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1. Introduction 

The definition of structures and the extraction of organ’s shape are essential parts of medical 
imaging applications. These might be applications like diagnostic imaging, image guided 
surgery or radiation therapy. The aim of the volume definition process is to delineate a 
specific shape of an organ on a digital image as accurate as possible especially for 3D 
rendering, radiation therapy, and surgery planning. This can be done, either by manual user 
interaction or applying imaging processing techniques for the automatic detection of 
specific structures in the image using segmentation techniques. Segmentation is the process 
that separates an image into its important features (primitives) so that each of them can be 
addressed separately. This converts the planar pixel of the image into a distinguishable 
number of individual organs or tumour that can be clearly identified and manipulated. The 
segmentation process might involve complicate structures and in this case usually only an 
expert can perform the task of the identification manually on a slice-by-slice base. Humans 
can perform this task using complex analysis of shape, intensity, position, texture, and 
proximity to surrounding structures. In this work we present a set of tools that are 
implemented on several computer based medical application. Central focus of this work, are 
techniques used to improve time and interaction needed for a user when defining one or 
more structures based on segmentation techniques. These techniques involve interpolation 
methods for the manual volume definition and methods for the semi-automatic organ shape 
extraction. 

2. Radiotherapy Treatment Planning (RTP) 

The goal of radiotherapy treatment planning is to justify an effective treatment that will 

deliver a precise irradiation dose to the target volume without causing damage to the 

surrounding normal tissues. Therefore patient positioning, target volume definition and 

irradiation field placement are very critical steps while planning the irradiation process. 

Clinically a radiotherapy treatment plan is verified by Virtual Simulators (VS). (Sherouse et. 

al., 1987) first proposed the concept, often defined as CT-Sim to distinguish it from Sim-CT 
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where a simulator is modified for CT use and by the late 1990s several designs and clinical 

assessments of CT virtual simulators have been reported (Sherouse et. al., 1987; Nagata et. 

al., 1990; Nishidai et. al., 1990; Rosenman et. al., 1991; Sherouse and Chaney, 1991; Perez et. 

al., 1994;  Butker et. al., 1996; Chen et. al., 1996; Michalski et. al., 1996; Purdy, 1996; Ragan et. 

al., 1996; Rosenman, 1996) . Using VS, the clincal routine is modefied accordingly (Figure 1) 

(Conway and Robinson, 1997;  Valicenti et. al., 1997; Cai et. al., 1997; Karangelis, 2004): 

1. Collect patient’s CT data including attached aluminium markers. 
2. Transfer CT data to VS. The physician defines the tumour volume and the organs at risk 

and she/he will place the necessary fields relative to the tumour volume. 
3. The simulation plan and the CT data are transferred via DICOM (Digital image and 

Communication in Medicine) server to the TPS for dose calculation and final treatment 
plan optimization. 

4. Verify patient position on LINAC before irradiation. 
5. Perform treatment on the treatment machine (Linear Accelerator or LINAC). 

 

Fig. 1. Current clinical routine for external beam treatment delivery. 

The important RTP imaging is the dynamic X-ray image on the Simulator monitor, which is 

generated from the viewpoint of the beam source, called Beam's Eye View (BEV) image, see 

the BEV view direction in Figure 2. In the system the corresponding window, called the BEV 

window, displays the interactive DRR images. Through the BEV window, the physicians 

can investigate the patient anatomy in the DRR image as they observe it on the Simulator 

monitor. Observer's Eye View (OEV) window visualizes the patient from the room's eye 

view, which is the same view as the physicians observes the patient in the Simulator room, 

see the OEV view direction in Figure 2. As we explained before, all of the images in both 

BEV and OEV windows are generated with the patient CT scan by the direct volume 

rendering (Figure 2). 
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Fig. 2. The six-window layout of the system. On the left side the slices windows, the middle 
lower window is the OEV, the lower right the Room View and the upper right hosts the 
BEV. 

