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1. Introduction 

Recently, refineries finished products hydro treatment became critical due to changes in fuel 
regulations. These changes are related to the specification of more clean fuels with special 
focus in sulfur content reduction. In order to achieve these goals more hydro treatment is 
needed. Hydrogen is the main raw material to hydro treatment units.  

In refining plants, a hydrogen generation unit usually is necessary to supply the hydrogen 
demand to all demanding processes.  

The process known as steam reform unit is the most widely adopted technology. In large 
scale, it has the highest energetic efficiency and the best cost-benefit ratio (Borges, 2009).  

In this process the hydrogen conversion is carried out in two reactors in series. The first one, 
the steam reform reactor converts steam and a hydrocarbon (naphtha or natural gas) into 
syngas. In the sequence, a reactor known as water gas shift reactor (WGSR) converts the 
carbon monoxide present in syngas into carbon dioxide and more hydrogen is generated.  

Consequently, the WGSR, an intermediate step of hydrogen generation process, plays a key 
role in a petrochemical plant due to hydrogen increasing demand.  

1.1 Hydrogen generation unit 

The hydrogen generation unit, based on the steam reform technology, is responsible for 
approximately 95% of generated hydrogen (Borges, 2009).  

A simplified unit block diagram is showed in figure 1.1.1. 

 

Fig. 1.1.1. Hydrogen generation unit – process block diagram.  
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First, sulfur is removed from the hydrocarbon stream (usually natural gas), in order to 

prevent catalyst poisoning and deactivation with the use of a guard bed. Steam is mixed 

in the main stream in a fixed steam to carbon molar basis. The steam reform reactor (SRR) 

is a multitubular catalyst filled furnace reactor where the hydrocarbon plus steam are 

converted into syngas at high temperatures (700ºC – 850ºC) according to the following 

reaction:  

 4 2 23CH H O CO H+ ⇔ +  298 205,9 /oH kJ molΔ =   (1) 

 2 2 2CO H O CO H+ ⇔ +   298 41,1 /oH kJ molΔ = −   (2) 

The reaction (1) is endothermic and reaction (2) is moderately exothermic. Both are 

reversible reactions. In the SRR, (1) is the main reaction and generates most of the hydrogen. 

The reaction (2) due to its endothermic nature occurs in a lower extension in the SRR. The 

syngas stream composition is CO and H2, in this process CO2 and H2O are also present in 

gas state. The main purpose of the water gas shift reactor (WGSR) is to carry out the reaction 

(2) reducing the CO fraction and increasing the hydrogen yield. Finally, the WGSR stream is 

conducted to a purification section, where hydrogen purity is increased according to the 

process needs.  

2. The water gas shift reaction 

2.1 kinetic rate expression 

The water gas shift reaction (reaction 2) is a heterogeneous reaction (gas/solid).  

According to (Smith et al., 2010) in this kind of application, there are two options in the 

WGSR step. Using a high temperature shift (HTS) catalyst based reactor or a series of HTS 

followed by a low temperature shift catalyst based reactor (LTS) with intercooling stage to 

increase the overall conversion and high purity hydrogen is needed (Newsome, 1980).  

The chapter focuses on a HTS ferrochrome catalyst industrial reactor modeling.  

The HTS usually is an iron oxide – chromium oxide based catalyst. Also reaction promoters 

such as Cu may be present in catalyst composition. Operational temperatures vary from 

310ºC to 450ºC. Inlet temperatures are usually kept at 350ºC to prevent the catalyst bed 

temperature from damage. Exit CO concentrations are in the order of 2% to 4%. Industrial 

reactors can operate from atmospheric pressure to 8375 kPa. Sulfur is a poison for Fe-Cr 

catalysts.  

LTS reactors are copper based catalyst. Typical compositions include Cu, Zn, Cr and Al 

oxides.  

Recent catalysts can be operated at medium temperatures around 300ºC. Copper is more 

sensitive to catalyst thermal sintering and should not be operated at higher temperatures. 

Sulfur is also a poison to LTS reactors. Typical exit concentration is of 0,1% of CO.  

