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Scanned Ion Beam Therapy  
of Moving Targets with Beam Tracking 

Nami Saito and Christoph Bert 
GSI Helmholtz Centre for Heavy Ion Research, 

 Germany 

1. Introduction 

Ion beam therapy has been offering beneficial dose conformity based on the fact that ions 
deposit large dose sharply at depth and significantly less dose at the entrance or behind the 
peak, known as the Bragg curve. In the decades, delivery systems of ion beams, especially 
proton and carbon ions, have been developed and used in number of clinics, and they have 
demonstrated excellent dose conformity on static tumours. The conventional ion beam 
delivery utilizes broad ion beams with a collimator for a beam shaping laterally and a 
patient specific compensator to define the beam depth. Therefore the conventional broad 
beam delivery is in principle not able to adapt beams to the target if the target is moving 
internally and changing its radiological depth. On the other hand, the scanned beam 
delivery system (Haberer et al. 1993;Pedroni et al. 1995) uses narrow ion beams to scan the 
target volume by controlling scanning magnets without needs of any beam shaping 
collimator. The scanned ion beam delivery system utilizes no patient specific compensator 
materials instead the system changes beam energy to control the beam depth, therefore it 
has an ability to modulate dose peak location flexibly on demand in three-dimensions (3D). 
Flexibility of such an active beam delivery system allows us to implement an advanced 
irradiation control system so called beam tracking that tracks moving targets continuously 
with ion beams not only in lateral directions but also longitudinally. The longitudinal 
adaptation is a particular objective for ion beam tracking different from the beam tracking in 
radiotherapy with photon where only lateral direction are adapted with multi-leaf 
collimators (Huang et al. 2008;Mao et al. 2008;Murphy 2004;Sawant et al. 2008). 

In this chapter we describe an ion beam tracking system that is implemented at GSI 
Helmholtz centre for heavy ion research (GSI) in Germany based on the active scanned ion 
beam delivery system, so called the rasterscan (Haberer, Becher, Schardt, & Kraft 1993). At 
GSI, the rasterscan has been applied to treat static tumours in the head, neck and pelvis 
since 1997 (Kraft 2000;Schulz-Ertner et al. 2007). With the rasterscan technique, the target is 
actively scanned with precisely controlled narrow ion beams with horizontal- and vertical-
scanning magnets. The target volume is split into virtual slices based on the beam path 
length calculated from the patient’s computed tomography (CT) data. For each virtual slice, 
the beam with the corresponding energy to reach the slice is delivered from the synchrotron 
accelerator (typical pulse period ~5 s) with pre-selected intensity and beam size. The Bragg 
peak of the beam is widened to approximately 3 mm with a ripple filter (Weber and Kraft 
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1999), and the individual Bragg curves for all slices create a so-called extended Bragg peak 
with homogeneous depth dose distribution over the target. Lateral target coverage is 
achieved by deflecting the beam with dipole scanning magnets to several hundred raster 
positions per iso-energy slice. At each scan position, an optimized number of particles 
(Krämer et al. 2000;Krämer and Scholz 2000) is deposited in typically 10 ms, then the pencil 
beam is deflected to the next position. The beam position and the number of particles are 
measured continuously and recorded for each raster point. An interlock system interrupts 
treatments in the case of deviations between nominal and measured beam parameters or 
other unexpected events (Badura et al. 2000). 

For intra-fractionally moving targets conventional treatments with scanned ion beams can 

cause unacceptable local under- or over-dosage due to interplay effects of sequential dose 

delivery and target motion (Bert et al. 2008;Phillips et al. 1992). Interplay effects require 

modifications of the conventional scanned beam delivery technique for moving targets. 

Various irradiation techniques, rescanning (Phillips, Pedroni, Blattmann, Boehringer, Coray, 

& Scheib 1992), beam gating (Bert et al. 2009;Lu et al. 2007;Minohara et al. 2000) and beam 

tracking (Bert et al. 2007;Grözinger et al. 2008;Keall et al. 2001) have been reported to reduce 

or even almost eliminate the detrimental dosimetric effects caused by interplay. Simulation 

studies (Bert 2006;Grözinger et al. 2006;Li et al. 2004) for the irradiation of moving targets 

with scanned ion beams showed that beam tracking has the potential to fully transfer the 

advantages of scanned ion beam particle therapy, i.e. 3D target conformation, to irradiation 

of moving targets such as thoracic tumours. In this chapter a treatment of moving targets is 

conceptually considered as a four-dimensional (4D) treatment that adds time information to 

3D space information. Recent progress of time resolved CT (4DCT) plays important role in 

treatment planning of moving targets. Usage of the 4DCT is described in this chapter as 4D 

treatment planning (4DTP). 

