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1. Introduction 

The classical proportional-derivative (PD) control is relatively easy to design, but useful for 

fast response controllers by combining proportional control and derivative control in parallel. 

However, as PD control is linear, it is not able to be used to deal with non-linear plants. An 

answer to this problem is fuzzy-logic control, which is also a model-free control scheme and 

can be applied to systems where mathematical models cannot be obtained. Besides, natural 

heuristic rules in linguistic expressions that reflect human experiences can be applied in the 

control design, minimizing the design cost. Fuzzy-logic controllers (FLCs) are the control 

systems based on a knowledge consisting of the so-called fuzzy IF-THEN rules. 

This chapter is a discussion on using genetic algorithms (GAs) to tune the parameters of PD-
like FLCs. Genetic algorithms are global search techniques modeled following the natural 
genetic mechanism to find approximate or exact solutions to optimization and search 
problems. In a GA, each parameter to be optimized is represented by a gene; moreover, each 
individual is characterized by a chromosome, which is actually a set of parameters awaiting 
optimization. 

The remainder of this chapter is organized as follows. In Section 2, the optimization 

technique for PD-like FLCs using GAs is explained. After that, two case studies are 

presented and discussed in Sections 3 and 4, in which, the introduced technique is applied 

for a bicycle roll-angle-tracking controller and an ESP controller, respectively. Finally, 

concluding remarks are given in Section 5. 

2. PD-Like fuzzy-logic controller and optimization 

In a fuzzy IF-THEN rule, words can be characterized by continuous membership functions 

(typically taking values from 0 to 1) representing the degree of truth of the statements. For 

example, to stabilize the bicycle, the following fuzzy rule can be used: 

IF the bicycle is leaning to the right AND the roll angle is increasing, 
THEN apply large steering torque to the right, 

where the words right, increasing and large are characterized by corresponding membership 
functions. Similarly, more rules from human knowledge can be defined to make the control 
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system more precise. Combining these rules into a fuzzy system, a rule base is obtained, 
which is used by the fuzzy inference system (FIS), as shown in Fig. 1. Two common FIS used 
in the literature are that of Takagi and Sugeno (TS), and that of Mamdani. The difference of 
the two FIS is in the THEN clause, where TS method uses algebraic linear combination of 
fuzzy variables, while Mamdani method uses natural-language clauses. 

 

 

Fig. 1. Basic configuration of fuzzy systems 

By using FLC, one major advantage is that there is no need to beware of the exact plant 
model as when classical control schemes are used. In reality, the plant model is usually non-
linear and difficult to specify exactly. Using FLC is a preferable approach to avoid this 
difficulty. However, in most of cases, the fuzzy membership functions are difficult to be 
effectively defined manually, and need to be tuned. One usual procedure to design a FLC is 
to approximately build the fuzzy rules and membership functions heuristically and 
subsequently use a certain optimization algorithm to tune the parameters. 

Mamdani fuzzy inference system (FIS) is preferable in FLC instead of Takagi-Sugeno (TS) 
because of two reasons. First, since the IF-THEN rules of the Mamdani method are given in 
natural-language form, it is more intuitive to build the fuzzy rules so that the parameters 
can be determined later by using genetic algorithms. Secondly, the presentation of output 
membership functions by the TS method requires much more parameters, e.g. each THEN 
clause z = ax + by + c of a single rule has three parameters, which make the optimization 
become more complicated and computationally intensive. The distribution of the 
membership functions of each fuzzy variable of the FLCs discussed in this study can be 
determined by two parameters, a scaling factor and a deforming coefficient, using the 
Mamdani method; or six parameters in total for a two-input, one-output FLC. 

To estimate the quality of an individual, a fitness function (objective function, or cost function) 
must be defined. A genetic algorithm starts by generating an initial population for the first 
generation; then, the quality of each individual is evaluated by using the fitness function. After 
one generation, only the advantageous individuals survive and reproduce to generate a new 
population for the next generation. By this process of selection from generation to generation, 
the quality of the offspring is improved in comparison with their ancestors. 