The reaction is operated adiabatically in industrial scale, where the temperature increases 

along the length of the reactor.  
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According to Arrhenius law of kinetics, increasing temperature increases the reaction rate. 
By the other side, the thermodynamic of equilibrium or Le Châtelier principle states that 
increasing the temperature of an exothermic reaction shifts the reaction to reactants side 
decreasing its equilibrium conversion. Therefore the water gas shift reaction is a balance 
between these effects and the reactor optimal operational point takes into account the 
tradeoff between kinetics and equilibrium driving forces.  

In (Chen et al., 2008) experimental data indicates that increasing temperature in HTS will 
promote the performance of WGSR. For the LTS, the reaction is not excited if the reaction is 
bellow 200ºC. Once the temperature reaches 200 ºC the reaction occurs, but the CO 
conversion decreases with increasing temperature. This fact reveals that that the water gas 
shift reactions with the HTS and the LTS are governed by chemical kinetics and 
thermodynamic equilibrium, respectively in industrial conditions. 

(Smith et al., 2010) classifies the reaction kinetic models in microkinetic approach and the 
empirical method.  

 Basically, the micro kinetic approach explores the detailed chemistry of the reaction. On the 
other hand, the empirical models are based on the experimental results and are typically 
expressed in the Arrhenius model and provide an easy and computationally lighter way to 
predict the rate of reaction. The main disadvantage is the fact that the adjusted model 
cannot be extrapolated to different composition and types of catalysts. 

Many empirical expressions have been reported in literature for HTS. (Newsome, 1980) and 
(Smith et al., 2010).  

An empirical rate expression succesfully used to describe the WGSR in ferrochrome 

catalysts is a power law type: (Newsome, 1980) 

 2 2
0 2 2 2

2

1
1

Ea
ql m n CO HRT

CO H O CO H
eq CO H O

P P
r k e P P P P

K P P

−  ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
 ⋅ 

  (3) 

Where: 

r – reaction rate.  
Ea – activation energy.  
Ko – pre exponential factor.  
Keq – reaction equilibrium constant.  
l, m, n, q – estimated parameters by experimental data. 
Py – partial pressure of component y. 
R – universal gases constant.  
T – absolute temperature.  

The reaction equilibrium constant derived from thermodynamics as function of temperature 
is given by (Smith et al., 2010):  

 ( ) ( ) 4 7 2
2

5693,5 49170
ln 1,077 ln 5,44 10 1,125 10 13,148eqK T T T

T T

− −= + ⋅ + ⋅ ⋅ − ⋅ ⋅ − −  (4) 

T – temperature in Kelvin.  
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 Several authors have published estimated parameters for specific catalysts types or 
catalysts classes. (Newsome, 1980) and (Smith et al., 2010) 

Table 2.1.1 summarizes some previous publicated values and authors for HTS catalysts:  

 

Author Catalyst 
information 

Ko Ea 
(kJ/mol)

l m n q 

Bohlbro et al. 
(Newsome, 1980) 

Fe2O3/ Cr2O3 

Commercial 
reduced particle 

size 

- 105,9  0,93  0,24 -0,31  0,00  

Bohlbro et al. 
(Newsome, 1980) 

Fe2O3/ Cr2O3 

Commercial 
Large particle 

size 

- 59,8  0,87  0,26 -0,18 0,00 

S.S. Hla et al. 
(Hla et al., 2009) 

Fe2O3/ Cr2O3/CuO
type 1

102,845 111 1 0 -0,36 -0,09 

S.S. Hla et al. 
(Hla et al., 2009) 

Fe2O3/ Cr2O3/CuO
type 2 

100,659 88 0,9 0,31 -0,156 -0,05 

Adams and Barton. 
(Adams & Barton, 2009) 

Fe2O3/ Cr2O3/CuO
Commercial type 1
Same as Hla et al. 

725 110 1 0 -0,32 -0,083 

Table 2.1.1. Estimated parameters for power law HTS catalysts.  

In industrial reactors, catalysts are loaded in pellets. Therefore, intrinsic rate expressions 

cannot be used in pseudo-homogeneous models without some type of compensation to 

account for diffusion effects.  

According to (Newsome, 1980) two different methods can be applied to model industrial 

reactors as pseudo-homogeneous reactions. The first was proposed by Bohlbro and 

Jorgensen consists of estimating the empirical rate expression in laboratory using 

commercial size catalysts. The diffusion effects remain implicit in the rate expression. First 

and second rows of Table 2.1.1 illustrate this method. The catalyst in the first row was 

grounded to avoid diffusion effects. In the second row the same catalyst was used in 

commercial pellet size. It can be noted slight differences between l, m, n e q parameters. The 

disadvantage of this method is that the rate expression can model successfully only a reactor 

with this specific type and size of catalyst.  