3. Volume rendering 

Volume rendering is the technique according to which a scalar field of data with discrete 
values, volume data, is selectively sampled in order to generate a useful image in relation to 
the sampled values. A volume data set is typically a set of discrete samples of one or more 

physical properties in a limited object space, V(x), xRn, in which {x} is a set of sampling 
points; n is the dimension of the sampling space, usually n=3, i.e. 3D volume data; V 

represents the sampling values, it can be a single-valued or multi-valued function. 
According to the distribution of sampling points (i.e. the structure of x), volume data sets are 
classified into structured and unstructured data sets. In medical imaging, volume data is 
usually a structured data set, typically organised as a stack of slices; V can be single valued 
(e.g. the CT Hounsfield value) or multi-valued (e.g. density, T1, T2 in MRI). The resulting 
data structure is an orthogonal 3D array of voxels, each representing a sampling value. A 
general pipeline of volume visualisation in medicine can include several steps (Sakas, 1993; 
Karangelis, 2004). 

According to the distribution of sampling points, volume data sets are classified into 
structured and unstructured data sets. In medical imaging, volume data is usually a 
structured data set, typically organized as a stack of slices.  The rendering methods which 
are proposed in this work are based on the work of (Sakas, 1993): (1) Transparent mode: 
Digitally Reconstructed Radiographies (DRR) (Sakas, 1993); (2) Surface reconstruction mode: 
iso-value, gradient (Sakas, 1995) and semi-transparent. DRR images (Cai, 1999) generated 
from CT digital volumes are often called using the term digitally reconstructed radiographs 
(DRRs) (Figure 3). The term DRR is used when we refer to those X-ray images that are  
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Fig. 3. left image. Reconstruction of CT volume using DRR; right image. Reconstruction 
using direct volume surface using direct gradient volume estimation (Karangelis, 2004; 
Zimeras and Karangelis, 2008) 

generated with an unrealistic way using direct volume rendering techniques or to those 
images that are generated from volume data using a better approximation of the physical 
model. In both cases we try to simulate the attenuation of the X-ray through a medium, in 
our case through the digital patient’s body. This can be achieved by using different transfer 
functions simulating the classical way of X-ray image reconstruction.  

Assuming that a ray with initial energy Io enters a volume, which has a thickness of Δs. and 
it is composed from different materials. Using discrete values the final energy of the ray is a 
product of the following equation (Max, 1995): 

     0 1 1 2 2exp x xI s I p s p s p s       (1) 

where I(s) is the attenuated energy after leaving the volume, Io the original energy of the ray, 
pi the linear attenuation coefficient for the corresponding voxel material, si the 
corresponding distance from the ray entrance point to the ray exiting position of the voxel. 
In medical data the material type corresponds of course to the different tissue type. For 
detailed description of the model of the X-ray refer to (Karangelis, 2004). The contrast 
intensity of the final DRR image on the screen level can be calculated using the equation: 

  0 * 1 *p backgroundI I L I L    (2) 

where   1 1 2 2exp x xL p s p s p s     . In two dimensions the interpolation scheme will 

involve four data points’ p00, p01, p10 and p11. In this case L becomes: 

  0 1expL F p p     (3) 

where F given by the form   

    
1

0

0 1

p

l

p

F p p K t dt   (4) 
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where Kl is the attenuation coefficient and l is the wavelength. This interpolation method is 
known as bi-linear interpolation and is commonly applied on image interpolation e.g. when 
magnifying raster images. In volumetric data linear interpolation is known as tri-linear 
interpolation and estimates the value of the result voxel considering the neighbourhood of 
eight (8) voxels (p000, p001, p011, p010, p100, p110, p101, and p111). 

To reconstruct a DRR the digital CT data of the patient are used. Each voxel acquired using 
CT has an value that is called the Hounsfield unit which was named after the CT inventor. 
The HU can be estimated using the following formula: 

 
 

* 1000
water

water

HU
 




  (5) 

where pµ , pwater are the attenuation coefficient of the material for the specific voxel and the 

water respectively. When on the above equation one replaces the pµ =pwater, then will receive 

a HUwater = 0. In addition the air as material corresponds to –1000HU, since pair = 0. The 
Hounsfield units have no upper limit but usually for medical scanners a range between –
1024 to +3071 is provided. Apparently 4096 different HU values are provided and therefore 
to illustrate the complete range of the HU on a volume 12bit voxels are required. 