During the creation of a new generation, a portion of the surviving individuals is 
recombined randomly via the so-called crossover and mutation operations, being adopted 
from natural evolution. The advantages of GAs over other searching algorithms are that 
they do not require any gradient information neither continuity assumption in searching for 
the best parameters, and that they can explore many characteristics at once, which is 
necessary when dealing with complex problems. For a complete introduction to GAs, the 
readers can refer to R.L. Haupt & S.E. Haupt (2004). 
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The optimization procedure of FLC using GAs is presented in Fig. 2. To reduce the learning 

efforts for GA computation to optimize the FLC, the scaling factors and deforming 

coefficients are used. Each fuzzy input or output of the FLC is encoded by two numbers: a 

scaling factor and a deforming coefficient. This method allows a standard PD-like two-

input, one-output FLC to be represented as a six-parameter optimization problem. 

 

 

Fig. 2. Optimization of control parameters using GAs 

The membership functions of a PD-like FLC are triangular, i.e., 
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The coordinates a, b and c of the membership functions are determined from the 

optimization process. The effect of the scaling factors is obtained by simply multiplying all 

points of the universe of discourse of FLCs by the scaling factors. The deforming 

coefficients, as illustrated in Fig. 3, are introduced to “deform” the membership functions so 

that they are not equally distributed. Because the membership functions of a PD-like FLC 

are symmetric with respect to the origin, it is only needed to calculate those on one side, 

says the positive side, and then to take symmetrization to yield the other side. The 

membership functions are deformed by multiplying all points of the universe of discourse 

by the exponent of linearly equally space points within 1, 1 DC     . 

Let the number of points of the universe of discourse on the positive side, excluding the zero 

origin, be n. The linear space is shown in Fig. 3a. By multiplying all points of the universe of 

discourse by the exponent of this linear space and then rescaling by dividing to 1 DCe , the 

equally distributed membership functions in Fig. 3b are transmuted into Fig. 3c without 

changing the maximum limit ǈn. With the introduction of the scaling factors and deforming 

coefficients, six parameters are needed to encode an FLC of two inputs and one output in 

the form of a chromosome for GAs as follows 

 [ ]1 2 3 1 2 3 ,SF SF SF DC DC DC  (2) 
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where (SF1, DC1), (SF2, DC2), and (SF3, DC3) are used for fuzzy input 1, 2 and output, 

respectively. Note that all fuzzy inputs and outputs in this study are normalized by scaling 

factors so that their values are distributed within the range from −1 to 1, the extreme limits 

of the two outermost triangular membership functions are extended to infinity. 
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Fig. 3. (a) Linearly equal space, (b) equally arranged membership functions, and (c) 
deformed membership functions 

The learning scheme given in Fig. 2 is in the following. In initial phase, the population 

consists of randomly generated heterogeneous chromosomes. Then all chromosomes go 

through three principal parts: evaluation module, selection module and reproduction 

module. The population will be improved because fitter offspring replace parents. The 

procedure is repeated until either a maximum number of generations is reached or an 

optimal solution is obtained, whichever is earlier. 
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In the following of this chapter, two case studies are introduced to show the application of 
the PD-like FLCs and the control-parameter optimization technique in reality. In the first 
case, an FLC is used to establish a controller which helps a bicycle to follow a roll-angle 
command. In the second one, several FLCs are used in an ESP controller, which is designed 
to enhance vehicle maneuvers, especially in critical situations. 

3. Case study: Bicycle roll-angle-tracking controller 

As an unstable and underactuated system, the bicycle is control-challenging and can offer a 

number of research interests in the area of mechanics and robot control. Control efforts for 

stabilizing unmanned bicycles have also been addressed in previous studies. Yavin (1999) 

dealt with the stabilization and control of a riderless bicycle by a pedaling torque, a 

directional torque and a rotor mounted on the crossbar that generated a tilting torque. 

Beznos et al. (1988) modeled a bicycle with gyroscopes that enabled the vehicle to stabilize 

itself in an autonomous motion along a straight line as well as along a curve. In their study, 

the stabilization unit consisted of two coupled gyroscopes spinning in opposite directions. 

Han et al. (2001) derived a simple kinematic and dynamic formulation of an unmanned 

electric bicycle. The controllability of the stabilization problem was also checked and a 

control algorithm for self-stabilization of the vehicle with bounded wheel speed and 

steering angle using non-linear control based on the sliding patch and stuck phenomena 

was proposed. 