(Hla et al., 2009) estimates the intrinsic rate parameters for two commercial catalysts as can 

be seen in rows three and four.  

(Adams & Barton, 2009) also model a WGSR reactor using a heterogeneous modeling 

approach. The intrinsic rate expression is from Hla et al. previous article. The parameters are 

result for the best fit estimation.  

The second approach of pseudo-homogeneous rate modeling consists of using correction 

factors to compensate for the pore diffusion phenomena in the catalyst, catalyst age, 
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operating pressure and hydrogen sulfide concentration with intrinsic rate expressions. 

(Singh and Saraf, 1977) is a good example of this method.  

2.2 Mathematical modeling  

In this section, mathematical expressions for the fixed bed adiabatic catalytic WGSR 
fundamental principles (conservation equations) are developed. 

A basic ideal flow steady state one-dimensional model is presented.  

The differential molar balance simplified to a fixed bed reactor can be expressed as equation 
5: (Froment and Bischoff, 1990) 

 a a

a0

dX r

dW F
=   (5) 

Xa – component “a” conversion.  
W – catalyst weight.  
ra – rate of reaction of component “a”.  
Fa0 – molar feed rate of reactant “a”.  
Fa – molar flow of component “a” leaving the reactor. 

The ideal model assumes that concentration and temperature gradients only occur in the 
axial direction. The only transport mechanism operating in this direction is the overall flow 
itself, and is considered to be of the plug flow type.  

In case of a reactor bed with a fixed cross sectional area (S), the differential molar balance 

can be rewritten as a function of the reactor differential length as can be seen in equation 6:  

 a a B

a0

dX r S

dz F

⋅ ρ ⋅
=   (6) 

ρB – catalyst bulk density.  
S – reactor bed constant section area.  
z – length of reactor (z axis – axial direction).  

 

Fig. 2.2.1. Reactor differential volume representation.  
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The differential equation of energy conservation may be written as equation 7:  

 
R a B R

t

dT U
Fi Cpi ( H ) r S 4 (T T )

dz d
⋅ ⋅ = −Δ ⋅ ⋅ρ ⋅ − ⋅ −  (7) 

ΔHR – enthalpy of reaction.  
Cpi – specific heat of component “i”.  
Fi – component “i” molar flow.  
T, TR – reactor temperature and temperature at radius R of internal tube. 
dt – internal tube diameter.  
U – overall heat transfer coefficient.  

For an adiabatic reactor U equals zero and equation 3 can be simplified to:  

 
R a B

dT
Fi Cpi ( H ) r S

dz
⋅ ⋅ = −Δ ⋅ ⋅ρ ⋅  (8) 

The momentum differential equation can be defined as in equation 9:  

 
2

g s

p

udP
f

dz d

ρ ⋅
− = − ⋅  (9) 

P – reactor pressure in position z.  
f – friction factor.  
ρg – gas density.  
us – superficial velocity.  
dp – particle diameter.  

The aim of the next topics is to develop this set of equations to model an industrial high 
temperature WGSR.  

2.3 Some design aspects 

When designing WGSR (Chen et al, 2008), it is known that a proper selection on certain 
parameters is of the most importance because the reaction result depends strongly on the 
combination of these parameters. Typically, the important parameters include the catalyst 
type, residence time of reactants in a catalyst bed, reaction temperature and feeding 
reactants ratio or CO/steam ratio. 

2.3.1 Types of catalysts 

According to the reaction temperature (Chen et al, 2008), the WGSR falls into two categories: 
high-temperature shift catalyst (HTC) and low-temperature shift catalyst (LTC). The catalyst 
commonly used in the former is an iron–chromium-based catalyst, whereas a copper–zinc-
based catalyst is frequently adopted in the latter. 

2.3.2 Residence time 

It is known that the catalyst amount in a reactor is highly related to the overall project cost. 
In other words, if a reaction can be developed with least catalyst, both the operation (or 
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catalyst) cost and the facility (or space) cost can be reduced effectively. The least catalyst 
amount can be evaluated by determining the residence time of reactants in a catalyst bed. 