The principle of beam tracking is to adapt beams to a moving target continuously. 

Respiration induced anatomical changes cause not only displacement of the target position 

but also change the tissue configuration and thus the densities along the beam paths 

(Langen and Jones 2001;Mori et al. 2007).Therefore, for accurate beam tracking apart from 

lateral directions also particle ranges have to be adapted according to the actual anatomy. In 

the lateral direction, the amount of required adaptation is rather similar from raster point to 

raster point because scanned beam application is fast in comparison to respiratory motion. 

In the longitudinal direction, the amount of range adaptation depends on anatomical 

changes along the beam path and may differ even for adjacent raster points. Thus 

adaptation of particle ranges should, thus, ideally be applied within the time comparable to 

typical irradiation times of a raster point (approximately 10 ms). 

A beam tracking system was designed and implemented on a horizontal fixed beam at GSI 
to compensate target motion by adapting ion beams laterally with the scanning magnets and 
longitudinally with a range shifter system for each beam port. In this chapter at the section 2 
we describe the beam tracking system and the pre-process to perform tracking. Technical 
detail concerning the speed and accuracy of the beam tracking system can be found in the 
report (Saito et al. 2009b). In the section 2.1, as a pre-process of beam tracking, 4D treatment 
planning is described. Details of the 4D treatment planning method are described in (Bert 
and Rietzel 2007). 
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Beam tracking is a real-time system that responds to the target motion. Therefore a 
dedicated verification of the real-time process is required. With a simple motion phantom 
dosimetrical verification measurements have been performed. Beam tracking system 
delivered dose successfully to the moving detectors, radiographic films, ionization chambers 
(Bert, Saito, Schmidt, Chaudhri, Schardt, & Rietzel 2007), range telescopes (Sihver et al. 1998) 
and biological targets (Gemmel et al. 2008;Schmidt et al. 2008). Even though the dose 
delivery of beam tracking system has been confirmed with a motion phantom, dose delivery 
to target volume in a patient has to be ensured as a quality assurance (QA) process. In the 
section 3.1 we describe a proposed QA method dedicated for beam tracking. The QA 
process plays an important role to find possible errors on patient specific treatment plan 
under the beam tracking condition. The QA process supports to verify the beam tracking 
functionality and the created treatment plan for the patient. In the section 3.2 an online 
monitoring method to verify the delivered dose is presented. The online monitoring utilizes 
positron-emission-tomography (PET) as 4D in-beam PET. Initial tests of the 4D in-beam PET 
have been performed with retrospective analysis (Parodi et al. 2009).  

The beam tracking system has been implemented so far only at GSI as an experimental phase. 
The technology of the beam tracking system is expected to be transferred to Heidelberg Ion 
Beam Therapy Centre in Germany after necessary clinical verification processes.  

2. Beam tracking 

The beam tracking system consists of sub-processes: 4D treatment planning (4DTP), motion 
detection, beam tracking parameter decision, lateral and longitudinal beam tracking. A 
schematic drawing of tracking components and the data flow are shown in figure 1.  In 
advance of irradiation a reference treatment plan and sets of displacement parameters are 
calculated as 4DTP. During beam tracking, motion detection is continuously performed, and 
motion information is sent to the therapy control system (TCS). Based on the motion 
information beam is shifted laterally and longitudinally to track the moving targets with ion 
beams. In the following sections, current implementation of the sub-processes is described. 

