρ(tl)/µ)1/2

Taking ρ(tl)/µ ∼ 0.1 ÷ 0.001 and µ ∼ 10−12GeV, we have 1/µtl ≃ 0.9 ÷ 0.09 and Tl ∼
(5.1 ÷ 1.6) · 102GeV. For ρ(tl)/µ ∼ 0.1 we obtain

I04 ≃ −2µρ(t) · 0.0048 (89)

I44 ≃ 2µρ(t) · 0.00094. (90)

In the radiation-dominated period,the 5D conservation equation is

ρ̇ + 4Hρ = − A04ρ2

3
(91)

Let ρ̄ and H̄ be the energy density and the Hubble function in the leading order

H̄2 = 2µρ̄.
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Defining
ρ = ρ̄ + ρ1, H = H̄ + H1,

and separating in (84) and (91) the leading-order terms, we obtain

2H̄H1 = 2µρ1 −
2ρ̄

3

∫

dt′ [A04(µ + ρ̄) + A44H̄] ρ̄(t′) (92)

ρ̇1 + 4H̄ρ1 + 4ρ̄H1 =
A04ρ̄2

3
. (93)

Substituting in the above system ρ̄(t) ≃ 1/8µt2 and performing integration, we have

H1(t) ≃
µ

H̄
ρ1 −

H̄A04

48µ

[

1

tl
− 1

t
+

1

24µ2

(

1

t3
l

− 1

t3

)]

− H̄A44

192µ2

(

1

t2
l

− 1

t2

)

. (94)

Substituting in (92) expression (94) for H1 and noting that H̄ = 1/2t, we obtain

ρ̇1 +
3

t
ρ1 =

A04

192µ2t3

[

1

tl
+

1

24µ2

(

1

t3
l

− 1

t3

)]

+
A44

768µ3t3

(

1

t2
l

− 1

t2

)

.

Solving this equation, we find

ρ1(t) =
C1

t3
+

A04

192µ2t3

[

t − tl

tl
+

1

24µ2

(

t − tl

t3
l

− 1

2

(

1

t2
l

− 1

t2

))]

+
A44

768µ3t3

(

t

t2
l

− 2

tl
+

1

t

)

(95)
The constant C1 can be determined by sewing solutions of Friedmann equation in the periods
of early and late cosmologies. For a moment we set C1 = 0, i.e. we look for a contribution
from the period of late cosmology. For H1 we obtain

H1(t) = − A04

1536µ3t2

(

1

t2
l

− 1

t2

)

+
A44

192µ2t2

(

− 1

tl
+

1

t

)

≃ −ρ̄(t)

(

A04

192µ2t2
l

+
A44

24µtl

)

. (96)

The expressions (95) and (96) show that corrections to the leading terms are small, i.e. the
perturbative approach is justified. Note that the leading term proportional to A04/µtl was
canceled in H1.

The mass fraction of 4He produced in primordial nucleosynthesis is (Gorbunov & Rubakov,
2008; Kolb & Turner, 1990)

X4 =
2(n/p)

(n/p) + 1
,

where the ratio n/p is taken at the end of nucleosunthesis. Characteristic temperature at
the onset of the period of nucleosynthesis (freezing temperature Tn of the reaction n ↔ p),
estimated as the temperature at which the reaction rate ∼ GFT5 is approximately equal to the
Hubble parameter GFT5

n ∼ H (Gorbunov & Rubakov, 2008; Kolb & Turner, 1990), is Tn ∼
10−3GeV. The difference of the freezing temperatures in the models with and without the
account of the graviton emission is

δTn

Tn
≃ H1

5H̄
≃ 1

5

√

ρ̄(tn)

2µ

(

A04

192µ2t2
l

+
A44

24µtl

)

, (97)
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where
ρ̄(tn)

µ
=

4π3g∗(Tn)

90

T4
n

µM3
. (98)

Substituting Tn ∼ 10−3GeV and µM3 ∼ (µMpl)
2 ∼ 1014GeV4, we find that the ratio δTn/Tn

is very small. The equilibrium value of the n − p ratio at the freezing temperature is

(

n

p

)

n

= exp

[

− (mn − mp)

Tn

]

.

Substituting δ(n/p)n = (n/p) ln(n/p)nδTn/Tn, we obtain variation of X4 under variation of
the freezing temperature

δX4 ≃ 2

(n/p + 1)2
ln

(

n

p

)(

n

p

)

n

δTn

Tn
(99)

which is also a very small number (Iofa, 2011).