Probably the most common methods for reconstructing surfaces directly from voxels are the 
gradient surface and iso-surface model. This rendering model is widely used in almost all 
medical data sets to render the surface detected by the gradient operator. (Levoy, 1988) 
presented this concept, which is effectively used in most medical imaging applications for 
the last decade. Depending on the data set size and on the size of the resulting 3D image, 
which influence the number of rays, a 3D view image can be calculated almost in real time 
(0.8sec to 2.3sec) (Figure 4) 

 

Fig. 4. Volume rendering modes. On the top row from left to right: isovalue mode, 
semitransparent mode and maximum intensity projection. On the lower row X-ray images 
reconstructed using different tissue ranges. From left to right: full tissue range, muscle 
tissues and lung tissues (Karangelis, 2004) 
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A significant part for the radiation field is the virtual light field projection on the patient 
skin [LuH99]. In physical simulators, a light source is located near the irradiation source. 
The orientation of the light intensity is diverted through the gantry head using a mirror 
aperture. The outcome of this process is the exact projection of the radiation field on the 
patient’s skin. The two main axis of the field are indicated as line shadows. In case the 
radiation field is delineated using shielding blocks, then the light field area is also modified 
accordingly. This process described above should be performed in a similar manner in the 
virtual simulation process. In order to realise this principle we take advantage of the 
convexity of the tetrahedral objects and the Z-depth information derived during polygon 
scan conversion. Using the conventional Simulator the block shape was drawn manually on 
the patient’s X-ray film, acquired from the BEV direction. Then this shape was digitized and 
its digital points were saved on the block-cutting machine. Both beam and block geometry is 
defined using combinations of 3D planes. Each beam is represented as a pyramid. The 
height of the pyramid is calculated according to the current machine specification; the base 
of the pyramid represents the irradiation field size projected to the image detector level and 
each side of the pyramid is assigned to a plane (Figure 5) 

 

Fig. 5. 3D beam object reconstructed with patient’s CT data. Green object: tumour 

4. Segmentation techniques 

Depending upon the application field, individual-processing steps may be neglected, 

combined, or reversed. Important to notice is that the final 3D rendering image can be 

obtained in two ways: either through the intermediate surface representation or through the 

volume representation (i.e. direct volume rendering segmentation is the process that 

separates an image into its important features (primitives) so that each of them can be 

addressed separately. This converts the planar pixel of the image into a distinguishable 

number of individual organs or tumour that can be clearly identified and manipulated. The 

segmentation process might involve complicate structures and in this case usually only an 

expert can perform the task of the identification manually on a slice-by-slice base. Humans 

can perform this task using complex analysis of shape, intensity, position, texture, and 

proximity to surrounding structures. All these features are differently qualified depending 

on the experience of the user. To generate a “complete”, segmentation application numerous 

tools and algorithms must be combined (Kuszy et. al., 1995). 
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The first aim of the segmentation process in RTP is to define as accurately as possible the 

target that will be irradiated. This process is a manual process and usually is performed 

from an expert oncologist. With the terms of manual process, we mean that the physicians 

will exam the digital volume, slice-by-slice and using the mouse cursor will illustrate the 

shape of the tumour. The coordinates of the shape of the tumour are stored from the system 

for further processing. The target definition process is probably the most time consuming 

process involving an expert during the RT planning (Ketting et. al., 1997). The following 

describes a number of reasons proving that the automatic target volume definition is still 

very difficult to be performed from an expert system. The obvious reasons found in the 

daily clinical routine are: 

1. The irregular tumour properties, like shape, texture, volume, relation with surrounding 
regions. 

2. Location within the human body. A tumour theoretically could grow anywhere within 
the patient’s body.  

3. Tumour spreading and variation. Depending from the region the tumour is grown, 
disease cells might spread to the surrounding region. The disease cell distribution 
cannot be predicted and detected on the digital patient’s data. 

