
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Resolution Principle and Fuzzy Logic

Hashim Habiballa
University of Ostrava

Czech Republic

1. Introduction

Fuzzy Predicate Logic with Evaluated Syntax (FPL) (Novák, V.) is a well-studied and
wide-used logic capable of expressing vagueness. It has a lot of applications based on robust
theoretical background. It also requires an efficient formal proof theory. However the most
widely applied resolution principle (Dukić, N.) brings syntactically several obstacles mainly
arising from normal form transformation. FPL is associating with even harder problems when
trying to use the resolution principle. Solutions to these obstacles based on the non-clausal
resolution (Bachmair, L.) were already proposed in (Habiballa, H.).

In this article it would be presented a natural integration of these two formal logical systems
into fully functioning inference system with effective proof search strategies. It leads to the
refutational resolution theorem prover for FPL (RRTPFPL). Another issue addressed in the
paper concerns to the efficiency of presented inference strategies developed originally for the
proving system. It is showed their perspectives in combination with standard proof-search
strategies. The main problem for the fuzzy logic theorem proving lies in the large amount
of possible proofs with different degrees and there is presented an algorithm (Detection of
Consequent Formulas - DCF) solving this problem. The algorithm is based on detection of
such redundant formulas (proofs) with different degrees.

The article presents the method which is the main point of the work on any automated
prover. There is a lot of strategies which makes proofs more efficient when we use refutational
proving. We consider well-known strategies - orderings, filtration strategy, set of support etc.
One of the most effective strategies is the elimination of consequent formulas. It means the
check if a resolvent is not a logical consequence of a formula in set of axioms or a previous
resolvent. If such a condition holds it is reasonable to not include the resolvent into the set of
resolvents, because if the refutation can be deduced from it, then so it can be deduced from
the original resolvent, which it implies of.

2. First-order logic

For the purposes of (RRTPFPL) it will be used generalized principle of resolution, which is
defined in the research report (Bachmair, L.). There is a propositional form of the rule defined
at first and further it is lifted into first-order logic. It is introduced the propositional form of
the general resolution.

General resolution - propositional version

F[G] F′[G]

F[G/⊥] ∨ F′[G/⊤]
(1)

3

www.intechopen.com

2 Will-be-set-by-IN-TECH

where the propositional logic formulas F and F′ are the premises of inference and G is an
occurrence of a subformula of both F and F′. The expression F[G/⊥] ∨ F′[G/⊤] is the
resolvent of the premises on G. Every occurrence of G is replaced by false in the first formula
and by true in the second one. It is also called F the positive, F’ the negative premise, and G
the resolved subformula.

The proof of the soundness of the rule is similar to clausal resolution rule proof. Suppose the
Interpretation I in which both premises are valid. In I, G is either true or false. If G (¬G) is
true in I, so is F′[G/⊤] (F[G/⊥]).

Revised version of the paper which forms the core of the handbook (Bachmair, L.) is closely
related with notion of selection functions and ordering constraints. By a selection functions
it is meant a mapping S that assigns to each clause C a (possibly empty) multiset S(C) of
negative literals in C. In other words, the function S selects (a possibly empty) negative
subclause of C. We say that an atom A, or a literal ¬A, is selected by S if ¬A occurs in
S(C). There are no selected atoms or literals if S(C) is empty. Lexicographic path ordering
can be used as an usual ordering over a total precedence. But in this case the ordering
is admissible if predicate symbols have higher precedence than logical symbols and the
constants ⊤ and ⊥ are smaller than the other logical symbols. It means the ordering is
following A ≻≡≻⊃≻ ¬ ≻ ∨ ≻ ∧ ≻ ⊤ ≻ ⊥. The handbook also addresses another key
issues for automated theorem proving - the efficiency of the proof search. This efficiency is
closely related with the notion of redundancy.

If we want to generalize the notion of resolution and lift it into first-order case we have to
define first the notion of selection function for general clauses. General clauses are multisets
of arbitrary quantifier-free formulas, denoting the disjunction of their elements. Note that
we can also work with a special case of such general clause with one element, which yields
to a standard quantifier-free formula of first-order logic. A (general selection) function is
a mapping S that assigns to each general clause C a (possibly empty) set C of non-empty
sequences of (distinct) atoms in C such that either S(C) is empty or else, for all interpretations
I in which C is false, there exists a sequence A1, ..., Ak in S(C), all atoms of which are true in
I. A sequence A1, ..., Ak in S(C) is said to be selected (by S).

We have to define the notion of polarity for these reasons according to the handbook
(Bachmair, L.). It is based on the following assumption that a subformula F′ in E[F′] is
positive (resp. negative), if E[F′/⊤] (resp. E[F′/⊥]) is a tautology. Thus, if F′ is positive (resp.
negative) in E, F′ (resp. ¬F′) logically implies E. Even it should seem that determining of the
polarity of any subformula is NP-complete (hard) problem, we can use syntactic criteria for
this computation. In this case the complexity of the algorithm is linear (note that we base our
theory on similar syntactic criteria below - structural notions definition).

Proposition 1. Polarity criteria

1. F is a positive subformula of F.

2. If ¬G is a positive (resp. negative) subformula of F, then G is a negative (resp. positive) subformula
of F.

3. If G ∨ H is a positive subformula of F, then G and H are both positive subformulas of F.

4. If G ∧ H is a negative subformula of F, then G and H are both negative subformulas of F.

5. If G → H is a positive subformula of F, then G is a negative subformula and H is a positive
subformula of F.

6. If G → ⊥ is a negative subformula of F, then G is a positive subformula of F.

56 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 3

7. F is positive in a clause C if it is an element of C.

Note that this proposition applies both to formulas and clauses and allows us to determine
polarity of any subformula in a formula. It is safe to select any sequence of negative atoms in a
general clause, since a negative atom cannot be false in an interpretation the clause is false.
With the notion of the polarity as a selection function there is possible to state another notion
of General resolution based on orderings applied to clauses.

General ordered resolution with selection O≻
S

C1(A1)...Cn(An) D(A1, ..., An)

C1(⊥)...Cn(⊥) D(⊤, ...,⊤)
(2)

where (i) either A1, ..., An is selected by S in D, or else S(D) is empty, n = 1, A1 is maximal in
D, (ii) each atom Ai is maximal in Ci, and (iii) no clause Ci contains a selected atom.