For both categories of reaction, a residence time of 0.09 s is long enough to establish an 

appropriate WGSR (Chen et al, 2008), a design factor can be used to compensate 

deactivation during the catalyst life. 

2.3.3 Reaction temperature 

The reaction temperature on the design of the WGSR, varies according with the type of 

catalyst used (Chen et al, 2008), For HTC, increasing reaction temperature, the concentration 

of CO declines with respect to the temperature, thus the conversion of WGSR increases, but 

between 400ºC and 500 ºC the change in this propriety is small, so temperatures between 

350ºC and 400ºC the major reaction occur. 

In the case of LTC reaction, for temperatures below 150ºC, no reaction take place, increasing 

to 200ºC the conversion rise to above 90%. If temperature is increased further the conversion 

begins to fall. So, an optimal reaction, for the WGSR with the LTC is obtained in 

temperatures around 200ºC. 

The WGSR is an exothermic reaction in nature, from thermodynamics it is known that an 

increase in reaction temperature will impede the forward reaction for H2 production in the 

WGSR. Because the behavior, it is realized that the WGSR with the LTC catalyst is governed 

by chemical equilibrium.  

In contrast, for the HTC catalyst, the CO conversion is highly sensitive to the reaction 

temperature and an increase in temperature is conducive to the hydrogen generation. It 

follows that the reactions with the HTC are controlled by chemical kinetics (i.e. Arrhenius 

law). 

2.3.4 CO/steam ratio 

For both kind of catalysts when the CO/steam ratio is large than 1/4, the performance of the 

WGSR is sensitive the variation of the ratio. Alternatively, if the ratio is smaller than 1/4, 

varying the ratio merely has a slight influence on the performance(Chen et al, 2008). 

3. Experimental data 

Experimental data of an industrial shift reactor of REPAR/PETROBRAS were used for the 

modeling studies. The reactor performs CO oxidation to CO2 using industrial steam. The 

reaction occurs in a fixed bed filled with a Fe-Cr-based catalyst, which is shown in Figure 

3.1. 

The historical data set comprises 4 years of operation. More specifically, samples withdrawn 

from feed and exist streams were analyzed by chromatography, following the technical 

standard norm (NBR-14903, 2002). Temperature measurements are performed using K type 

thermocouples connected to Honneywell STT3000 transmitters positioned according to 

Figure 3.2. Finally, it is important to mention that feed flow rate measurements were 

performed using orifice plates connected to a Honeywell STD900 differential pressure 
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transmitter and the reactor pressure drop was measured using manometric pressure 

coupled to Honeywell STD900 transmitters. 

 
 

 
 

Fig. 3.1. Catalyst. 

 
 

 
 

Fig. 3.2. Temperature measurement positioning. 

Experimental data of CO conversion are presented in Figure 3.3. These data were 
normalized by dividing the experimental value by the reactor design conversion value. It is 
important to state that all experimental data were normalized to the design values in order 
to avoid numerical convergence issues along the modeling and parameter estimation tasks. 
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Fig. 3.3. Normalized experimental CO conversion. 

The modeling work will focus on CO conversion, however this variable is not directly 

measured, but actually obtained from chromatographic analysis using Eq. (10), which 

considers the measurement of CO, CO2 and CH4 in the feed and exit streams. 

  

 
( )4e e 2es

co
e 4s s 2s

CH CO COCO
X 100 100 * *

CO CH CO CO

+ +
= −

+ +
  (10) 

However, it is important to estimate the experimental uncertainty (i) of CO conversion the 

measurement, i.e., an estimate of the CO conversion variance. This calculation can be done 

by applying an error propagation approach to Eq. (10), more specifically, an estimate can be 

obtained by Eq. (11), which considers the variance of CO, CO2 and CH4 concentration 

measurements, while covariance was considered zero. The variance of each measurement 

was calculated according to the technical standard norm NBR-14903. This analysis yielded 

an average standard deviation of 1% of the CO measurement. 

 
4 _ e _ e 2 _ e

4 _ s _ s 2 _ s

2 2 2

2 2 2
CH CO CO

4 _ e _ e 2 _ e

2 2 2

2 2 2
CH CO CO

4 _ s _ s 2 _ s

X X X
* i * i * i ...