4. Artifacts in the acquired digital data. When treating elderly patients it is often the case 
to have prosthesis, usually metallic (heart irritating) like hip prosthesis. These patients 
cannot be examined in a MRI modality and therefore CT imaging is the only alternative 
for their RTP. Nevertheless, it is well known that metallic components generate severe 
artifacts in CT imaging that reduce image quality and blur tumour borders. Thus, the 
accurate manual target volume definition is even more necessary nowadays.  

Classically image segmentation denotes the technique of extraction of images structures 
(regions or objects) so that the outlines of these structures will coincide as accurately as 
possible with the physical 2D object outlines. Image segmentation approaches may be 
performed in one of these ways: Manual segmentation methods include pixel selection, 
geometrical boundary selection and tracing. Given normal image resolution, selection of 
individual pixels is clearly impractical and rarely used.  

Linear Interpolation: Linear interpolation between contours is the first approach used to 

provide an acceleration tool for the manual contouring. The mechanism of the linear 

interpolation is applied when between the key contours at least one slice exists. To perform 

the linear interpolation we create triangles between the contour points of the key contours as 

described in (Strassman, 2000). For this operation both contour's points must be rotated 

towards the same rotation direction. The interpolated contour points are created after 

calculating the intersection of each triangle side with the intermediate slice (Figure 6) 

Orthogonal Contour Interpolation: The orthogonal contour interpolation serves to create a 

volume combining and interpolating orthogonal drawn contours. Principally the algorithm 

needs at least 2 orthogonal contours to work. The perpendicular plane to these two contours 

creates intersection points that are the key points to create the new interpolated contour. In 

this approach we use the cubic Spine interpolation. In case the lines are completely equal in 

size and their centres match or have very small distance then the result of the interpolation 

will be a circle. In any other case that the two vertical lines are unequal the result will be an 

ellipse (Figure 7). 
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Fig. 6. On the left side a simple case where an interpolated contour is created from the plane 
intersection with the triangles (Zimeras and Karangelis, 2008) 

 

Fig. 7. The orthogonal contour interpolation. In (a), the two drawn contours and the 
intersection plane in Z direction. The result of the intersection is shown in (b). After 
applying the cubic Spline interpolation a new contour is created (c) (Zimeras and 
Karangelis, 2008). 
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Fully automatic segmentation methods are usually impractical due to image complexity and 

the variety of image types and interpretation. In addition, low contrast between structures 

generally causes many times robust automatic algorithms to fail.  

Active Contour Model: Active Contour Models (ACMs) are adaptive contour representations, 

also known as snakes or deformable models (Terzopoulos and Fleischer, 1998). They are 

able to recover and represent physical contours of an image, and hence can be used as a 

model to determine object boundaries in static images as well as for tracking in image 

sequences. (Grosskopf et al., 1998; 2002) uses the Euler Time Integration to solve the 

optimisation problem. After initialisation by a user sketch, the contour is deformed to fit the 

actual object by simulating physical properties of an elastic material or fluid. This method is 

very reliable to overcome local minima and very fast due to its deterministic character. 

So far only a very few techniques propose physicians one or more alternatives for volume 

definition (Ketting et. al., 1997; Belsh et. al., 1997). Recently (Pekar et. al., 2004) reported a 

method based on an adaptation of 3D deformable surface models to the boundaries of the 

anatomic structures of interest. The adaptation was based on a tradeoff between deformations 

of the model induced by its attraction to certain image features and the shape integrity of the 

model. Nevertheless, to make the concept clinically feasible, interactive tools were also 

introduced that allow quick correction in problematic areas in which the automated model 

adaptation may fail. Currently the tool used to perform the volume definition is the mouse 

cursor. The user defines a number of digital points on the image level, closing the first and the 

last point of the contour to generate this way a structure. The connectivity between the key 

points can be linear or higher order. The higher order connectivity can be achieved using 

interpolation models like Hermitte cubic, Spline curves, Bezier curves (Laurent, 1994; Spath, 