According to the (Bachmair, L.) an inference system based on this rule is refutationally
complete. When trying to extend this into the first-order case we to use lifting lemma.

Lemma 1. Lifting lemma
Let M be a set of clauses and K = G(M) (set of ground instances). If

C1...Cn C0

C

is an inference in O≻
SM

(K) then there exist clauses C′
i in M, a clause C′, and a ground substitution σ

such that
C′

1...C′
n C′

0

C′

is an inference in O≻
S (M), Ci = C′

i σ, and C = C′σ.

Example 1. General resolution - polarity based selection
1. ¬a ∨ ¬b ∨ c (axiom),
2. a (axiom), 3. b (axiom)
4. ⊥ ∨ ¬⊤ ∨ ¬b ∨ c (a is a negative atom in (1) - selected in (1) as negative premise, and (2) as
positive premise respectively) ⇒ ¬b ∨ c
5. ⊥ ∨ ¬⊤∨ c (b is a negative atom in (4) - selected in (4) as negative premise, and (3) as positive
premise respectively) ⇒ c

In the example we used the notion of polarity as a selection function. For example in the line
4 we select the atom a upon negative polarity (according the proposition criteria 1, 3 and 2 -
level ordered) in formula 1 (it means 1. is a negative premise).

Further we can observe the behavior of the rule within the frame of clausal form resolution.
Consider following table showing various cases of resolution on clauses.

Example 2. General resolution with equivalence
1. a ∧ c ↔ b ∧ d (axiom), 2. a ∧ c (axiom), 3.¬[b ∧ d] (axiom) - negated goal
4. [a ∧⊥] ∨ [a ∧⊤] (resolvent from (2), (2) on c) ⇒ a
5. [a ∧⊥] ∨ [a ∧⊤ ↔ b ∧ d] ((2), (1) on c) ⇒ a ↔ b ∧ d
6. ⊥∨ [⊤ ↔ b ∧ d] ((4), (5) on a) ⇒ b ∧ d
7. ⊥∧ d ∨⊤ ∧ d ((6), (6) on b) ⇒ d
8. b ∧⊥ ∨ b ∧⊤ ((6), (6) on d) ⇒ b

57Resolution Principle and Fuzzy Logic

www.intechopen.com

4 Will-be-set-by-IN-TECH

Premise1 Premise2 Resolvent Simplified Comments

a ∨ b b ∨ c (a ∨⊥) ∨ (⊤∨ c) ⊤ no compl. pair

a ∨ ¬b b ∨ c (a ∨⊤) ∨ (⊤∨ c) ⊤ redundant inference

a ∨ b ¬b ∨ c (a ∨⊥) ∨ (⊥∨ c) a ∨ c clausal resolution

a ∨ ¬b ¬b ∨ c (a ∨⊤) ∨ (⊥∨ c) ⊤ no compl. pair

Table 1. Clausal resolution in the context of the non-clausal resolution

9. ⊥∨ ¬[⊤∧ d] ((8), (3) on b) ⇒ ¬d
10. ⊥∨ ¬⊤ ((7), (9) on d) ⇒ ⊥ (refutation)

When trying to refine the general resolution rule for fuzzy predicate logic, it is important to
devise a sound and complete unification algorithm. Standard unification algorithms require
variables to be treated only as universally quantified ones. We will present a more general
unification algorithm, which can deal with existentially quantified variables without the need
for those variables be eliminated by skolemization. It should be stated that the following
unification process does not allow an occurrence of the equivalence connective. It is needed
to remove equivalence by rewrite rule: A ↔ B ⇔ [A → B] ∧ [B → A].

We assume that the language and semantics of FOL is standard. We use terms - individuals
(a, b, c, ...), functions (with n arguments) (f , g, h, ...), variables (X, Y, Z, ...), predicates(with n
arguments) (p, q, r, ...), logical connectives (∧,∨,→,¬), quantifiers (∃, ∀) and logical constants
(⊥,⊤). We also work with standard notions of logical and special axioms (sets LAx, SAx),
logical consequence, consistency etc. as they are used in mathematical logic.

Definition 1. Structural notions of a FOL formula
Let F be a formula of FOL then the structural mappings Sub (subformula), Sup (superformula), Pol
(polarity) and Lev (level) are defined as follows:

F = G ∧ H or F = G ∨ H Sub(F) = {G, H}, Sup(G) = F, Sup(H) = F
Pol(G) = Pol(F), Pol(H) = Pol(F)

F = G → H Sub(F) = {G, H}, Sup(G) = F, Sup(H) = F
Pol(G) = −Pol(F), Pol(H) = Pol(F)

F = ¬G Sub(F) = {G}, Sup(G) = F
Pol(G) = −Pol(F)

F = ∃αG or F = ∀αG Sub(F) = {G}, Sup(G) = F
(α is a variable) Pol(G) = Pol(F)

Sup(F) = ∅ ⇒ Lev(F) = 0, Pol(F) = 1,
Sup(F) �= ∅ ⇒ Lev(F) = Lev(Sup(F)) + 1
For mappings Sub and Sup reflexive and transitive closures Sub∗ and Sup∗ are defined recursively as
follows:
1. Sub∗(F) ⊇ {F}, Sup∗(F) ⊇ {F}
2. Sub∗(F) ⊇ {H|G ∈ Sub∗(F) ∧ H ∈ Sub(G)}, Sup∗(F) ⊇ {H|G ∈ Sup∗(F) ∧ H ∈ Sup(G)}

Example: A → B - Pol(A) = −1, Pol(B) = 1, Lev(A) = 1

These structural mappings provide framework for assignment of quantifiers to variable
occurrences. It is needed for the correct simulation of skolemization (the information about
a variable quantification in the prenex form). Subformula and superformula mappings and
its closures encapsulate essential hierarchical information of a formula structure. Level gives

58 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 5

the ordering with respect to the scope of variables (which is also essential for skolemization
simulation - unification is restricted for existential variables). Polarity enables to decide
the global meaning of a variable (e.g. globally an existential variable is universal if
its quantification subformula has negative polarity). Sound unification requires further
definitions on variable quantification. We will introduce notions of the corresponding
quantifier for a variable occurrence, substitution mapping and significance mapping (we have
to distinguish between original variables occurring in special axioms and newly introduced
ones in the proof sequence).