CH CO CO
i

X X X
... * i * i * i

CH CO CO

     ∂ ∂ ∂
+ +          ∂ ∂ ∂     

=
     ∂ ∂ ∂

+ +          ∂ ∂ ∂     

  (11) 

www.intechopen.com



 
Petrochemicals 

 

62

4. Model parameter estimation and validation 

Based on the kinetic expressions, the development of a fundamental model to describe the 

shift reactor behavior represents an important tool for in-depth studies and performance 

optimization.  

For modeling purposes, the experimental data set was firstly modeled considering a model 

with a reasonable amount of simplifying hypothesis and literature reported parameters. 

Afterwards, some of the hypotheses need to be disregarded, allowing an increase in model 

complexity, leading to further parameter estimation. Different hypotheses were disregarded 

until the model could successfully describe the experimental data set behavior. Only steady-

state analysis was performed. 

Parameter estimation was performed using a simplex-based method (Himmelblau et al., 

2002) focusing on minimizing the classical least square objective function based on the 

difference between experimental and predicted CO conversion values. The experimental 

industrial data set was divided into two groups, the first for parameter estimation and the 

second for model validation. 

Despite the relaxation of some simplifying hypotheses, in all models, both axial and radial 

diffusion were not considered. This choice occurred due to some features of the studied 

reactor, for example, it presents a high length to diameter ratio, in order to assure a 

turbulent flow for different operating conditions. Consequently, effects of a possible external 

diffusive resistance tend to be reduced. A second common simplifying hypothesis present in 

all models concerns the absence of pressure drop, therefore an isobaric reactor was 

considered. This hypothesis was assumed because experimental data revealed a pressure 

drop less than 3% along the catalyst bed, bellow literature recommendation threshold of 

10% to disregard possible pressure drop effects (Iordanidis, 2002). 

4.1 Model 1 – Pseudo-homogeneous isothermal reactor 

The first modeling attempt represents a very simplified reactor model as given by Eq. (12) 

 a a B

a0

dX r S

dz F

⋅ ρ ⋅
=   (12) 

The reaction rate is based on power law kinetics and is given by Eq. (13) 

 2 2
0 2 2 2

2

1
1

Ea
ql m n CO HRT

a PRESS CO H O CO H
eq CO H O

y y
r F k e y y y y

K y y

−  ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
 ⋅ 

 (13) 

For modeling purposes, reaction rate considered molar fractions instead of the components 

partial pressure, according to (Adams & Barton, 2009). According to the authors, a pressure 

correction factor, Fpress, given by Eq. (14) also needs to be considered as a pressure increase 

tends to increase the effect of molecular diffusion inside the catalyst pore.  

 

P
0.5

250
PRESSF P

 
− 

 =  (14) 
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where: P is the absolute pressure in bar. 

The equilibrium constant, Keq, is given by Eq. (15), obtained by considering temperature 
dependent heat capacities. 

 ( ) ( ) 4 7 2
eq 2

5693,5 49170
ln K 1,077 ln T 5,44 10 T 1,125 10 T 13,148

T T

− −= + ⋅ + ⋅ ⋅ − ⋅ ⋅ − −  (15) 

Finally, it is worth mentioning that the reaction rate constants were obtained from (Hla et al. 
,2009) as presented in Table 4.1.1 and also that the catalyst activity was considered constant. 

 

k0 Ea 
l 

CO 
m 

H2O 
n 

CO2

q 
H2 

700 111 1.0 0 – 0.36 – 0.09 

Table 4.1.1 – Reaction rate exponents. 

After solving the reactor model, normalized experimental CO conversion plotted against 

normalized CO conversion predicted values are shown in Figure 4.1.1. It can be observed 

that a systematic deviation occurs, probably because of the number of simplifying 

assumptions. The first hypothesis to be revisited is the reactor isothermal behavior, mainly 

because of the direct temperature effect on CO conversion and also because of the reaction 

exothermal behavior. 
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Fig. 4.1.1. Model 1 results. 
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4.2 Model 2 – Pseudo-homogeneous non-isothermal reactor 

This model represents and extension of Model 1. Due to the non-isothermal behavior, the 

reaction rate is not constant along the reactor length. The exothermal characteristic of the 

reaction also contributes to performing a heat balance on the reactor, yielding Eq. (16): 

 ( )j pj R a B

dT
F c H r S

dz
⋅ ⋅ = −Δ ⋅ ⋅ρ ⋅  (16) 