Among studies relative to two-wheel-vehicle control, Sharp et al. (2004) presented a related 

work on the roll-angle-tracking of motorcycles. A PID controller was used to generate the 

steering torque based on the tracking error. In this section, a controller is introduced to 

control the bicycle to follow a roll-angle command, where an FLC is used in the place of the 

PID. 

3.1 Control structure 

Fig. 4 shows the roll-angle-tracking control structure that Sharp et al. (2004) used to control a 

motorcycle. The steering torque is derived from the roll-angle error using a PID controller, 

whose gains kP, kI and kD are speed-dependent. Their study has showed good results that the 

steering torque of a two-wheeled vehicle can be directly controlled from the roll-angle error. 

In this study, since PID controller is linear, it is replaced by a FLC in order to better deal 

with the non-linearity of the bicycle. This gives the controller shown in Fig. 5. 

 

Motorcycle
ǉref eǉ τ outputs

ǉ kD

kP

kI

d/dt



Vx

 

Fig. 4. Roll-angle-tracking controller for motorcycle (Sharp et al., 2005) 
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The FLC used in this study has two inputs: the roll-angle tracking error eǉ = ǉref – ǉ, which is 
the difference between the desired roll angle and the actual one; and its change Δeǉ. The 
controller generates appropriate control output which is the control torque τ to the steering 
fork. The FLC is PD-like since it requires two inputs, the error need to be minimized, and its 
variation, which are comparable to the proportional and derivative parts of a PD controller. 
Compared to the previous studies (Chen & T.S. Dao, 2006, 2007), the controller structure has 
been simplified so that only one FLC is used to generate the torque τ directly from the roll-
angle error eǉ, as shown in Fig. 5. Linguistic quantification used to specify a set of rules for 
this controller is characterized by the following three typical situations: 

1. If eǉ is negative large (NL) and Δeǉ is NL, then τ is positive large (PL). This rule quantifies 
the situation wherein the desired roll-angle is much smaller than the actual one and the 
bicycle is falling to the right at a significant rate. Hence, one should steer the fork to the 
right more at a large positive angle to make the bicycle lean to the left. 

2. If eǉ is zero (Z) and Δeǉ is Z, then τ is Z. This rule quantifies the situation wherein the 
bicycle is already in its proper position. No control effort is needed. 

3. If eǉ is PL and Δeǉ is PL, then τ is NL. This rule quantifies the situation wherein the 
desired roll-angle is much larger than the actual one and the bicycle is falling to the left 
at a significant rate. Therefore, one should steer the fork to the left at a large angle to 
make the bicycle lean to the right. 

 

 

Fig. 5. Roll-angle-tracking controller using FLC 

e
θ

e
θ

∆

 

Table 1. Rule base for roll-angle-tracking FLC 
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In a similar fashion, the complete rule base is constructed as listed in Table 1, where the 
membership functions negative large (NL), negative medium (NM), negative small (NS), zero (Z), 
positive small (PS), positive medium (PM), and positive large (PL) are used for the two fuzzy 
inputs as well as the output. Notice that the body of the table lists the linguistic-numeric 
consequents of the rules, and the left column and top row of the table contain the linguistic-
numeric premise terms. For this controller, with two inputs and seven linguistic values for 
each of these, there are totally 72 = 49 rules. By using (1), for each input or output of the FLC, 
the membership functions characterizing seven levels, namely NL, NM, NS, Z, PS, PM and 
PL, are defined as depicted in Fig. 3c and discussed in the previous section. 

3.2 Optimization of control parameters and simulation results 

For roll-angle control, the goal is to minimize simultaneously the tracking error and the 
oscillation of roll angle. Therefore, the fitness function used for optimization is defined as 

 

11 2 22
2

1 1

1 1 ( )
 ( )

N N

e
i i

i
fitness function e i

N N t
θ θ

θ
κ κ∆

= =

   ∆  = +    ∆    
  , (3) 

where Δt is the simulation time step; N, the number of time steps; eǉ(i) = ǉref(i) – ǉ(i) and Δǉ(i) 
= ǉ(i) – ǉ(i – 1), the tracking error and the change in roll angle at time step i, respectively. The 
fitness function is the aggregation of two terms. The first is the root mean square of the 
tracking error multiplied by a weighting factor κe, and the second is the root mean square of 
the change in roll angle multiplied by a weighting factor κΔǉ. 