Definition 2. Variable assignment, substitution and significance
Let F be a formula of FOL, G = p(t1, ..., tn) ∈ Sub∗(F) atom in F and α a variable occurring in ti.
Variable mappings Qnt(quantifier assignment), Sbt (variable substitution) and Sig(significance) are
defined as follows:

Qnt(α) = QαH, whereQ = ∃ ∨ Q = ∀, H, I ∈ Sub∗(F), QαH ∈ Sup∗(G),
∀QαI ∈ Sup∗(G) ⇒ Lev(QαI) < Lev(QαH).
F[α/t′] is a substitution of term t′ into α in F ⇒ Sbt(α) = t′.
A variable α occurring in F ∈ LAx ∪ SAx is significant w.r.t. existential substitution, Sig(α) = 1 iff
variable is significant, Sig(α) = 0 otherwise.

Example: ∀x(∀xA(x) → B(x)) - Qnt(x) = ∀xA(x), for x in A(x) and Qnt(x) = ∀x(∀xA(x) →
B(x)), for x in B(x).

Note that with Qnt mapping (assignment of first name matching quantifier variable in a
formula hierarchy from bottom) we are able to distinguish between variables of the same
name and there is no need to rename any variable. Sbt mapping holds substituted terms in a
quantifier and there is no need to rewrite all occurrences of a variable when working with this
mapping within unification. It is also clear that if Qnt(α) = ∅ then α is a free variable. These
variables could be simply avoided by introducing new universal quantifiers to F. Significance
mapping is important for differentiating between original formula universal variables and
newly introduced ones during proof search (an existential variable can’t be bounded with it).

Before we can introduce the standard unification algorithm, we should formulate the notion
of global universal and global existential variable (it simulates conversion into prenex normal
form).

Definition 3. Global quantification
Let F be a formula without free variables and α be a variable occurrence in a term of F.

1. α is a global universal variable (α ∈ Var∀(F)) iff (Qnt(α) = ∀αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∃αH ∧ Pol(Qnt(α)) = −1)

2. α is a global existential variable (α ∈ Var∃(F)) iff (Qnt(α) = ∃αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∀αH ∧ Pol(Qnt(α)) = −1)

Var∀(F) and Var∃(F) are sets of global universal and existential variables.

Example: F = ∀y(∀xA(x) → B(y)) - x is a global existential variable, y is a global universal
variable.

It is clear w.r.t. skolemization technique that an existential variable can be substituted into
an universal one only if all global universal variables over the scope of the existential one
have been already substituted by a term. Skolem functors function in the same way. Now
we can define the most general unification algorithm based on recursive conditions (extended
unification in contrast to standard MGU).

59Resolution Principle and Fuzzy Logic

www.intechopen.com

6 Will-be-set-by-IN-TECH

Definition 4. Most general unifier algorithm
Let G = p(t1, ..., tn) and G′ = r(u1, ..., un) be atoms. Most general unifier (substitution mapping)
MGU(G, G’) = σ is obtained by following atom and term unification steps or the algorithm returns
fail-state for unification. For the purposes of the algorithm we define the Variable Unification
Restriction (VUR).

Variable Unification Restriction

Let F1 be a formula and α be a variable occurring in F1, F2 be a formula, t be a term occurring in F2

and β be a variable occurring in F2. Variable Unification Restriction (VUR) for (α,t) holds if one of the
conditions 1. and 2. holds:

1. α is a global universal variable and t �= β, where β is a global existential variable and α not
occurring in t (non-existential substitution)

2. α is a global universal variable and t = β, where β is a global existential variable and ∀F ∈
Sup∗(Qnt(β)), F = QγG, Q ∈ {∀, ∃}, γ is a global universal variable, Sig(γ) = 1 ⇒
(Sbt(γ) = r′) ∈ σ, r′ is a term (existential substitution).

Atom unification

1. if n = 0 and p = r then σ = ∅ and the unifier exists (success-state).

2. if n > 0 and p = r then perform term unification for pairs (t1, u1), . . . , (tn, un); If for every pair
unifier exists then MGU(G, G′) = σ obtained during term unification (success state).

3. In any other case unifier does not exist (fail-state).

Term unification (t′, u′)

1. if u′ = α, t′ = β are variables and Qnt(α) = Qnt(β) then unifier exists for (t′, u′) (success-state)
(occurrence of the same variable).

2. if t′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (v′, u′); The unifier
for (t′, u′) exists iff it exists for (v′, u′) (success-state for an already substituted variable).

3. if u′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (t′, v′); The unifier
for (t′, u′) exists iff it exists for (t′, v′) (success-state for an already substituted variable).

4. if t′ = a, u′ = b are individual constants and a = b then for (t’,u’) unifier exists (success-state).

5. if t′ = f (t′1, ..., t′m), u′ = g(u′
1, ..., u′

n) are function symbols with arguments and f = g then
unifier for (t′, u′) exists iff unifier exists for every pair (t′1, u′

1), ..., (t′n, u′
n) (success-state).

6. if t′ = α is a variable and VUR for (t′, u′) holds then unifier exists for (t′, u′) holds and σ =
σ ∪ (Sbt(α) = u′) (success-state).

7. if u′ = α is a variable and VUR for (u′, t′) holds then unifier exists for (t′, u′) holds and σ =
σ ∪ (Sbt(α) = t′) (success-state).

8. In any other case unifier does not exist (fail-state).

MGU(A) = σ for a set of atoms A = {G1, . . . , Gk} is computed by the atom unification for
(G1, Gi), σi = MGU(G1, Gi), ∀i, σ0 = ∅, where before every atom unification (G1, Gi), σ is set
to σi−1.

With above defined notions it is simple to state the general resolution rule for FOL (without
the equivalence connective). It conforms to the definition from (Bachmair, L.).

60 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 7

Definition 5. General resolution for first-order logic (GRFOL)

F[G1, , ..., Gk] F′[G′
1, ..., G′

n]

Fσ[G/⊥] ∨ F′σ[G/⊤]
(3)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms
A = {G1, . . . , Gk, G′

1, . . . , G′
n} , G = G1σ. For every variable α in F or F′, (Sbt(γ) = α) ∩ σ = ∅

⇒ Sig(α) = 1 in F or F′ iff Sig(α) = 1 in Fσ[G/⊥]∨ F′σ[G/⊤]. F is called positive and F’ is called
negative premise, G represents an occurrence of an atom. The expression Fσ[G/⊥] ∨ F′σ[G/⊤] is the
resolvent of the premises on G.