 

Fig. 1. Schematic drawing of the beam tracking system. Target displacement is calculated in 
4D treatment planning (4DTP) and stored in the therapy control system (TCS) in advance. 
During a scanned beam irradiation, target motion is detected by a motion monitoring device 
and TCS controls scanning magnets and an energy modulation device to track the targeting 
spot with the ion beams continuously. 
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2.1 4D Treatment planning 

In order to track moving targets with ion beams, information of target displacement is 
needed to be stored at the tracking system. In the current implementation of beam tracking, 
4DCT data is used to sample internal target motion as a part of procedure in 4DTP. Basic 
concept and method of 4DTP for beam tracking can be found in the article (Bert & Rietzel 
2007). In this method, a reference treatment plan is created as a static plan on a reference CT 
that is typically the 4DCT motion state at the end-exhale. The reference plan is basically a list 
of scanning spot information with its location in two-dimensional raster-grid coordinate (x, 
y), beam energy E, beam size F, beam intensity I and number of particles N. Based on the 
reference plan and image registration (Hartkens 1993;Shackleford et al. 2010) of the 4DCT 
data set, displacement of the scanning spots are calculated for each motion phase. The beam 
displacement along the beam path is calculated as length in water-equivalence (WE) using 
the 4DCT data to specify corresponding range change in WE to beam tracking system.  The 
obtained displacement of all scanning spots and all motion phases are stored as a look-up 
table (LUT) in TCS. At GSI a treatment planning software TRiP98 has been upgraded to 
perform treatment planning in 4D (4DTRiP). The software 4DTRiP can load patient motion 
(either simulated proposed by Lujan (Lujan et al. 1999) or measured with motion sensors), 
scanned beam progress file of GSI and the Heidelberg Ion Beam Therapy Centre (HIT) for 
simulation of dose calculation. Detail of the recent version of the 4DTRiP software is 
reported in (Richter et al. 2010). 

2.2 Motion detection 

In the current implementation, an industrial laser distance sensor (SICK Vertriebs-GmbH, 
Germany) that reliably detects motion of a target phantom is used for system validation 
experiments. The sensor uses a triangulation method to measure the distance to the object 
with an accuracy of 150 μm and frequency of about 1 kHz. The relative distance is encoded 
continuously into an analogue voltage that is transferred to the TCS via an analogue-to-
digital converter (ADC) (Janz Computer AG, Germany) installed in the TCS. The current 
detector was chosen because of its precision, high temporal resolution and interface with 
respect to phantom studies to benchmark our beam tracking system. Investigation of motion 
detection (e.g. detection with cameras, fluoroscopy and etc.) is currently in progress. For 
clinical use, however, the selection of detection system is rather defined by clinically 
approved devices at a clinical site. An appropriate motion detector, most likely comparable 
or identical to the choice made for 4DCT acquisition, is expected to be used for clinical 
application of beam tracking. 

2.3 Therapy control system 

A VME CPU board with in-house developed software is currently used as TCS. Based on the 
motion signal, the current motion phase is determined, and beam displacements are selected 
from the LUT for the corresponding raster points. Due to communication delays and 
response times of the beam tracking system, a prediction of target position and irradiation 
spots are performed at TCS. A future target position can be predicted from the current target 
motion with a time offset individually for lateral and longitudinal beam tracking. Since the 
time delays of the process are very short in milliseconds, linear extrapolation is applied for 
the motion prediction. For the prediction of the future irradiation point, information of the 
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irradiation sequence is needed to be stored at TCS. Irradiation length of all individual 
scanning spots can be measured in advance and used for the prediction. It should be noted 
that the scanning spot prediction plays important role for the case of faster scanned beam 
delivery than the time delay of a beam tracking system. The predicted tracking parameters 
are updated with a typical frequency of 2 kHz and sent to lateral and longitudinal tracking 
sub-processes. The sub-processes react on the parameters and apply tracking just in time for 
the predicted motion and scan.  

he tracking control system can load various experimental versions of tracking algorithms. 
An algorithm, for example, can overcome the discreteness of the motion phases by 
interpolating two sets of tracking parameters of the corresponding two discrete motion 
phases. In case of rotational motion a sophisticated algorithm that takes into account the 
changes of beam path due to motion can be applied. Figure 2 illustrates significant dose 
change of the proximal side of Bragg curve on different target motion states due to rotation 
of a target. With the algorithm for rotational motion TCS calculates the dose change 
occurred on the proximal side online and compensates the dose in the following scanning 
spots during irradiation. Detail of the implementation and experimental results of beam 
tracking with real-time dose compensation is described in (Lüchtenborg et al. 2011).  

 

Fig. 2. Illustration of dose difference at the proximal tail of Bragg curve for different motion 
states with a target rotation. Dose is indicated in blue on target materials shown as pixels for 
a reference motion state (left) and other motion state i (right) with a rotation angle of φ. The 
beam tracking system is able to compensate not only the Bragg peak position (dark blue) but 
also the dose change occurred on the tail  (light blue) due to the motion in real-time, see text 
in section 2.3. 