Originally, the normalized membership functions are scaled linearly by the scaling factors 
and deformed exponentially within the universe of discourse by the deforming coefficients, 
as presented in Fig. 3. Since the scaling factors of the FLC used in this study are variable, 
they are explicitly presented on the outside of the FLC. However, it is important to note that, 
once the scaling factors are presented on the outside of the FLC, their signification is 
changed, the effect of scaling factors for fuzzy inputs is inversed, since the scaling factors are 
now applied for signals, not for fuzzy membership functions. These scaling factors are 
denoted by k1-3 in Fig. 5. The controlled bicycle model for simulations in this study is non-
linear, non-holonomic, has nine generalized coordinates, and described in detail in (Chen & 
T.S. Dao, 2006, 2007) with parameters given in (Chen & T.K. Dao, 2010). 

The weighting factors of the fitness function used in this study are chosen as κe = 0.6 and κΔǉ 
= 0.4. To estimate the performance of PID controller for roll-angle tracking for the developed 
bicycle model, control simulations were carried out. The PID gains are optimized by using 
GAs, where the parameters to be optimized are the three PID gains kP, kI and kD. Fig. 6 
shows the simulation results of the optimized PID controller at a speed of 12km/h. It 
appears that the bicycle could not be controlled to follow the command rapidly while 
minimizing the oscillation. 

Fig. 7 shows the control result by the FLC tuned via GA training for a speed of 5km/h (low 
speed), Fig. 8 for 12km/h (medium speed), and Fig. 9 for 30km/h (high speed). The optimal 
fitness values of these simulations are presented in Table 2. It can be remarked that when 
the speed is increased, the optimal fitness value is also increased accordingly. This can be 
explained by the fact that the tracking error of the roll angle increases for the higher speeds. 
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Fig. 6. PID controller performance at normal speed (12km/h) 
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Fig. 7. Roll-angle-tracking performance at low speed (5km/h) 

In comparison with the same control simulation but using PID controller in Fig. 6, it appears 
that the roll-angle tracking error is reduced when the bicycle is controlled by the FLC, as 
shown in Fig. 8. This is assured by the optimal value of fitness function of 0.0821 from the 
FLC, and 1.7153 from the PID controller for the same bicycle speed of 12km/h. By applying 
the optimized control parameters, the FLC can control the bicycle better than the PID 
controller does, which can be explained by the essential non-linear control properties. The 
FLC can control non-linear systems with a larger range of parameters. 
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Fig. 8. Roll-angle-tracking performance at normal speed (12km/h) 
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Fig. 9. Roll-angle-tracking performance at high speed (30km/h) 

 

Controller Speed (km/h) Optimal fitness value 

PID 12 1.7153 

FLC 5 0.0430 

FLC 12 0.0821 

FLC 30 0.1378 

Table 2. Optimal fitness values for simulations 
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4. Case study: ESP controller 

The Electronic Stability Program (ESP) is a vehicle dynamics control system that relies on a 
vehicle’s braking system to support the driver in critical driving situations. Since their 
landmark introduction of Bosch controller (Van Zanten et al., 1995), ESP systems have 
become popular in the automotive market. The general strategy of ESP systems is to define 
an indicator for the maneuverability of an automobile, from which the controller aims to 
enhance handling in extreme maneuvers by automatically controlling the brakes and the 
engine. 

Satisfactory handling behavior is characterized by the fact that the vehicle correctly follows 
the desire of the driver; i.e., the vehicle yaw rate is accurately maintained according to the 
steering angle while concurrently remaining stable. The general concept of most ESP 
systems is primarily based on the sideslip angle, such as those presented by Van Zanten 
(2000); some systems regard also the vehicle yaw rate, for example the system developed by 
Kwak and Park (2001). 