Note that with Qnt mapping we are able to distinguish variables not only by its name (which
may not be unique) but also with this mapping (it is unique). Sig property enables to separate
variables, which were not originally in the scope of an existential variable. When utilizing the
rule it should be set the Sig mapping for every variable in axioms and negated goal to one.
We present a very simple example of existential variable unification before we introduce the
refutational theorem prover for FOL.

Example 3. Variable Unification Restriction
We would try to prove if ∀X∃Yp(X, Y) ⊢ ∃Y∀Xp(X, Y)? We will use refutational proving and
therefore we will construct a special axiom from the first formula and negation of the second formula:
F0 : ∀X∃Yp(X, Y). F1(¬query) : ¬∃Y∀Xp(X, Y).
There are 2 trivial and 2 non-trivial combinations how to resolve F0 and F1 (combinations with the same
formula as the positive and the negative premise could not lead to refutation since they are consistent):
Trivial cases: R[F1&F1] : ⊥ ∨ ⊤ and R[F0&F0] : ⊥ ∨ ⊤. Both of them lead to ⊤ and the atoms are
simply unifiable since the variables are the same.
Non-trivial cases:[F1&F0] : no resolution is possible.
Y ∈ Var∀(F1) and Y ∈ Var∃(F0) can’t unify since VUR for (Y, Y) does not hold - there is a variable
X ∈ Sup∗(Qnt(Y))(over the scope), X ∈ Var∀(F0), Sbt(X) = ∅); the case with variable X is
identical.
[F0&F1] : no resolution is possible (the same reason as above).
No refutation could be derived from F0 and F1 due to VUR.

Further we would like to prove ∃Y∀Xp(X, Y) ⊢ ∀X∃Yp(X, Y).
F0 : ∃Y∀Xp(X, Y). F1 (¬query) : ¬∀X∃Yp(X, Y)
In this case we can simply derive a refutation:
R[F1&F0] : ⊥∨ ¬⊤(re f utation)
X ∈ Var∀(F0) and X ∈ Var∃(F1) can unify since VUR for (X, X) holds - there is no global universal
variable over the scope of X in F1; Sbt(X) = X and Sbt(Y) = Y.

3. Fuzzy predicate logic and refutational proof

The fuzzy predicate logic with evaluated syntax is a flexible and fully complete formalism,
which will be used for the below presented extension (Novák, V.). In order to use an efficient
form of the resolution principle we have to extend the standard notion of a proof (provability
value and degree) with the notion of refutational proof (refutation degree). Propositonal
version of the fuzzy resolution principle has been already presented in (Habiballa, H.). We
suppose that set of truth values is Łukasiewicz algebra. Therefore we assume standard notions
of conjunction, disjunction etc. to be bound with Łukasiewicz operators.

61Resolution Principle and Fuzzy Logic

www.intechopen.com

8 Will-be-set-by-IN-TECH

We will assume Łukasewicz algebra to be

LŁ = 〈[0, 1],∧,∨,⊗,→, 0, 1〉

where [0, 1] is the interval of reals between 0 and 1, which are the smallest and greatest
elements respectively. Basic and additional operations are defined as follows:

a ⊗ b = 0 ∨ (a + b − 1) a → b = 1 ∧ (1 − a + b) a ⊕ b = 1 ∧ (a + b) ¬a = 1 − a

The biresiduation operation ↔ could be defined a ↔ b =d f (a → b) ∧ (b → a), where ∧ is
infimum operation. The following properties of LŁ will be used in the sequel:
a ⊗ 1 = a, a ⊗ 0 = 0, a ⊕ 1 = 1, a ⊕ 0 = a, a → 1 = 1, a → 0 = ¬a, 1 → a = a, 0 → a = 1
The syntax and semantics of fuzzy predicate logic is following:

• terms t1, ..., tn are defined as in FOL

• predicates with p1, ..., pm are syntactically equivalent to FOL ones. Instead of 0 we
write ⊥ and instead of 1 we write ⊤, connectives - & (Łukasiewicz conjunction), ∇
(Łukasiewicz disjunction), ⇒ (implication), ¬ (negation), ∀X (universal quantifier),∃X
(existential quantifier) and furthermore by FJ we denote set of all formulas of fuzzy logic
in language J

• FPL formulas have the following semantic interpretations (D is the universe):
Interpretation of terms is equivalent to FOL, D(pi(ti1

, ..., tin
)) = Pi(D(ti1

), ...,D(tin
)) where

Pi is a fuzzy relation assigned to pi, D(a) = a for a ∈ [0, 1], D(A & B) = D(A) ⊗ D(B),
D(A∇B) = D(A)⊕D(B), D(A⇒B) = D(A) → D(B), D(¬A) = ¬D(A),
D(∀X(A)) =

∧

D(A[x/d]|d ∈ D), D(∃X(A)) =
∨

D(A[x/d]|d ∈ D)

• for every subformula defined above Sub, Sup, Pol, Lev, Qnt, Sbt, Sig and other derived
properties defined for classical logic hold (where the classical FOL connective is presented
the Łukasiewicz one has the same mapping value).

Graded fuzzy predicate calculus assigns grade to every axiom, in which the formula is valid.
It will be written as a

/

A where A is a formula and a is a syntactic evaluation. We use several
standard notions defined in (Novák, V.) namely: inference rule, formal fuzzy theory with set
of logical and special axioms, evaluated formal proof.

Definition 6. Inference rule
An n-ary inference rule r in the graded logical system is a scheme

r :
a1
/

A1, ..., an
/

An

revl(a1, ..., an)
/

rsyn(A1, ..., An)
(4)

using which the evaluated formulas a1
/

A1, ..., an
/

An are assigned the evaluated formula

revl(a1, ..., an)
/

rsyn(A1, ..., An). The syntactic operation rsyn is a partial n-ary operation on FJ and

the evaluation operation revl is an n-ary lower semicontinous operation on L (i.e. it preserves arbitrary
suprema in all variables).

Definition 7. Formal fuzzy theory
A formal fuzzy theory T in the language J is a triple

T = 〈LAx, SAx, R〉

where LAx ⊂
∼

FJ is a fuzzy set of logical axioms, SAx ⊂
∼

FJ is a fuzzy set of special axioms, and R is a

set of sound inference rules.