2.4 Lateral tracking 

The determined lateral tracking parameters at TCS are transferred to a custom made 
scanning magnet control unit that sets current on the scanning magnets. The scanning 
magnet control unit applies displacements, dx and dy, to the original raster coordinates. 
This process was initially implemented as a fast-feedback routine that fine-adjusts the beam 
position base on real-time beam position measurement (Haberer, Becher, Schardt, & Kraft 
1993). For the beam tracking, the fast-feedback routine was extended to accept the 
displacement parameters dx and dy as position correction resulting in a real-time lateral 
beam adaptation to the moving target position. The fast-feedback routine typically runs 
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with frequency of about 7 kHz. In the current implementation, the communication speed 
and the stability of the lateral beam tracking process have been significantly improved in 
comparison to the initial implementation described in (Grözinger, Bert, Haberer, Kraft, & 
Rietzel 2008). 

2.5 Longitudinal tracking 

In the current version of the beam tracking system, longitudinal tracking is performed with 
a range shifter that consists of two sets of polymethyl methacrylate (PMMA) wedges 
mounted on fast linear motors (PASIM Direktantriebe GmbH, Germany).  The range shifter 
is installed 22 cm upstream from the iso-centre in the treatment room at GSI. Principle of the 
double wedge range shifter is illustrated in figure 3. Coupling of the two sets of wedges into 
a double wedge system results in a scan field with homogeneous absorber thickness. The 
range of traversing ions is modulated by moving the wedges apart or together. When the 
two wedges are moved apart (together), the amount of wedge material traversed by the ion 
beam decreases (increases) and leads to an increased (decreased) particle range in the target. 

 

Fig. 3. Basic principle of the double wedge range shifter. Two double wedge sets are coupled 
to create homogeneous thickness on a scanning field. By moving the two sets apart (a) (or 
together (b)) ion beams penetrates more (or less) target materials. 

The wedge positions are controlled by the TCS via the digital servo drives with fine-

adjusted position feedback from linear encoders. With the current implementation, 

resolution of the sent range shift is defined by the planned maximum range shift and the 

resolution of the digital signal sent from TCS. For instance, a planned maximum range shift 

of ±10 mm in water equivalence (WE) leads to a resolution of 0.16 mm of WE for a typical 

configuration of the range shifter. Accuracy and its speed of the range shift depend on the 

specified range shift (approximately 1 mm WE deviation for 5 mm WE range shift in 10 ms), 

and it shows better accuracy for a slower scan speed (Saito, Bert, Chaudhri, Gemmel, 

Schardt, & Rietzel 2009b). The accuracy of the range adaptation is comparable to the 

uncertainties of CT data conversion to ion ranges (Jäkel et al. 2001;Matsufuji et al. 

1998;Rietzel et al. 2007). A photo of the current implementation of the range shifter is shown 

in figure 4 together with motion detection device and a motion phantom with a robotic arm.  
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An alternative method of longitudinal beam tracking without using the double wedge 

system has been proposed by Chaudri et al. (Chaudhri et al. 2010). The alternative method 

employs a dipole magnet to shift ion beams on a static single wedge to select the 

appropriate thickness by deflecting the beam. Deflection of ion beams with ion beam 

transport magnets is much faster than the modulation time needed for the double wedge.  

 

Fig. 4. A photograph of an experimental beam tracking set-up showing the range shifter, a 
target phantom and a motion sensor. The target phantom is moved in a water filled tank 
with a robotic arm in this set-up. Beam direction is indicated by a thick arrow.  

Therefore the alternative solution with ion beam deflection is expected to adapt ion beam 

depth fast enough, so that the prediction to account the delay of the beam tracking system is 

not required. Investigation of the alternative system, however, requires modification of the 

existing beam transport line or new device to control magnet faster than the normal 

operation of beam transport. 