 

Mres

FB

FL

Mres

FB

FL

FB

FB

FB: brake force
FL: lateral tire force
Mres: resulting moment

desired path
without ESP

with ESP

with ESP

without ESP

desired path

understeering behavior oversteering behavior  

Fig. 10. Understeering/oversteering behaviors 

Regarding yaw-moment generation techniques, there are several preferable approaches, 
namely active yaw moment control (Ikushima & Sawase, 1995), active steering (Ackermann, 
1998; Oraby et al., 2004), and direct yaw moment control (DYC) (Esmailzadeh et al., 2003; 
Tahami et al., 2003). Hybrid yaw-moment generation methods are also used, such as that of 
Selby et al. (2001) coordinates the two approaches active front steering and direct yaw 
moment control. 

From driving experience, when the vehicle exhibits oversteering behavior, braking the outer 
wheels will generate compensated yaw moment to depress the oversteering situation; 
whereas, braking the inner wheels will generate compensated yaw moment in 
understeering situations. Moreover, Pruckner and Seemann (1997) pointed out that, to 
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stabilize the vehicle while braking, in case of understeering behavior, the main braking 
intervention should occur on the inner rear wheel. Rear braking force causes a primary yaw 
moment and a reduction in the rear lateral tire force. In case of oversteering behavior, the 
main braking force on the outer front wheel helps to stabilize the vehicle. The intervention 
produces a primary yaw moment and reduces the lateral tire force on the front side. These 
effects prevent critical oversteering driving situations, as shown in Fig. 10. For a more 
detailed description of ESP and controller principles, the readers can refer to Bosch (1999). 

In this section, an ESP control approach based on an estimation of the desired yaw rate, 
considered to be the target yaw rate, which the vehicle should follow, is introduced. The 
fundamental idea regarding the estimated target yaw rate is to generate a compensated yaw 
moment which corrects the behaviors of the vehicle, thereby improving its handling and 
stability by using FLCs. When the compensated yaw moment is generated, the system also 
avoids the vehicle sideslip angle to prevent a counter-effect wherein this angle is increased 
to the limit. The distribution of braking forces on all wheels instead of two front wheels has 
two advantages. The first advantage is that the controller can generate larger yaw moment 
in severe situations. The second one is to make the vehicle more stable when the controller is 
activated. By distributing braking forces on all wheels, the controller can deal with more 
situations. 

4.1 Control structure 

An ESP system is developed to correct the yaw rate of a vehicle, especially in critical 
situations, so that the vehicle responds normally to the driver’s desire. This goal is achieved 
by estimating a corrective yaw moment, referred to as a compensated yaw moment, and 
generating the corresponding yaw moment to the vehicle by controlling the braking system, 
so that the vehicle can dependably respond to the driver’s maneuvers in critical situations. 
This estimation consists of two components, one based on the steering and the other on the 
sideslip angle. 

 

Fig. 11. Overall ESP control structure 

The overall control structure is depicted in Fig. 11. As previously mentioned, the compensated 
yaw moment is combined from two separately estimated components, Mzδ and Mzǃ. From the 
estimated compensated yaw moment and the steering orientation, the reference pressure 
generator determines which wheels to brake and the braking pressures to be applied to each. 
A closed-loop pressure controller manipulates the EHB (electro-hydraulic brake) hydraulic 
pressures on the four wheels by following the reference pressures. 
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4.1.1 Steering-based compensated yaw moment 

During operation, the yaw rate of a vehicle should be proportional to the steering angle that 

the driver makes with the steering wheel so that the time response of the yaw rate has the 

same shape as that of the steering angle. The goal of the ESP system is to assure that this 

criterion is achieved, especially in extreme situations. 

From the theory of vehicle dynamics, the following equation can be derived: 

 
2 2

1 12
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where Ωz is the vehicle yaw rate, Vx is the longitudinal speed in coordinates fixed to the 

vehicle, m is the vehicle mass, l1 and l2 are the distances from the front and rear axles, 

respectively, to the center of gravity, Cǂr is the cornering stiffness of the rear tire, kg is the 

gear ratio from the steering wheel to the front wheels, and δ is the angle of the steering 

wheel. The following two magnitudes are now defined as 
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thus, equation (4) can be simply denoted as 
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It is noticed that every magnitudes involved in equation (5) are constants taken from the 

configuration of a vehicle; thus, k1 and k2 are also constants. In consequence, in equation (6), 

the steady-state yaw rate Ωz is a function of the longitudinal speed Vx and the steering angle 