Consequently, the reactor model is now comprised by a system of ordinary differential 
equations. Figure 4.2.1 is obtained after plotting normalized experimental CO conversion 
against normalized CO conversion predicted values. It can be observed, after comparison 
with Figure 4.2.1, that non-isothermal feature actually resulted in worse model predictions. 
By analyzing Figure 7, it can be observed that for higher experimental conversion values, 
systematic higher predictions are obtained. This probably happens because the non-
isothermal behavior leads to higher temperature values, consequently not only leading to 
higher reaction rates overestimating CO conversion, but also affecting diffusion phenomena 
inside the catalyst particles. Therefore, an alternative modeling approach would be 
considering an effectiveness factor in order to correct the reaction rate. 
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Fig. 4.2.1. Model 2 results. 

4.3 Model 3 – Pseudo-homogeneous non-isothermal reactor with reaction rate 
correction 

In this model, the reaction rate (Eq. 13) is corrected by an effectiveness factor as presented 

by Eq. (17).  
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 a effective ar r− = η⋅  (17) 

It is important to realize that in Model 1 and Model 2 only simulation studies were carried 

out, no model parameter estimated. Now, parameter η, which remains in the interval (0,1], 

will be estimated in order to improve data fitting the model predictions. As mentioned 

before, only part of the experimental data set will be used for parameter estimation using 

the minimum least square method, while the other part will be used for validation purposes. 

After parameter estimation, an optimal value of η = 0.56 was obtained. Considering this 

value, the mathematical model was then used to predict CO conversion as presented in 

Figure 4.3.1. It can be seen a considerable improvement in the model prediction, which was 

achieved by estimating only one parameter. However, the experimental data set refers to a 

considerable production horizon; consequently, catalyst activity may have changed, leading 

to another opportunity for model improvement. 
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Fig. 4.3.1. Model 3 validation. 

4.4 Model 4 – Pseudo-homogeneous non-isothermal reactor with reaction rate 
correction and catalyst deactivation 

This model considers the reaction rate given by Eq. (18)  

 ( )a effective ar a t r− = η⋅ ⋅  (18) 

In this effective reaction rate, the catalyst activity, a(t), can be described by a hyperbolic rate 

expression (Eq. (19)) as previously reported (Keiski et al., 1992): 
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 ( )
( )

1
3

1
a t

1 t
=

+ α ⋅
 (19) 

It must be stressed that α is the only parameter to be estimated in Model 4 as η was kept 

equal to 0.56. Parameter α was estimated as 10–5. Figure 4.4.1 presents experimental 

normalized CO conversion plotted against predicted normalized values considering only 

the validation data set. It can be observed that the use of catalyst deactivation improved 

model performance, indicating an important role played by catalyst deactivation. However, 

the intrinsic reaction rate was not yet used for parameter estimation as exponents i, m, n, p 

values were considered the ones reported in the literature (see Table 4.1.1), consequently, 

this creates an alternative for model improvement. 
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Fig. 4.4.1. Model 4 validation. 

4.5 Model 5 – Revisiting model 4 intrinsic reaction rate 

It can be observed that the order of H2O in the reaction rate is equal to 0 as reported in Table 

4.1.1. This indicates that H2O is present in such a large excess that concentration changes 

does not considerably affect the reaction rate (Hla et al., 2009). However, in the industrial 

reactor, where the feed composition may change due to the nature of a petrochemical plant, 

H2O may be in excess, but not in enough amount to be considered constant throughout the 

reactor length. Therefore, exponent m needs to be re-estimated, while the others will be kept 

at the same values. However, changes in m may affect the effective rate, consequently, η 

value also needs to be revisited and estimated. To sum up, Model 5 basically keeps the same 

structure of Model 4 only different parameters need to be estimated. 
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After performing the estimation task, a m value of 0.2 was obtained, simultaneously to a η 

value equal to 0.575. Figure 4.5.1 presents experimental and predicted values of CO 

conversion, showing that model predictions improved considering the new m value. 

In order to compare the model predictions, the sum of the square difference of experimental 

and predicted values of CO conversion was performed and Model 2 led to the highest sum 

being the worst model. The sum of the squares of Model 2 was used as normalization factor 

and the normalized sum of all models are presented in Figure 4.5.2. It can be concluded that 

two hypotheses played a key role in the reactor modeling: firstly the isothermal behavior; 

secondly, the effectiveness factor. Further changes were import to improve, but not 

considerably, the data fit. It must also be noted that a few number of parameters were 

estimated, indicating an important likelihood feature of the reactor model. Finally, it is 

worth stressing that the correlation coefficient between experimental data and model 

predictions of Model 5 was equal to 0.8. 
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Fig. 4.5.1. Model 5 validation. 
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Fig. 4.5.2. Model comparison. 