10. Estimate of the graviton emission in the bulk in the period of early cosmology

In the period of early cosmology in the Friedmann equation the ρ2 term is dominant, i.e.
ρ(t)/µ > 1. For the value of µ ∼ 10−12GeV assumed in the present study the characteristic
temperatures of the period of early cosmology are above 5 · 102GeV. Not much is known about
physics at such temperatures. To make a crude estimate of the effect of the graviton emission
on the nucleosynthesis we adopt a conservative point of view assuming that the collision
integral in the Boltzmann equation and the expressions for Ťij calculated in the period of late
cosmology remain qualitatively valid in the early cosmological period.

The new phenomenon in the early cosmological period is that some of the emitted gravitons
can return to the brane and be again reflected in the bulk with a different momentum.
These gravitons do not contribute to the component Ť04, because they are not produced, but
reflected, but contribute to the component Ť44. The new ingredient in the Friedmann equation

is the term Ť
(b)
44 representing the energy-momentum tensor of gravitons bouncing back to the

brane (Hebecker & March-Russel, 2001; Langlois & Sorbo, 2003)

H2(t) = ρ2(t) + 2µρ(t) + µρw(t) (100)

− 2κ2

3a4(0, t)

∫ t

tc

dt′
[

Ť04(t
′)(ρ(t′) + µ) + Ť44(t

′)H(t′)− Ť
(b)
44 (t′)H(t′)

]

a4(0, t′).

Here the initial time tc is the time of reheating. Numerical estimates and considerations
from the Vaidya model (Langlois; Sorbo & Rodriguez-Martinez, 2002; Langlois & Sorbo, 2003)
suggest that at the period of early cosmology the dominant contributions from T04, T44 and

Ť
(b)
44 mutually cancel. Below we solve the system of the Friedmann and 5D conservation

equations assuming that this cancellation takes place.

Let ρ̄ and H̄ be the energy density of matter on the brane and the Hubble function calculated
in the model without the graviton emission in the period of early cosmology H̄2 ≃ ρ̄2(t). For
the equation of state of the hot plasma ρ̄ = p̄/3, we have ρ̄(t) ≃ 1/4t. Defining

ρ = ρ̄ + ρ2, H = H̄ + H2,
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we obtain

2H̄H2 ≃ 2ρ̄ρ2 −
2ρ̄

3

∫ t

tc

dt′
[

(A04(µ + ρ̄) + A44H̄) ρ̄(t′)− κ2Ť
(b)
44 (t′)

]

(101)

ρ̇2 + 4H̄ρ2 + 4ρ̄H2 =
A04ρ̄2

3
. (102)

The equation for ρ2 is

ρ̇2+
2

t
ρ2−

1

t

[

A04

12

(

µ ln
t

tc
+

1

4

(

1

tc
−1

t

))

+
A44

48

(

1

tc
− 1

t

)]

+
1

12t

∫ t

tc

κ2Ť
(b)
44 (t′)dt′=

A04

48t2
,(103)

Integrating (102) with the initial condition ρ2(tc) = 0, we obtain

ρ2(t) =
A04µ

24

(

ln
t

tc
− 1

2
+

t2
c

2t2

)

+
A04 + A44

96tc

(

1 − t2
c

t2

)

− A44

48

(

1

t
− tc

t2

)

(104)

− 1

12t2

∫ t

tc

dyy
∫ y

tc

dxκ2Ť
(b)
44 (x)

The time tc of reheating is estimated for the reheating temperature TR ∼ 5 · 106GeV
(Mielczarek, 2009). Using the relation (53) and substituting ρ̄(tc)/µ ≃ 1/4µtc, we have

1

4µtc
≃ 4π3g∗(TR)T

4
R

90µM3
∼ 9 · 1014.

It follows that tl/tc ∼ 1/µtc ≃ 3.5 · 1015.

In (104) there is a large term (A04 + A44)/tc. Omitting the small terms, we have

ρ2(t) ≃
A04µ

24

(

ln
t

tc
− 1

2

)

+
A04 + A44

96tc
− A44

48

1

t
− 1

12t2

∫ t

tc

dyy
∫ y

tc

dxκ2Ť
(b)
44 (x) (105)

On dimensional grounds at small t the term κ2Ť
(b)
44 (t) has the following structure

κ2Ť
(b)
44 (t) =

b2

t2
+

b1µ

t
+ b0µ2 + · · · (106)

Performing integration of the last term in (105) and taking t ∼ tl , we obtain

ρ2(tl) ≃
A04µ

24

(

ln
tl

tc
− 1

2

)

− A44

48tl
+

A04 + A44

96tc
− b2

24tc
+

b2

12tl
+

b1µ

24
ln

tl

tc
. (107)