62 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 9

Definition 8. Evaluated proof, refutational proof and refutation degree
An evaluated formal proof of a formula A from the fuzzy set X ⊂

∼
FJ is a finite sequence of evaluated

formulas w := a0
/

A0, a1
/

A1, ..., an
/

An such that An := A and for each i ≤ n, either there exists
an m-ary inference rule r such that

ai
/

Ai := revl(ai1
, ..., aim

)
/

rsyn(Ai1
, ..., Aim

), i1, ..., im < n or ai
/

Ai := X(Ai)
/

Ai.
We will denote the value of the evaluated proof by Val(w) = an.
An evaluated refutational formal proof of a formula A from X is w, where additionally a0

/

A0 :=
1
/

¬A and An := ⊥. Val(w) = an is called refutation degree of A.

Definition 9. Provability and truth
Let T be a fuzzy theory and A ∈ FJ a formula. We write T ⊢a A and say that the formula A is a
theorem in the degree a, or provable in the degree a in the fuzzy theory T.

T ⊢a A iffa =
∨

{Val(w)| w is a proof of A from LAx ∪ SAx} (5)

We write T |=a A and say that the formula A is true in the degree a in the fuzzy theory T.

D |= T if ∀A ∈ LAx : LAx(A) ≤ D(A), A ∈ SAx : SAx(A) ≤ D(A) (6)

T |=a A iff a =
∧

{D(A) | D |= T} (7)

The fuzzy modus ponens rule could be formulated:

Definition 10. Fuzzy modus ponens

rMP :
a
/

A, b
/

A⇒B

a ⊗ b
/

B
(8)

where from premise A holding in the degree a and premise A⇒B holding in the degree b we infer B
holding in the degree a ⊗ b.

In classical logic rMP could be viewed as a special case of the resolution. The fuzzy resolution
rule presented below is also able to simulate fuzzy rMP. From this fact the completeness of a
system based on resolution can be deduced. It will only remain to prove the soundness. It is
possible to introduce following notion of resolution w.r.t. the modus ponens.

Definition 11. General resolution for fuzzy predicate logic (GRFPL)

rGR :
a
/

F[G1, , ..., Gk], b
/

F′[G′
1, ..., G′

n]

a ⊗ b
/

Fσ[G/⊥]∇F′σ[G/⊤]
(9)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms
A = {G1, . . . , Gk, G′

1, . . . , G′
n} , G = G1σ. For every variable α in F or F′, (Sbt(γ) = α) ∩ σ = ∅

⇒ Sig(α) = 1 in

F or F′ iff Sig(α) = 1 in Fσ[G/⊥] ∨ F′σ[G/⊤]. F is called positive and F’ is called negative premise,
G represents an occurrence of an atom. The expression Fσ[G/⊥] ∨ F′σ[G/⊤] is the resolvent of the
premises on G.

63Resolution Principle and Fuzzy Logic

www.intechopen.com

10 Will-be-set-by-IN-TECH

Lemma 2. Soundness of rGR
The inference rule rGR for FPL based on LŁ is sound i.e. for every truth valuation D,

D(rsyn(A1, ..., An)) ≥ revl(D(A1), ...,D(An)) (10)

holds true.

Proof. Before we solve the core of GRFPL we should prove that the unification algorithm
preserves soundness. But it could be simply proved since in the classical FPL with the rule
of Modus-Ponens (Novák, V.) from the axiom ⊢ (∀x)A⇒A[x/t] and ⊢ (∀x)A we can prove
A[x/t]. For rGR we may rewrite the values of the left and right parts of equation (10):

D(rsyn(A1, ..., An)) = D[D(F1[G/⊥])∇D(F2[G/⊤])]

revl(D(A1), ...,D(An)) = D(F1[G])⊗D(F2[G])

It is sufficient to prove the equality for ⇒ since all other connectives could be defined by
it. By induction on the complexity of formula |A|, defined as the number of occurrences of
connectives, we can prove:

Let premises F1 and F2 be atomic formulas. Since they must contain the same subformula then
F1 = F2 = G and it holds

D[D(F1[G/⊥])∇D(F2[G/⊤])] = D(⊥∇⊤) = 0 ⊕ 1 = 1 ≥ D(F1[G])⊗D(F2[G])

Induction step: Let premises F1 and F2 be complex formulas and let A and B are subformulas
of F1, C and D are subformulas of F2 and G is an atom where generally F1 = (A⇒B) and
F2 = (C⇒D). The complexity of |F1| = |A| + 1 or |F1| = |B| + 1 and |F2| = |C| + 1 or
|F2| = |D|+ 1. Since they must contain the same subformula and for A, B, C, D the induction
presupposition hold it remain to analyze the following cases:

1. F1 = A⇒G F2 = G⇒D : D[D(F1[G/⊥])∇D(F2[G/⊤])] = D([A⇒⊥]∇[⊤⇒D]) =
D(¬A∇D) = 1 ∧ (1 − a + d)
We have rewritten the expression into Łukasiewicz interpretation. Now we will try to
rewrite the right side of the inequality, which has to be proven.
D(F1[G]) ⊗ D(F2[G]) = D(A⇒G) ⊗ D(G⇒D) = 0 ∨ ((1 ∧ (1 − a + g)) + (1 ∧ (1 − g +
d))− 1) = 1∧ (1− a+ d) The left and right side of the equation (10) are equal and therefore

D[D(F1[G/⊥])∇D(F2[G/⊤])] ≥ D(F1[G])⊗D(F2[G])

for this case holds.

2. F1 = A⇒G F2 = C⇒G : D[D(F1[G/⊥])∇D(F2[G/⊤])] = D([A⇒⊥]∇[C⇒⊤]) = 1 ≥
D(F1[G])⊗D(F2[G])

3. F1 = G⇒B F2 = G⇒D : D[D(F1[G/⊥])∇D(F2[G/⊤])] = D([⊥⇒B]∇[⊤⇒D]) = 1 ≥
D(F1[G])⊗D(F2[G])

4. F1 = G⇒B F2 = C⇒G : D[D(F1[G/⊥])∇D(F2[G/⊤])] = D([⊥⇒B]∇[C⇒⊤]) = 1 ≥
D(F1[G])⊗D(F2[G])

By induction we have proven that the inequality holds and the rR is sound. The induction
of the case where only one of the premises has greater complexity is included in the above
solved induction step.