3. Tracking verification 

Beam tracking functionality has been experimentally tested by adapting ion beams on 

moving targets. In these experiments radiographic X-ray films for lateral tracking and a 

range telescope for longitudinal tracking were used as detectors (Bert et al. 2010;Bert, Saito, 

Schmidt, Chaudhri, Schardt, & Rietzel 2007). Dose quality on moving targets has also been 

assessed with ionization chambers, and delivered dose homogeneity has been assessed with 

radiographic films (Bert et al 2010). Figure 5 shows an example of beam tracking irradiation 

on a moving target.  
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Fig. 5. An example of beam tracking irradiation on moving target. Radiographic film was 
either stationary (a) or  in motion (b, c) irradiated without (a, b) or with (c) beam tracking. 
The profiles of film blackening at y=0 (indicated with an arrow (a)) are also shown (d). The 
profiles of the stationary case and the beam tracking case are closely overlapped. 

Beam adaptation on the moving phantom has been assessed on simple phantoms with 
mostly simple regular motion patterns. At GSI a more complex geometry similar to a patient 
thorax is currently under development (Steidl et al. 2011). However, more detailed 
assessment for a patient geometry has to be assured for clinical usage. In the section 3.1 a 
method of clinical quality assurance of beam tracking is proposed. It can be used as a plan 
verification method of moving target treatment for individual patient's plan in clinical use, 
or as a daily QA process with a defined reference plan to assure tracking functionality. In 
the section 3.2, an online verification method of beam tracking dose delivery is described as 
4D in-beam PET. The 4D-in beam PET provides the opportunity to find unexpected error on 
tracked dose delivery during treatment.  

3.1 QA method 

Beam tracking irradiation can be assured by performing a QA process with array detectors. 
Since the tracking parameters are closely related to the outcome of 4DTP, verification of 
treatment planning is also considered as a QA process for beam tracking. Section 3.1.1 
describes the method of treatment plan verification for moving targets as a part of 4DTP. 
Section 3.1.2 reports on a measurement process to verify irradiation of beam tracking on the 
created treatment plan.  

3.1.1 Tracking parameter tests in 4DTP 

A 4D treatment plan produced as it is described in the section 2.1 can be examined in terms of 
dose quality in simulations. Since the beam tracking irradiation is a real-time dose delivery 
responding to the target motion, an assumed combination of target motion and beam delivery 
progress is not enough to judge the 4DTP. Therefore a number of simulations are required to 
test robustness of the treatment plan. In order to modulate relative timing of the target motion 
and beam delivery progress, various combinations of motion periods, initial motion phases, 
and potentially beam delivery progress are selected. Analyses of the individual dose 
distributions allow us to estimate the quality of delivered dose including the worst case.  

For the calculation of a dose distribution in the presence of target motion, the 4DTP 
(reference plan and LUT), 4DCT, a simulated motion trace and the expected time cycle of 
beam delivery from the accelerator (beam delivery progress) are given to the 4D treatment 
planning software. Based on the given information, scanning spot and motion phase can be 
determined, and corresponding 4DCT data for the motion phase is used for dose calculation 
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with the corresponding beam displacements for the spot that are determined from the LUT. 
The obtained dose distribution for each phase can be merged to the reference phase by the 
transformation vector maps from the image registration. 

A dose-volume histogram (DVH) can be calculated by applying the reference CTV on the 
merged dose distribution that includes the contributions from other motion phases of the 
simulated motion sequence. In figure 6, an example of calculated DVHs is shown. Twelve 
combinations of initial motion phases and motion periods were performed in the calculation 
shown in the figure. DVH curves of three scenarios, no compensation, beam tracking, beam 
tracking including online dose compensation (see sec. 2.3) are shown. The DVHs of the no 
compensation case were calculated with the reference plan that was created for the CT data of 
the reference motion phase. The scenario of no compensation basically shows effect of the 
target motion. The scenarios with beam tracking apply tracking parameters based on the 
motion state. Depending on the level of improvement on the dose conformity in comparison to 
the no compensation case one can decide the beam tracking strategy, i.e. with or without dose-
compensation. At this stage, one can also study the influence of transformation maps to the 
dose distribution as a robustness test as well as optimal selection of beam tracking parameters.  

 

Fig. 6. DVH curves of no compensation cases (dashed blue lines), beam tracking cases (solid 
red lines) and beam tracking including dose-compensation, see texts in section 2.3, (dotted 
black lines) as an example of beam tracking parameter test in 4DTP of a lung tumour 
patient. In this example, a sinus motion trajectory with 4 initial motion phases and 3 
different motion periods were applied for each scenario.   