Next, we equate ρ2(tl) and C1/t3
l in (95). At the times t ∼ tl , where µtl ∼ 1, we have

C1µ3 ≃ µ

(

A04

24

(

ln
1

µtc
− 1

2

)

− A44

48

)

+
A04 + A44

96tc
− b2

24tc
+

b2µ

12
+

b1µ

24
ln

1

µtc
. (108)

The term C1/t3 is

C1

t3
≃ 1

µ2t3

[

µ

(

A04

24

(

ln
1

µtc
− 1

2

)

− A44

48

)

+
A04 + A44

96tc
− b2

24tc
+

b2µ

12
+

b1µ

24
ln

1

µtc

]

. (109)
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In the period of late cosmology the term C1/t3 generates in Eq.(94) for H1 the contribution
∆H1 = µC1/H̄t3

∆H1 = 16ρ̄

[

µ

(

A04

24

(

ln
1

µtc
− 1

2

)

− A44

48

)

+
A04 + A44

96tc
− b2

24tc
+

b2µ

12
+

b1µ

24
ln

1

µtc

]

.

(110)

Here ρ̄(t) ≃ 1/8µt2 is the matter energy density in the period of late cosmology.

If the term (A04 + A44)/96tc ∼ 3 · 10−4/tc was not canceled, it would produce in ρ1 the
contribution

∆ρ1 =
A04 + A44

96tc

1

(µt)3
≃ 3 · 10−4

(µt)3tc
.

From (94) we would have
∆H1

H̄
=

µ

H̄2
∆ρ1 ≃ 1.2 · 10−3

(µtc)(µt)
. (111)

At time of the nucleosynthesis

1

8(µtn)2
≃ 4π3g∗(Tn)

90

T4
n

(µMpl)2
.

For Tn ∼ 10−3GeV, we have µtn ∼ 1012. From (111) we obtain ∆H1(tn)/H̄(tn) ≃ 4, which is
too large a value, and would contradict the experimental data.

Assuming that the large terms in (110) cancel, we have

∆H1 =
2ρ̄(tn)

3

[

A04

(

ln
1

µtc
− 1

2

)

+
A04

2
+ b1 ln

1

µtc

]

. (112)

Because in the period of nucleosynthesis ∆H1/H̄ ∼ (ρ̄(tn)/µ)1/2 is a small number,
contribution from the early cosmology would result in a small variation of δX4/X4.

11. Gravitons bouncing to the brane

In this section, in the framework of the brane moving in the static space-time we present
arguments that in the period of early cosmology gravitons can bounce back to the brane.

Using Friedmann equation,
(

Ṙb/Rb

)2
= ρ2 + 2µρ the equation for the brane trajectory can be

written as (Langlois & Sorbo, 2003)

dRb

dTb
=

µ2R2
b Ṙb

ξ
√

µ2R2
b + Ṙ2

b

= ξβµ2R2
b

H
√

µ2 + H2
, (113)

where β = sign(Rb(t)). Expanding the right hand side of (113) in powers of µ/ρ < 1, we
obtain

dRb

dTb
≃ ξβµ2R2

b

(

1 − µ2

2ρ2

)

. (114)
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Using that ρ(t) = ρ(t1)(Rb(t1)/Rb(t))
4, we have

(

1 − µ2

2ρ2

)−1

≃ 1 +
µ2R8

b(t)

2ρ2(t1)R8
b(t1)

.

Integrating Eq. (113) with the initial conditions Rb = Rb(t1), Tb = Tb(t1), we obtain

ξβµ2(Tb(t)− Tb(t1)) = − 1

Rb(t)
+

1

Rb(t1)
+

µ2

14(ρ(t1)R4
b(t1))2

(

R7
b(t)− R7

b(t1)
)

. (115)

Gravitons propagate along the null geodesics which are found from the geodesic equations
(14)-(16). The tangent vectors to a null geodesic satisfy the relation

gij
dxi

dλ

dxj

dλ
= 0, (116)

where, to distinguish the case of the null geodesics, we relabeled the affine parameter from y
to λ. Substituting in (116) solution (17), we obtain that CR = 0. The tangent vectors to a null
geodesic are

dT̃

dλ
=

CT

f (R̃)
,

dx̃a

dλ
=

Ca

µ2R̃2
,

dR̃

dλ
= ν|CT | (1 − γ)1/2 , (117)

where tilde indicates that the point is at the null geodesic, ν = ±1. From the equations (117)
we obtain

dR̃

dT̃
= νκ(1 − γ)1/2µ2R̃2, (118)

where κ ≡ sign(CT). Integrating this equation with the initial conditions R̃ = Rb(t1), T̃ =
Tb(t1), we have