δ. It should be emphasized that this yaw rate does not depend on the friction coefficient μ. In 

this ESP system, the objective is to control the vehicle so that its yaw rate follows the 

reference yaw rate generated by this equation. 

c  

Fig. 12. Steering-based compensated yaw moment 

Once the reference yaw rate is available, the maneuverability situation, understeering or 

oversteering, can be determined by comparing the reference yaw rate to the actual one 

measured from the yaw-rate sensor. When cornering, understeering situation is identified if 

the absolute value of the real yaw rate is smaller than the desired one, and vice versa. 
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Oversteering situation is identified if the absolute value of the real yaw rate is larger than 

the desired one. The yaw-rate error, defined as 

 z z zrefeΩ = Ω − Ω , (7) 

is used to generate the compensated yaw moment by a PD-like fuzzy logic control (FLC), 

as shown in Fig. 12. The FLC requires two inputs, namely the yaw-rate error and its 

variation, and one output, the compensated yaw moment. The ESP controller must 

generate a moment corresponding to the compensated yaw moment so that the vehicle 

yaw rate follows the steering angle correctly, thus implying that the vehicle 

maneuverability is guaranteed. 

4.1.2 Sideslip-angle-based compensated yaw moment 

Abusing the steering to estimate the compensated yaw moment might make the vehicle 

go out of control when the sideslip angle ǃ (angle between the vehicle’s moving direction 

and the direction towards which it is pointing) becomes too high. To prevent this 

situation, when ǃ exceeds a certain predefined value ǃ0, the system will generate another 

compensated yaw moment in such a manner that the sideslip angle has the tendency to 

decrease. This can be achieved by another PD-like FLC as shown in Fig. 13. After Van 

Zanten (2000), during normal driving, average drivers will not exceed sideslip angles of 

±2°. Beyond this value, the driver has no experience. In this controller, the value of ǃ0 is 

chosen to be 1.5°, which is the value that the sideslip-angle-based compensated yaw 

moment starts having effect. 

 

Fig. 13. Sideslip-angle-based compensated yaw moment 

Note that for implementing in real cars, there are several methods for estimating the sideslip 

angle of a vehicle. Two common approaches are the vehicle model observer and the pseudo-

integral. The former estimates the sideslip angle based on a vehicle model, which is 

generally robust against sensor errors, yet sensitive to changes in condition and 

disturbances; whereas, the latter estimates the sideslip by taking integration of 

( ) /x x zy V Vβ β= − − Ω   , where y  is lateral acceleration, Vx is vehicle speed, and Ωz is vehicle 

yaw rate, which is robust against changes in road friction and disturbances. However, 

stabilization should be applied in the latter to minimize the cumulative integral error. 

Nishio et al. (2001) developed an estimation method using a combination of the vehicle 

model observer and the pseudo-integral. This method is robust against sensor error as well 

as changes in road friction and operational disturbances. 
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The steering-based compensated yaw moment Mzδ and the sideslip-angle-based one Mzǃ are 
later combined as Mz. The activator is a logical block producing 1 or 0, depending on 
whether ǃ is greater than ǃ0. Thus, by the multiplication operator, the effect of the activator 
is to enable or disable the sideslip-angle-based branch regarding whether ǃ exceeds ǃ0. 

4.1.3 Braking-pressure control 

As previously discussed, the distribution of the braking pressure aims to generate the yaw 
moment effectively while keeping the vehicle stable during braking. In understeering 
situation, the inner rear wheel is braked primarily. If the desired yaw moment is large, the 
inner front wheel will also be braked secondarily to generate a supplementary yaw moment 
and stabilize the vehicle. In oversteering situation, the outer front wheel is braked primarily, 
and the outer rear wheel is braked secondarily if large yaw moment is required. The 
braking-pressure distribution is summarized in Table 3. 

 

 

Understeering Oversteering 

Turn left (δ > 0) Turn right (δ < 0) Turn left (δ > 0) Turn right (δ < 0) 

Small Mz Large Mz Small Mz Large Mz Small Mz Large Mz Small Mz Large Mz 

FL  Secondary     Primary Primary 

FR    Secondary Primary Primary   

RL Primary Primary      Secondary 

RR   Primary Primary  Secondary   

Table 3. Braking-pressure distribution 

 

Fig. 14. Structure of pressure controller 

The pressure is controlled by a closed-loop control structure using an FLC, as shown in Fig. 