1995; Cohen 2001), which are the most common and successfully used techniques for 

smoothing curves in the systems. Aim of the high order interpolation techniques is to reduce 

the amount of input points required to describe a smooth shape. Performing a simple 

comparison between linear and higher order interpolation, it can find out that the amount of 

points used to illustrate the shape of a structure using linear interpolation requires at least 

twice as many samples as by using the higher order interpolation algorithms. A common 

methodology used to combine high order interpolation and image edge properties is the use of 

active contour models. The active contour models or Snakes can be 2D image curves (Kass et. 

al., 1987; Blake and Isard, 1998) or 3D polygon meshes (Terzopoulos and Fleischer, 1998), 

which are adjusted from an initial approximation to the image or volume features by a 

movement caused by simulated forces. Image features provide the so-called external force. An 

internal tension of the curve resists against highly angled curvatures, which makes the Snakes 

movement robust against noise. After a starting position is given, the Snake adapts itself to 

shape by relaxation to the equilibrium of the external force and internal tension. Snakes have 

been proven efficient and fast for a number of applications in medicine involving different 

imaging modalities (McIne and Terzopoulos, 1996; Gross et. a., 1998; Behr et. al., 2000; Sakas et. 

al., 2001; Gross et. al., 2002). 

The interpolation techniques described above, are usually applied only on a single slice level 

(2D). The use of high resolution CT data, allows the use of multiplanar reconstructions 

(MPR) for the sagittal and coronal direction, in relation with the patient anatomy. These two 
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images are orthogonal to each other and perpendicular with the axial plane. The navigation 

though these images help in the observation of complex anatomy. The sagittal and coronal 

views often offer a better overview of organs 3D shape. Defining volumes in these directions 

could be of benefit since several organs are aligned along the longitudinal body axis. The 

problem we have to solve in our case is the generation of a surface and contours from 

structured closed parallel and non-parallel contours. The data points represent the contour 

points as they are generated from the user on the different levels of the axial slices or/and 

on the MPRs. The most common approaches used to reconstruct surfaces form parallel 

contours and are well established in medical imaging applications (Boissonat, 1988; Meyer 

et. al. 1992; Payne and Toga, 1994; Bajaj et. al. 1995; Weinstein, 2000). The limitation of these 

algorithms is that they cannot be applied on non-parallel contours. The problem of the non-

parallel contours could be also formulated as generation of surfaces from scatter data, which 

are very common in industrial applications (Hoppe et. al. 1992; Ament et. al. 1998). For our 

application, we selected the approach presented from Turk (Turk and O’Brien 1999). Their 

method adapts earlier work on thin plate splines and radial basis interpolants to create a 

new technique in generating implicit surfaces. Their method allows direct specification of a 

complex surface from sparse, irregular scatter samples. The main restriction of the method is 

the relatively small number of sample data that can be handled. This drawback makes the 

above approach unsuitable for a number of applications that a large number of sampling 

points are needed. In this work, we demonstrate the use of implicit function interpolation to 

reconstruct 3D organ shapes from closed planar parallel and non-parallel contours that have 

been defined selectively by the user. The total number of contour points will be used as the 

input data to the implicit surface algorithm with arbitrary order. The number of these 

sampling points will not exceed the level of few hundred, and therefore the calculation 

times will be in acceptable ranges despite the complexity of the algorithm (Figure 8). 

The output result of the reconstruction algorithm is provided in two forms: as a triangulated 

mesh or as multiple parallel contours extracted in arbitrary plane directions. For the RTP 

applications we focus mostly on the reconstruction of contours in the axial direction. The 

algorithm can be separated into different modules from the point editing until the 

reconstruction of the surface and contours as follows: 

1. Collection and processing of the given contour points. This step involves the generation 

of the contour constraints and filtering of unwanted. 

2. Calculation of the implicit functions in 3D. In this step the information produced in step 

one will be used to solve a linear equation system that will provide the coefficients 

representing our interpolation function. 