1

Rb(t1)
− 1

R̃
= νκ(1 − γ)1/2µ2(T̃ − Tb(t1)). (119)

To find, if at a time t the graviton trajectory returns to the brane world sheet, i.e. R̃ = Rb(t)
and T̃ = Tb(t), we combine equations (115) and (119). In the case ξβ = νκ we obtain

[(1 − γ)−1/2 − 1]

(

1

Rb(t1)
− 1

Rb(t)

)

=
µ2

14ρ2(t1)

1

Rb(t1)

(

(

Rb(t)

Rb(t1)

)7

− 1

)

. (120)

Eq. (120) means that graviton emitted from the brane at the time t1 has bounced back on the
brane at the time t. Setting z ≡ Rb(t1)/Rb(t), and γ̂/2 ≡ [(1 − γ)−1/2 − 1], and noting that in
the period of early cosmology µ/ρ(t) ≃ 4µt ≪ 1, we rewrite (120) as

(1 − z7)

z7(1 − z)
=

14γ̂ρ2(t1)

µ2
≃ 14γ̂

(4µt1)2
(121)

The function (1 − z7)z−7(1 − z)−1 is monotone decreasing with the minimum at z = 1 , and
Eq. (121) has a unique solution provided 2γ̂/(4µt1)

2
> 1.

From these relations, using that in the period of early cosmology z = Rb(t1)/Rb(t) ≃
(t1/t)1/4, is calculated the time of the bounce. The time of the bounce is small, if z ∼ 1,
or γ/(4µt)2 ∼ 1, that is if gravitons are emitted at small angles to the brane.
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12. Conclusion

In a model of 3-brane embedded in 5D space-time we calculated graviton emission of
interacting hot matter on the brane in the bulk. Reliable calculations can be performed in the
period of late cosmology, when ρ(T)/µ < 1, where ρ(T) is the normalized radiation energy
density of matter on the brane, µ =

√
−Λ/6 is the scale of the warping factor in the metric,

Λ is the 5D cosmological constant. For µ ∼ 10−12GeV, which we adopted in this paper, the
limiting temperatures of the Universe at which the approximation of late cosmology is valid
are of order Tl ∼ 5 · 102GeV. In the period of late cosmology it was possible to make a number
of approximations, which enabled us to obtain the analytic expression for the energy loss from
the brane to the bulk.

The 5D model of the present paper can be treated in two alternative approaches - with moving
brane in the static 5D bulk and with static brane in 5D bulk with time-dependent metric. Each
picture proves to be useful for particular problems. We establish explicit connection between
two pictures.

From the system of the Einstein equations containing the terms due to graviton emission
we obtained the generalized Friedmann equation. The Einstein equations and Friedmann
equation were solved perturbatively, the leading-order solution being that without the
graviton emission. We have shown that in the period of late cosmology corrections to the
leading-order approximation are small.

Graviton emission changes cosmological evolution of matter on the brane and thus production
of light elements in primordial nucleosynthesis. Solving the system of the generalized
Friedmann and the 5D energy conservation equations, which included the graviton emission
terms, we found the difference of the mass fractions of 4He produced in primordial
nucleosynthesis calculated in the models with and without the graviton emission

δX4

X4
∼ C

√

ρ(Tn)

µ
.

Here ρ(T) is is the radiation energy density of matter on the brane, Tn ∼ 10−3GeV is the
freezing temperature of the reaction p ↔ n, and C ≪ 1 is a small number. The ratio ρ(Tn)/µ ∼
10−26 is a small number, and thus correction to abundance of 4He due to the graviton emission
is small.

To estimate the effect of the graviton emission in the period of early cosmology on Helium
production, we assumed that the collision integral in the Boltzmann equation obtained for
the period of late cosmology qualitatively retains its form in the period of early cosmology.
As the upper limit of temperatures of matter on the brane at which we estimate the graviton
production, we take the reheating temperature ∼ 106GeV. It appears that straightforward
calculation of abundance of 4He produced in the early cosmology is too large to comply
with the data. In the period of early cosmology a new effect becomes important (Hebecker
& March-Russel, 2001; Langlois & Sorbo, 2003): gravitons emitted from the brane can bounce
back to the brane. Assuming that the large terms in the components of the energy-momentum
tensors from the emitted and bouncing gravitons mutually cancel, we find that the graviton
emission in the period of early cosmology yields a small correction to abundance of 4He
calculated in the standard cosmological model.
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