14. On the basis of the error between the actual-pressure measurement and the reference 

pressure, and the variation of the error itself, the FLC generates the control signal uc. The 

values of uc are in the range from −1 to 1, corresponding to the openness of the inlet and 

outlet valves of the EHB system explicated in the previous section. Regarding the sign and 

value of uc, the actuator switch opens or closes the inlet and outlet valves. 

4.2 Optimization of control parameters and simulation results 

It is clear that the components of this controller, such as the reference yaw-rate estimator, 
the compensated yaw-moment generators, and the pressure controller, can be optimized 
separately. Optimizing each component individually reduces the complexity in formulating 
the problem and avoids unnecessary combinatory operations among unrelated genes 
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caused by the interaction effect between components, thereby saving much computational 
time. However, it is important to note that the order for optimizing these components is not 
totally arbitrary, due to their dependence. For example, optimizing the pressure controller 
requires that the pressure model be built and parameters be tuned a priori. 

First, the reference yaw-rate generator can be isolated from the whole control model and 
tuned independently, since their parameters are tuned to fit data measured from 
experiments. After that, the pressure controller can be optimized. Once these three 
components are completed, the next step is optimizing the steering-based compensated 
yaw-moment generator, and finally the sideslip-based compensated yaw-moment generator 
to complete the optimization procedure. The optimal values of control parameters used in 
this study are presented in Table 4. 

 

Component Parameter Value 

Steering-based FLC 
Scaling factors [ ]0.108 0.008 15.106  

Deforming coefficients [ ]0.704 0.660 0.173  

Sideslip-angle based FLC 
Scaling factors [ ]1.473 0.253 19.593  

Deforming coefficients [ ]0.193 0.694 0.360  

Table 4. Optimal control parameters for ESP 

 

0 1 2 3 4 5

-50

0

50

100

Time (s)

S
te

e
ri
n
g
 a

n
g
le

 (
d
e
g
)

 

 

 

Fig. 15. Open-loop steering angle 

Driving maneuvers have been simulated for various driving situations using a full sedan 

model in CarSim®, which provides the sprung mass, powertrain, suspension model, as well 

as tire and aerodynamic models with parameters listed in Table 5. In CarSim, from the 

braking pressure, the tire-road adherence force is obtained via the internal tire model 

depending on properties of the tire itself and the road surface. 

The steering behavior depicted in Fig. 15 was adopted from Pruckner & Seemann (1997) for 

performance evaluation. The steering input equals three half-sinusoidal waves with 
increasing amplitude and switching direction; thus, the vehicle response during the change 
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from non-critical to critical behavior can be studied. As has been argued earlier in this paper, 
the ESP system should drive the vehicle so that its yaw rate follows the shape specified by 
the steering input. This is assured by the estimator of reference yaw rate. 

 

Description Value 

Sprung mass 800kg 

Roll inertia 288kg.m2 

Yaw inertia 1152kg.m2 

Front axle to C.G. 0.948m 

Rear axle to C.G. 1.422m 

Height of C.G. 0.480m 

Wheel radius 0.281m 

Tire width 0.145m 

Tire spring rate 0.2N/m 

Table 5. Principal simulation parameters of vehicle 
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Fig. 16. High friction: μ = 0.85; normal speed: Vx = 100km/h 
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After tuning the controller by using GAs with mutation rate of 0.1, crossover rate of 0.8, 

population size of 20, maximal number of generations of 50, and randomly generated initial 

population, simulations for four cases with different road frictions and speeds were 

conducted. The simulation results of which are shown in figures from 13 to 16. The first 

simulation (Fig. 16) focused on high-friction and normal-speed conditions to determine how 

the performance of a vehicle can be improved in non-critical situations. Next, the vehicle 

behavior and controller performance were examined for three different critical situations, 

namely high speed on high-friction surfaces (Fig. 17), high speed on normal-friction surfaces 