64 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 11

Definition 12. Refutational resolution theorem prover for FPL
Refutational non-clausal resolution theorem prover for FPL (RRTPFPL) is the inference system with
the inference rule GRFPL and sound simplification rules for ⊥, ⊤ (standard equivalencies for logical
constants). A refutational proof by definition 8 represents a proof of a formula G (goal) from the set of
special axioms N. It is assumed that Sig(α) = 1 for ∀α in F ∈ N ∪ ¬G formula, every formula in a
proof has no free variable and has no quantifier for a variable not occurring in the formula.

Definition 13. Simplification rules for ∇,⇒

rs∇ :
a
/

⊥∇A

a
/

A
and rs⇒ :

a
/

⊤⇒A

a
/

A

Lemma 3. Provability and refutation degree for GRFPL
T ⊢a A iff a =

∨

{Val(w)| w is a refutational proof of A from LAx ∪ SAx}

Proof. If T ⊢a A then a =
∨

{Val(w)| w is a proof of A from LAx ∪ SAx} and for every such a
proof of we can construct refutational proof as follows (Val(w) ≤ a):
w := a

/

A {proof A}, 1
/

¬A {member of refutational proof}, a ⊗ 1
/

⊥ {rGR}
If a =

∨

{Val(w)| w is refutational proof of A from LAx ∪ SAx}(Val(w) ≤ a):
w := a0

/

A0, ..., ai
/

Ai, 1
/

¬A, ..., a
/

⊥, where A0, ..., Ai are axioms.
There is a proof:
w′ := a0

/

A0, ..., ai
/

Ai, 1
/

¬A∇A, ai+2
/

Ai+2∇A, ..., a
/

⊥∇A.
All the schemes of the type Aj∇A , j > i could be simplified by sound simplification rules
and the formula ¬A∇A may be removed.
The proof w′′ := a0

/

A0, ..., ai
/

Ai, ai+2
/

Ai+2∇A, ..., a
/

A is a correct proof of A in the degree
a since the formulas are either axioms or results of application of resolution.

Theorem 1. Completeness for fuzzy logic with rGR, rs∇, rs⇒ instead of rMP
Formal fuzzy theory, where rMP is replaced with rGR, rs∇, rs⇒, is complete i.e. for every A from the
set of formulas T ⊢a A iff T |=a A.

Proof. The left to right implication (soundness of such formal theory) could be easily done
from the soundness of the resolution rule. Conversely it is sufficient to prove that the rule rMP
can be replaced by rGR, rs∇, rs⇒. Indeed, let w be a proof:

w := a
/

A {proof wa}, b
/

A⇒B {proof wA⇒B}, a ⊗ b
/

B {rMP}. Then we can replace it by the
proof:

w := a
/

A{proo f wa}, b
/

A⇒B{proo f wA⇒B}, a ⊗ b
/

⊥∇[⊤⇒B]{rGR},
a ⊗ b

/

⊤⇒B{rs∇, a ⊗ b
/

B{rs⇒}

Using the last sequence we can easily make a proof with rMP also with the proposed rR and
simplification rules. Since usual formal theory with rMP is complete as it is proved in (Novák,
V.), every fuzzy formal theory with these rules is also complete. Note that the non-ground case
(requiring unification) could be simulated in the same way like in the proof of soundness.

4. Implementation and efficiency

The author also currently implements the non-clausal theorem prover into fuzzy logic as an
extension of previous prover for FOL (GEneralized Resolution Deductive System - GERDS)
(Habiballa, H.). Experiments concerning prospective inference strategies can be performed
with this extension. The prover called Fuzzy Predicate Logic GEneralized Resolution

65Resolution Principle and Fuzzy Logic

www.intechopen.com

12 Will-be-set-by-IN-TECH

Deductive System (Fig. 1) - FPLGERDS provides standard interface for input (knowledge
base and goals) and output (proof sequence and results of fuzzy inference, statistics).

Fig. 1. Fuzzy Predicate Logic GEneralized Resolution Deductive System

There are already several efficient strategies proposed by author (mainly Detection of
Consequent Formulas (DCF) adopted for the usage also in FPL). With these strategies the
proving engine can be implemented in real-life applications since the complexity of theorem
proving in FPL is dimensionally harder than in FOL (the need to search for all possible
proofs - we try to find the best refutation degree). The DCF idea is to forbid the addition of a
resolvent which is a logical consequence of any previously added resolvent. For refutational
theorem proving it is a sound and complete strategy and it is emiprically very effective.
Completeness of such a strategy is also straight-forward in FOL:

(Rold ⊢ Rnew) ∧ (U, Rnew ⊢ ⊥) ⇒ (U, Rold ⊢ ⊥)

Example: Rnew = p(a), Rold = ∀x(p(x)), Rold ⊢ Rnew.

DCF could be implemented by the same procedures like General Resolution (we may utilize
self-resolution). Self-resolution has the same positive and negative premise and needs to

66 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 13

resolve all possible combinations of an atom. It uses the following scheme:

Rold ⊢ Rnew ⇔ ¬(Rold → Rnew) ⊢ ⊥

Even the usage of this teachnique is a semidecidable problem, we can use time or step
limitation of the algorithm and it will not affect the completeness of the RRTPFOL.
Example: Rnew = p(a), Rold = ∀x(p(x)), ¬(∀x(p(x)) → p(a))
MGU: Sbt(x) = a, Res = ¬(⊥ → ⊥) ∨ ¬(⊤ → ⊤) ⇒ ⊥
We have proved that Rnew is a logical consequence of Rold.

In FPL we have to enrich the DCF procedure by the limitation on the provability degree. if
U ⊢a Rold ∧ U ⊢b Rnew ∧ b ≤ a then we can apply DCF. DCF Trivial check performs a symbolic
comparison of Rold and Rnew we use the same provability degree condition. In other cases we
have to add Rnew into the set of resolvents and we can apply DCF Kill procedure. DCF Kill
searches for every Rold being a logical consequence of Rnew and if U ⊢a Rold ∧ U ⊢b Rnew ∧
b ≥ a then Kill Rold (resolvent is removed).

We will now show some efficiency results concerning many-valued logic both for Fuzzy
Predicate Logic. We have used the above mentioned application FPLGERDS and originally
developed DCF strategy for FPL. It is clear that inference in RRTPFPL and RRTPFDL on general
knowledge bases is a problem solved in exponential time. Nevertheless as we would like
to demonstrate the need to search for every possible proof (in contrast to the two-valued
logic) will not necessarily in particular cases lead to the inefficient theory. We have devised
knowledge bases (KB) on the following typical problems related to the use of fuzzy logic.