At GSI, a visualization tool to show deviation of the dose distribution from the prescribed 

dose is currently in progress (Hild et al. 2011). If the created 4DTP has insufficient dose 

quality due to the motion, some advanced optimization of 4DTP can be performed. The 

4DTP optimization of beam tracking is under investigation. In the study of 4DTP 

optimization for beam tracking, various uncertainties in terms of position, time and number 

of particles are expected to be included.  
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3.1.2 QA measurements 

After the verification of beam tracking parameters, the next step is to perform dose 
verification measurements by applying the 4D treatment plan. A dose measurement as QA 
for a beam tracking irradiation is performed with a virtual patient motion signal, that can be 
the one recorded during 4DCT acquisition or a modulated one to study the influence of e.g. 
different breathing parameters since the exact patient motion cannot be expected or 
obtained in advance of treatment. The virtual motion signal (e.g. the motion pattern 
investigated by Lujan et al (Lujan, Larsen, Balter, & Haken 1999)) can be produced by a 
motion phantom. The motion signal, dX, is sent via a motion sensor to the TCS to apply 
corresponding beam displacements dx, dy and dz selected from the LUT as it is performed 
in the corresponding patient case. During the irradiation the actual beam information 
(lateral position x, y, number of particles N and longitudinal displacement dz) and the 
motion signal dX are recorded in a time resolved manner (Saito, Bert, Chaudhri, Gemmel, 
Schardt, & Rietzel 2009b). As quality assurance phantom, a static water tank equipped with 
an array of 24 small ionization chambers (ICs) can be used as it had been performed for plan 
verification in therapy of static tumours at GSI (Karger et al. 1999). In the static water 
phantom, the dose distribution of the beam tracking case is different from that for a static 
target case due to the position adaptation to the virtual target, as it is illustrated in figure 7. 

 

Fig. 7. Illustration of the dose distribution in a static water phantom for a static target 
without beam tracking (left) and for a virtually moving target with beam tracking (right). 
The beam tracking tracks the virtual moving target in the static water phantom, therefore 
the dose distribution creates a dose pattern different from the static case without beam 
tracking. The pattern depends on the performed beam tracking. By comparing the dose 
patterns of a calculated ideal beam tracking case and the measured case, the performed 
beam tracking can be assessed. 

Hence, beam tracking induces a characteristic dose pattern in the static water phantom. The 

produced dose distribution can be measured and compared with the calculated distribution 

of the ideal beam tracking case using the recorded motion signal and ideal beam tracking 

parameters in LUT. This comparison assesses the performance of the beam tracking as well 

as the beam quality like the beam energies, focus and intensity modulation. With a defined 
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QA 4DTP, one can use this step as a daily QA process of beam tracking. In figure 8, an 

example of the dose distribution for a 4DTP is demonstrated. The upper panel of the figure 8 

shows distribution without beam tracking that corresponds to the reference plan, and the 

lower panel corresponds to the ideal beam tracking case. In case of a failure of the beam 

tracking system, dose measurements on the sampled points (circles indicated on the top 

view in the figure 8) do not match to the dose values calculated for the ideal beam tracking 

case. When a QA 4DTP is selected as it is shown in the figure 8, the dose distribution has 

gradients on the sampled points. Therefore, even slight mis-tracking can be detected in this 

QA process (Saito et al. 2009a;Saito et al. 2010). 

 

Fig. 8. An example of dose distribution cuts for a patient 4DTP without beam tracking 

(upper-) and with beam tracking (lower panel). Location of ionization chamber is indicated 

by circle on the top view. From a QA perspective, the upper panel corresponds to the dose 

distribution in a case of total failure of beam tracking. The lower panel corresponds to an 

ideal beam tracking control. (see text for more details).  

After the QA measurement the dose distribution that is based on the patient 4DCT can be 

assessed in terms of DVH. The reconstruction of the dose distribution is based on the beam 

tracking data recorded during the QA measurement. The created DVH can be compared 

with an expected DVH range calculated with the nominal beam displacement in 4DTP that 

was described in the section 2.1 and 3.1.1. The DVH comparisons assesses actual beam 

tracking performance in a patient geometry. As the summary of the QA measurement, the 

workflow of the QA measurement process is shown in figure 9.      
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Fig. 9. A flow chart of the presented beam tracking QA process. An obtained beam tracking 
parameter from 4DTP (1.) can be applied in a QA measurement with a water phantom (2.). The 
delivered dose can be measured (3.), and dose can be calculated with the recorded motion 
signal (4.), and compared with the measured dose (5.). If the dose comparison does not agree, 
failure of the beam tracking system has to be solved followed by redoing the QA measurement 
(2.). If the dose delivery is confirmed (5.), the recorded beam tracking parameters can be used 
for dose calculation in the patient CT (6.) and its DVH can be checked (7.). If the DVH is not 
sufficient quality, one can process 4DTP with more optimization (1.).    