3. Evaluating the implicit function over a 2D or 3D grid we extract 2D planar contours or 

3D polygon meshes respectively. 

Semi-automatic segmentations methods combine the benefit of bath manual and automatic 

segmentation techniques. By supplying initial information about the region of interest, the 

user may guide an otherwise automatic segmentation procedure. Any remaining errors 

introduced by automatic segmentation methods may be corrected by manual editing. In this 

work, a boundary tracking algorithm (Karangelis et al., 2001, Zimeras and Karangelis, 2001, 

2002) was implemented for the segmentation part. 
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Fig. 8. Combination between Manual segmentation methods (between two slices and ACM 
(voxel reconstruction) on CT slices. In (a) from left to right: coronal, axial and sagittal 
contours. In (b) surface reconstruction (Zimeras and Karangelis, 2008). 

The algorithm can automatically trace the organ through the complete volume of cross 

sections. False contours that are not corresponding to the spine shape and position can be 

rejected automatically from the system and can be replaced with linear interpolated 

contours considering as key contours those already found by the system. The boundary-

tracking methods used, belong to the deterministic approaches and therefore there is the 

tendency to produce misleading results under some circumstances. To reduce that effect 

data pre-processing and the gradient volume of the original CT data can be used as input to 

the segmentation routine. Target volume and critical structure definition is a complex and 

time-consuming process in radiotherapy. The complexity varies for different anatomic sites. 

In plan evaluation, both the physicists and radiation oncologists interact closely to 

subjectively identify the plan most appropriate for the individual patient. In order to reduce 

the investment of time and effort by the radiation oncology staff, several image analysis 
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tools are integrated. A function that significantly accelerates the contouring process is the 

linear interpolation between the original key-contours. The same principle can be applied 

for defining structures in both planar planes, sagittal and coronal. Organs with large 

differences in there intensities can be segmented semi-automatically. In terms of user effort 

the only action required from the user is the selection of an initial point from the algorithm 

on the original axial slices. The complete 3D geometry of the organ will be traced 

automatically. Some of the common organs with high sensitivity factor and vital importance 

are the lungs, the spinal cord and the trachea (Zimeras and Karangelis, 2001; Karangelis and 

Zimeras, 2002a, b; Zimeras et al. 2002). In addition to those organs, the external body contour 

can be extracted in a similar manner. The contours that are generated semi-automatic can be 

manipulated and modified at the same manner as those defined manually (Figure 9a). 

 

Fig. 9a. Boundary tracking method.                              Fig. 9b. Contour filtering 

After segmenting the regions of interest, second task to use a 3x3 mask edge detection operator 

(Figure 9b) for improving the appearance of the contours within these regions. Edge detection 

operators examine each pixel neighborhood and quantify the slope, and the direction of the 

grey-level transition. There are several ways to do this, most of which are based upon 

convolution with a set of directional derivative masks. For that purpose, a Sobel edge kernel 

was applied for finding sharp region boundaries, especially for these, which are changing 

greatly in intensity over short image distances. The two convolution kernels are given by: 

 

1 2 1

0 0 0

1 2 1
xS

   
   
  

 and 

1 0 1

2 0 2

1 0 1
yS

 
   
  

 (6) 

Each point in the image is convoluted with both kernels. One kernel ( xS ) responds 

maximally to a generally vertical edge and the other ( yS ) to a horizontal edge. The 

maximum value of the two convolutions is taken as the output value for that pixel. 

In the analysis of the objects in images it is essential that we can distinguish between the 
objects of interest and "the rest." This latter group is also referred to as the background. The 
techniques that are used to find the objects of interest are usually referred to as 
segmentation techniques - segmenting the foreground from background. Image 
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thresholding is a technique for converting a grayscale or color image to a binary image 
based upon a threshold value. If a pixel in the image has intensity less than the threshold 
value, the corresponding pixel in the resultant image is set to white. Otherwise, if the pixel is 
greater than or equal to the threshold intensity, the resulting pixel is set to black. For that 
purpose, a low pass filter was used based on the rectangular window or box function based 
on the rule (Figure 10):  