We have performed experimental measurements concerning efficiency of the presented
non-clausal resolution principle and also DCF technique. These measurements were done
using the FPLGERDS application (Habiballa, H.). Special testing knowledge bases were
prepared and several types of inference were tested on a PC with standard Intel Pentium 4
processor as described below.

Fuzzy predicate Logic redundancy-based inefficient knowledge bases

As it was shown above in the theorem proving example the problem of proof search is quite
different in FPL and FDL in comparison with the two-valued logic. We have to search
for the best refutation degree using refutational theorem proving in order to make sensible
conclusions from the inference process. It means we cannot accept the first successful proof,
but we have to check "all possible proofs" or we have to be sure that every omitted proof is
worse that some another one. The presented DCF and DCF Kill technique belong to the third
sort of proof search strategies, i.e. they omit proofs that are really worse than some another
(see the explication above). Proofs and formulas causing this could be called redundant
proofs and redundant formulas. Fuzzy logic makes this redundancy dimensionally harder
since we could produce not only equivalent formulas but also equivalent formulas of different
evaluation degree.

Example 4. Redundant knowledge base
Consider the following knowledge base (fragment):
...,
0.51

/

a ∧ b1⇒z,
0.61

/

a ∧ b1 ∧ b1⇒z,
0.71

/

a ∧ b1 ∧ b1 ∧ b1⇒z,
0.81

/

a ∧ b1 ∧ b1 ∧ b1 ∧ b1⇒z,

67Resolution Principle and Fuzzy Logic

www.intechopen.com

14 Will-be-set-by-IN-TECH

Search method Description

Breadth B Level order generation, start - special axioms + goal

Linear L Resolvent ⇒ premise, start - goal

Modified-Linear M Resolvent ⇒ premise, start - goal + special axioms

Table 2. Proof search algorithms

DCF Method Description

Trivial T Exact symbolic comparison

DCF DC Potential resolvent is consequent (no addition)

DCF Kill DK DCF + remove all consequent resolvents

Table 3. DCF heuristics

0.91
/

a ∧ b1 ∧ b1 ∧ b1 ∧ b1 ∧ b1⇒z, 1
/

b1,
...,
0.52

/

a ∧ b2⇒z,
0.62

/

a ∧ b2 ∧ b2⇒z,
0.72

/

a ∧ b2 ∧ b2 ∧ b2⇒z,
0.82

/

a ∧ b2 ∧ b2 ∧ b2 ∧ b2⇒z,
0.92

/

a ∧ b2 ∧ b2 ∧ b2 ∧ b2 ∧ b2⇒z, 1
/

b2,
...,
Goal: ? − a⇒z

Searching for the best proof of a goal will produce a lot of logically equivalent formulas with different
degrees. These resolvents make the inference process inefficient and one of the essential demands to the
presented refutational theorem prover is a reasonable inference strategy with acceptable time complexity.

We have compared efficiency of the standard breadth-first search, linear search and modified
linear search (starting from every formula in knowledge base) and also combinations with
DCF and DCF-kill technique (Habiballa, H.). We have prepared knowledge bases of the size
120, 240, 360, 480 and 600 formulas. It has been compared the time and space efficiency on
the criterion of 2 redundancy levels. This level represents the number of redundant formulas
to which the formula is equivalent (including the original formula). For example the level
5 means the knowledge base contain 5 equivalent redundant formulas for every formula
(including the formula itself). The basic possible state space search techniques and DCF
heuristics and their combinations are presented in the following tables.

We use standard state space search algorithms in the FPLGERDS application - Breadth-first
and Linear search. Breadth-first method searches for every possible resolvent from the
formulas of the level 0 (goal and special axioms). These resolvents form formulas of the level
1 and we try to combine them with all formulas of the same and lower level and continue
by the same procedure until no other non-redundant resolvent could be found. Linear search
performs depth-first search procedure, where every produced resolvent is used as one of the
premises in succeeding step of inference. The first produced resolvents arises from the goal
formula. Modified linear search method posses the same procedure as linear one, but it starts
from goal and also from all the special axioms.

DCF methods for reduction of resolvent space are basically three. The simplest is trivial
DCF method, which detects redundant resolvent only by its exact symbolic comparison, i.e.
formulas are equivalent only if the are syntactically the same. Even it is a very rough method,

68 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 15

Search DCF Code Description

Breadth Trivial BT Complete

Breadth DCF BDC Complete

Breadth DCF Kill BDK Complete

Mod. Linear Trivial MT Incomplete (+)

Mod. Linear DCF MDC Incomplete (+)

Mod. Linear DCF Kill MDK Incomplete (+)

Linear Trivial LT Incomplete

Linear DCF LDC Incomplete

Linear DCF Kill LDK Incomplete

Table 4. Inference strategies

it is computationally very simple and forms necessary essential restriction for possibly infinite
inference process. The next method of DCF technique enables do detect the equivalency
of a formula (potential new resolvent) by the means described above. DCF Kill technique
additionally tries to remove every redundant resolvent from the set of resolvents. The
important aspect of the theorem DCF lies in its simple implementation into an automated
theorem prover based on general resolution. The prover handles formulas in the form of
syntactical tree. It is programmed a procedure performing general resolution with two
formulas on an atom. This procedure is also used for the implementation of the theorem.
A "virtual tree" is created from candidate and former resolvent (axiom) connected by negated
implication. Then it remains to perform self-resolution on such formula until a logical value is
obtained. Let us compare the efficiency of standard strategies and the above-defined one. We
have built-up 9 combinations of inference strategies from the mentioned proof search and DCF
heuristics. They have different computational strength, i.e. their completeness is different for
various classes of formulas. Fully complete (as described above) for general formulas of FPL
and FDL are only breadth-first search combinations. Linear search strategies are not complete
even for two-valued logic and horn clauses. Modified linear search has generally bad
completeness results when an infinite loop is present in proofs, but for guarded knowledge
bases it can assure completeness preserving better space efficiency than breadth-first search.
We tested presented inference strategies on sample knowledge bases with redundancy level 5
with 20, 40, 60, 80 and 100 groups of mutually redundant formulas (total number of formulas
in knowledge base is 120, 240, 360, 480 and 600). At first we have tested their time efficiency
for inference process. As it could be observed from figure 2, the best results have LDK and
LDC strategies. For simple guarded knowledge bases (not leading to an infinite loop in proof
search and where the goal itself assures the best refutation degree) these two methods are very
efficient. DCF strategies significantly reduces the proof search even in comparison with LT
strategy (standard), therefore the usage of any non-trivial DCF heuristics is significant. Next
important result concludes from the comparison of BDK and MDK, MDC strategies. We can
conclude that MDK and MDC strategies are relatively comparable to BDK and moreover BDK
preserves completeness for general knowledge bases.