(Fig. 18), and normal speed on very low-friction surfaces (Fig. 19). In each case, three trials 

were considered: the first, without the ESP controller (dashed lines); the second, with only the 

steering-based compensated yaw moment enabled (thin solid lines); the third, with both 

steering-based and sideslip-angle-based compensated yaw moments taken into account (thick 

solid lines). The target yaw rates (dotted lines) are shown in yaw-rate plots for reference. 
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Fig. 17. High friction: μ = 0.85; high speed: Vx = 180km/h 
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First, a simulation was done for a highly maneuverable case characterized by high friction 

and normal speed. The first plot in Fig. 16 indicates that without the ESP controller, the 

vehicle was already following the steering target fairly well. However, a better result can 

still be obtained with the ESP system enabled. The second plot shows that the sideslip angle 

was significantly reduced with the use of the compensated yaw moment. 

The second simulation was done for conditions characterized by high friction and high 

speed, the results of which are shown in Fig. 17. Without the ESP controller, the vehicle 

went out of control when the steering began to become critical (at 3.2 sec). The ESP 

controller successfully drove the vehicle following the steering target. 

The third simulation was done for a case characterized by medium friction and high speed, 

the results of which are shown in Fig. 18. Without the ESP controller, the vehicle went out of 

control even when the steering was non-critical (at 2.2 sec). The ESP controller performed 

quite well in this case while keeping the vehicle yaw rate almost coincidental with the 

steering target. 
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Fig. 18. Medium friction: μ = 0.5; high speed: Vx = 180km/h 
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The last simulation case, the results of which are shown in Fig. 19, was for a very low-

friction condition, corresponding to driving on snow-covered or icy surfaces. In this 

emergency situation, even with the ESP controller, the tracking for critical-steering 

maneuvering was not really good, the yaw rate drew much closer to the steering target and 

the sideslip angle being kept under the specified range (two degrees). 
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Fig. 19. Low friction: μ = 0.2; normal speed: Vx = 100km/h 
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5. Conclusion 

In this chapter, an optimization technique was introduced to tune the parameters of PD-like 
fuzzy-logic controllers. The key point is to parameterize each input and output of a FLC by a 
scaling factor and a deforming coefficient. In this way, the FLC can be tuned quantitatively 
by different optimization algorithms, among which the genetic algorithms introduced are a 
preferable choice. The design of PD-like FLCs is as simple as a PID, as it does not require a 
mathematic model of the control plant, even a simple one. However, these FLCs gain over 
PID controllers by the non-linear properties, thus, are widely used in non-linear control 
problems where plant models are difficult to obtain mathematically. 

From the introduced technique, two case studies were presented and discussed. In the first 
case, a bicycle roll-angle-tracking controller was an attempt to adapt the study of Sharp et al. 
for motorcycle to control the bicycle, where an FLC was used instead of a PID so that the 
system non-linearity was better dealt. Simulation results indicated that the bicycle can 
follow roll-angle commands with small error. In the second case, after the FLCs were 
optimized, simulations using the ESP system were conducted under different driving 
conditions. In normal conditions, the controller could still improve the maneuverability to 
achieve better performance. In high speed conditions, the vehicle was controlled to follow 
the desired yaw rate with small sideslip angle. In very low friction conditions, although the 
controller could not control the vehicle back to the normal condition, the yaw rate drew 
much closer to the steering target and the sideslip angle was kept to be in the specified 
range. The results indicate that, with the help of proposed ESP control scheme, a vehicle can 
follow a steering behavior in critical cases while maintaining a small sideslip angle. 

The PD-like FLCs can be widely applied in reality due to several advantages. First, the 
control design is simple, without the need to develop a dynamic model for the control plan. 
This is because FLC is a model-free control scheme. Second, human experience can be used 
straightforwardly in the design of the controller. The designer can describe the system 
behavior with simple IF-THEN rules. All the optimization efforts of control performance are 
then endorsed by the adjustment process of the fuzzy membership functions. This process 
has also strengths and weaknesses. While the easily adjustable membership functions give 
the designers a lot of chance to affect the control performance, there is no general analytical 
technique. This study is an effort to address this problem by parameterizing the fuzzy 
membership functions with scaling factors and deforming coefficients, which can be used as 
control parameters in the optimization. Among many optimization methods, the GA 
approach introduced in this study is a good choice as it is a general optimization method, 
which is able to search for the global optimum of knowledge-free problems. 
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