1 ,   I(i,j) t
( , )

  0 , otherwise  background

if T objec
I i j

 
  

 

 

Fig. 10. Thresholding cases 

where I(i,j) image matrix and T is the appropriate threshold. The output is the label "object" 

or "background" which, due to its dichotomous nature, can be represented as a Boolean 

variable "1" or "0".Summarizing the above procedures, the pseudo-code for the 

segmentation technique is presented below (Figure 11): 

 

Fig. 11. Pseudo-code for segmentation 

The main drawback of the method is that is a binary approach and hence is very sensitive to 

gray value variations. If the threshold value is not selected properly then the system will fail 

to detect the appropriate organ shape. Most of the inaccuracies of the segmentation method 

require the user intervention to optimize the result. To overcome the limitation we calculate 

a secondary opacity volume from the original CT data that is very often used to visualize 

surfaces from scalar volume data in volume rendering.  

define the threshold labelling   

for i=1 to Whole_Voxel 

{ 

    find the starting point 

    do 

    { 

step 1                  if there is an object then 

              find  sharp edge using the binary image (0,1) then 

       define initial directions (UP and RIGHT) 

                calculate contour for the region of interest 

       apply contour filtering mask (Sobel filter)     

       reduce the number of points   

       calculate contour measures  

            else 

            change starting point 

            goto step 1 

      }while region becomes small    
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In order to speed up the discrete contour drawing mode the user may draw a smaller 
number of key contours on distinct slices while the intermediate contours are interpolated 
linear. To perform this, a slope factor A is calculated between the key slices. The value of 
this is given from the equation: 

 
 (Current_slice_pos - Previous_contour_pos)

(Previous_contour_pos - Next_contour_pos)
A   (7) 

Since each key contour does not have the same number of segment points the algorithm 
subdivides each contour into the same number of points (currently 100) in order to simplify 
the contour interpolation step. Then a starting point is selected -- usually this is the point of 
the 12o’clock position of the contour (Figure 3).  To calculate the X and Y pixel (or voxel) 
position of the interpolated point we use the following formula: 

 
X X A*(X X )int previous_cnt next_cnt previous_cnt

Y Y A*(Y Y )int previous_cnt next_cnt previous_cnt

  

  
 (8) 

For visualizing volumetric medical data, sequences of 2D images are piled up to recreate the 
three-dimensional structure. Usually, in this step linear interpolation of adjacent slices is 
needed for the generation of new slices (Figure 12), since one of the problems resulting from 
image acquisition is the space between slices. This problem occurs because the sampling 
interval between slices is normally greater than the generated image resolution, and then the 
volume voxels are not cubic. After interpolation this size distortion is corrected, so that the 
visualization algorithm could generate correct proportion projections.  

 

Fig. 12. Slice interpolation 

Figure 13 illustrates different 2D and 3D reconstruction examples of segmented structures.  
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Fig. 13. Segmentation of different anatomical structures. 2D segmentation of the left and 
right lung; 3D segmentation of the left, right lung and spinal cord, 3D segmentation of the 
bronchus. 

5. Conclusions 

In this work, an effective semi-automatic method was presented, based on the boundary 

tracking technique, that improves the time when one or more structures are in use. The 

implemented algorithms can segment within a few seconds the complete volume of specific 

organs e.g. lungs, skin, spinal canal, bronchus and brain. The only interaction of the user is 

to select the starting point in the region of interest and the algorithm will track the object 

boundaries in 3 dimensions. For each particular organs of interests (lungs, skin, spine canal, 

bronchus and brain), a different segmentation techniques is proposed, but all of them are 

based on the boundary tracking technique. The 3D-shape is reconstructed out of the segmented 

regions, in order to illustrate the efficiency of the segmentation techniques. The benefit of 

the 3D illustration is the visual presentation of the organs. In many medical cases, 
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illustration of the organ involves an anomaly, clinical problem or generally artifacts. Visual 

representation of the particular organ, in addition with the clinical examinations, could be a 

powerful tool to the doctors for diagnosis, medical treatment or surgery.   
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