Space complexity is even more significantly affected by the DCF heuristics. There is an
interesting comparison of trivial and non-trivial DCF heuristics in figure 3. Even BDK strategy
brings significant reduction of resolvents amount, while LDK, LDC, MDK, MDC strategies
have minimal necessary amount of kept resolvents during inference process. The second
examined redundancy level 10 shows also important comparison for increasing redundancy
in knowledge bases. Tested knowledge bases contained 10, 20, 30, 40 and 50 groups of 10
equivalent formulas (the total number of formulas was 110, 220, 330, 440 and 550 formulas).

69Resolution Principle and Fuzzy Logic

www.intechopen.com

16 Will-be-set-by-IN-TECH

Fig. 2. Time complexity for redundancy level 5 (seconds)

Time efficiency results shows that higher redundancy level causes expected increase in the
necessary time for the best proof search (figure 4). The approximate increase is double, while
the proportion shows good results for MDK, MDC and LDK, LDC (linear search based)
strategies. This property also holds for space complexity as shown in figure 5. Performed
experiments shows the significance of originally developed DCF strategies in combination
with standard breadth-first search (important for general knowledge bases - BDK). We also
outlined high efficiency for linear search based strategies (mainly LDK). Even this strategy
is not fully complete and could be used only for guarded fragment of FDL, this problem is
already known in classical (two-valued) logic programming and automated theorem proving.
We also use these highly efficient linear search strategies, even they are not complete.

70 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 17

Fig. 3. Space complexity for redundancy level 5 (resolvents)

71Resolution Principle and Fuzzy Logic

www.intechopen.com

18 Will-be-set-by-IN-TECH

Fig. 4. Time complexity for redundancy level 10 (seconds)

72 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Resolution Principle and Fuzzy Logic 19

Fig. 5. Space complexity for redundancy level 10 (resolvents)

73Resolution Principle and Fuzzy Logic

www.intechopen.com

20 Will-be-set-by-IN-TECH

5. Conclusions and further research

The Non-clausal Refutational Resolution Theorem Prover forms a powerful inference system for
automated theorem proving in fuzzy predicate logic. The main advantage in contrast with
other inference systems lies in the possibility to utilize various inference strategies for effective
reasoning. Therefore it is essential for practically successful theorem proving.

The Detection of Consequent Formulas algorithms family brings significant improvements
in time and space efficiency for the best proof search. It has been shown results indicating
specific behavior of some combinations of the DCF and standard proof search (breadth-first
and linear search). DCF strategies (BDC, BDK) have interesting results even for fully
general fuzzy predicate logic with evaluated syntax, where the strategy makes the inference
process practically manageable (in contrast to unrestricted blind proof-search). However it
seems to be more promising for practical applications to utilize incomplete strategies with
high time efficiency like LDK (even for large knowledge bases it has very short solving
times). It conforms to another successful practical applications in two-valued logic like logic
programming or deductive databases where there are also used efficient incomplete strategies
for fragments of fully general logics.

It has been briefly presented some efficiency results for the presented automated theorem
prover and inference strategies. They show the significant reduction of time and space
complexity for the DCF technique. Experimental application FPLGERDS can be obtained from
URL:// http://www1.osu.cz/home/habibal/files/gerds.zip. The package contains current version of
the application, source codes, examples and documentation. This work was supported by
project DAR (1M0572).

6. References

Bachmair, L., Ganzinger, H. (1997). A theory of resolution. Technical report:
Max-Planck-Institut, 1997.

Bachmair, L., Ganzinger, H. (2001). Resolution theorem proving. In Handbook of Automated
Reasoning, MIT Press, 2001.

Dukić, N., Avdagić, Z. (2005). Fuzzy Functional Dependency and the Resolution Principle.
In Informatica, Vilnius: Lith. Acad. Sci. (IOSPRESS), 2005, Vol.16, No. 1, pp. 45 - 60,
2005.

Habiballa, H. (2000). Non-clausal resolution - theory and practice. Research report: University
of Ostrava, 2000, http://www.volny.cz/habiballa/files/gerds.pdf

Habiballa, H., Novák, V. (2002). Fuzzy General Resolution. In Proc. of Intl. Conf. Aplimat 2002.
Bratislava, Slovak Technical University, 2002. pp. 199-206, also available as research
rep. at http://ac030.osu.cz/irafm/ps/rep47.ps

Habiballa, H. (2006). Resolution Based Reasoning in Description Logic. In Proc. of Intl. Conf.
ZNALOSTI 2006, Univ. of Hradec Kralove, 2006, also available as research rep. at
http://ac030.osu.cz/irafm/ps/rep66.ps.gz.

Habiballa, H.(2006a). Fuzzy Predicate Logic Generalized Resolution Deductive System.
Technical Report, Institute for Research and Application of Fuzzy Modeling,
University of Ostrava, 2006.

Hájek, P. (2000). Metamathematics of fuzzy logic. Kluwer Academic Publishers - Dordrecht,
2000.

Hájek, P. (2005). Making fuzzy description logic more general. Fuzzy Sets and Systems
154(2005),pp. 1-15.

Novák, V., Perfilieva, I., Močkoř, J. (1999). Mathematical principles of fuzzy logic. Kluwer, 1999.

74 Fuzzy Logic – Algorithms, Techniques and Implementations

www.intechopen.com

Fuzzy Logic - Algorithms, Techniques and Implementations

Edited by Prof. Elmer Dadios

ISBN 978-953-51-0393-6

Hard cover, 294 pages

Publisher InTech

Published online 28, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact

on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms,

Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models

and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this

book are engineers, researchers, and graduate students interested in fuzzy logic systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hashim Habiballa (2012). Resolution Principle and Fuzzy Logic, Fuzzy Logic - Algorithms, Techniques and

Implementations, Prof. Elmer Dadios (Ed.), ISBN: 978-953-51-0393-6, InTech, Available from:

http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-implementations/resolution-principle-

in-fuzzy-logic

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