3.2 4D in-beam PET 

At GSI in-beam PET has been performed during ion beam therapy of static tumour to verify 
the dose delivery (Enghardt 2004). Since the ion beam therapy at GSI utilizes carbon ions as 
ion beams, nuclear reaction with the ion beams and the target materials (mainly Oxygen in 
water) produces beta+-activity that can be detected by the PET camera. For the case of moving 
target treatment with beam tracking, the in-beam PET technique can be extended to 4D. Basic 
concept of 4D PET is in general a time correlated positron tomography that utilizes the motion 
information obtained during the PET imaging. The obtained data can be sorted into subsets 
according the motion states. For the in-beam PET, the number of positron emission is not 
freely chosen but rather defined by the number of incident beams as the therapeutic beam that 
is optimized for tumour treatment. It leads to a limited statistics in the collection of PET data 
for a certain time span. In addition, the in-beam PET camera limits their solid angle coverage 
to spare the ion beam entrance. Therefore the 4D in-beam PET is a challenging method rather 
than other time correlated PET imaging techniques such as 4D PET, or gated PET. An initial 
feasibility study of the 4D in-beam PET has been performed and reported previously (Parodi, 
Saito, Chaudhri, Richter, Durante, Enghardt, Rietzel, & Bert 2009). In the feasibility study, PET 
data taken during the irradiation with beam tracking has been sorted for 21 motion phases, 
and the sorted images were co-registered into the reference coordinate of the reference phase. 
The results of the merged PET images were compared to the corresponding PET images of 
stationary cases. In the experiments motion phantom geometry and type of motion were far 
too simple to conclude the quality of PET image for a patient geometry, however the results 
encourages the further investigation of 4D in-beam PET as a real-time verification method in 
vivo. At the Helmholtz-Centre Dresden-Rossendorf in Germany an intensive investigation of 
4D in-beam PET is currently conducted in cooperation with GSI and HIT. Further technical 
implementation of 4D in-beam PET is still needed as a real-time verification method 
depending on clinical needs as in vivo dose monitoring system.  
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4. Conclusion 

The beam tracking system that adapts ion beams on moving targets has been implemented in 
the therapy control system at GSI. The beam tracking system requires 4D treatment planning, 
a motion detection device, and lateral as well as longitudinal beam tracking to adapt ion 
beams three-dimensionally on moving targets. The current implementation employs the 
scanning magnets as lateral tracking devices and a double wedge range shifter for longitudinal 
beam tracking. In contrast to the conventional radiotherapy with photons, ion beams are 
sensitive to the depth or density displacement. Therefore for ion beam tracking the 
longitudinal beam adaptation has to be considered as essential as the lateral adaptation. Dose 
delivery with the implemented beam tracking system, therefore, needs to be verified in three-
dimensional dose measurements. A verification method that is dedicated for beam tracking is 
proposed to perform beam tracking with an artificial motion signal. That assures technical 
control of beam tracking by comparing the measured dose and the nominal dose delivered in a 
static water phantom. The QA measurement is expected to be done within a short time feasible 
to be a part of a daily QA. The performed beam tracking (e.g. lateral beam position and range 
shifter thickness) and the used motion signal can be recorded in a time correlated manner. By 
using beam tracking parameters in combination with a patient CT one can estimate the dose 
conformity on a patient-specific level. During treatment delivery, beam tracking irradiation 
can be monitored and verified in vivo with 4D in-beam PET. The 4D in-beam PET has been 
successfully tested with a simple motion phantom in a retrospective manner, and the further 
investigation to achieve a real-time application of 4D in-beam PET is foreseen. The beam 
tracking system is in an experimental phase at GSI, and it is expected to be applied at ion beam 
therapy facility if clinical approval is fulfilled. 
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