5. A novel approach to optimal process control strategy 

Due to the shift reaction features, for a given reactor feed stream composition and flow rate, 

the temperature of the feed stream can be manipulated in order to maximize CO conversion. 

Consequently, if the industrial reactor has in-line/on-line composition analyzers as well as 

flow rate measurement instrumentation, on-line optimization can be successfully 

implemented. The problem is that this kind of in-line/on-line instrumentation is not only 

expensive but also may need continuous and excessive calibration and maintenance. 

Therefore, some question arises: can other real-time measurements be used for CO 

conversion? How does temperature influence CO conversion correlated? This is an 

important issue as temperature measurements are usually reliable, accurate, real-time and 

low cost. Moreover, fixed bed reactors can have temperature instruments installed along the 

reactor length, providing a temperature profile. Towards this, a novel and alternative 

approach will be presented in order to overcome this issue, focusing on CO conversion 

control. 

Figure 5.1 presents historical normalized CO conversion data plotted against normalized 

feed flow-rate values, obtained from PETROBRAS shift reactor unit. As mentioned before, 

the normalized variables equal to 1 represent the reactor design values. These data refer to 

the same reactor temperature; however, due to the nature of petrochemical process, raw 

material composition can fluctuate, explaining the different CO conversion values obtained 

for the same experimental conditions. As expected, the higher the feed flow rate, the lower 

the reactor conversion. 

www.intechopen.com



 
Modeling and Simulation of Water Gas Shift Reactor: An Industrial Case 

 

69 

In Figure 5.1, one observes, for example, conversions of 1.02 or 1.04, indicating that in these 

scenarios the experimental values were over the design values. The same observation can be 

made for the feed flow rate, indicating some operating conditions either bellow or above the 

design values. Consequently, it is important to emphasize that the reactor feed composition 

represents an important disturb variable affecting reactor performance, enhancing the 

importance of well tuned and designed regulatory control loops. 
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Fig. 5.1. Historical data: CO Conversion versus feed flow rate. 

The studied shift reactor has thermocouples installed at the reactor feed and exit streams. It 

also has four thermocouples equally distributed along the reactor bed. After performing 

extensive sensitivity analysis, the temperature difference between the thermocouple placed 

on the reactor exit stream and last thermocouple of the bed provided the highest sensitivity, 

here denominated Delta_T. After analyzing the historical data set, Figure 5.2 presents 

experimental data of CO conversion plotted against normalized Delta_T. It can be observed 

a good correlation between both variables, which corroborate the idea of monitoring CO 

conversion by using lower cost measurements. Finally, Figure 5.3 presents the relationship 

between normalized Delta_T and normalized feed flow rate values, as expected indicating 

strong correlation and also good sensitivity. 
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Fig. 5.2. Historical data: CO Conversion versus Delta_T. 

The developed mathematical model was used for sensitivity analysis in order to study the 

CO conversion behavior for different operating conditions. More specifically, this analysis is 

aimed at providing not only the control feasibility itself, but also the feasibility of leading to 

operating conditions which may allow optimum conversion values. Figure 5.4 shows the 

CO conversion behavior for different feed flow rate values, considering in all simulations 

the feed composition design value. More specifically, the design value of the feed flow rate 

(FLOW1), the design value increased by 35% (FLOW2) and the design value increased by 

55% (FLOW3) were used. Firstly, one can observe that due to the shape of the curve, the 

feed flow rate temperature can be manipulated in order to reach a maximum CO 

conversion. Secondly, the simulation results show that keeping the reactor feed temperature 

constant, for example at 1.03, an increase in the flow rate may lead CO conversion reduction, 

similar to the behavior of the historical data exhibited by Figure 5.1. It is also important to 

observe the effect of the temperature of the reactor feed stream on the CO conversion. After 

careful analysis, it can be also noted that to keep track of CO conversion, for example, at 

0.955, the feed flow rate needs to be increased for a feed stream temperature increase. 

Consequently, feed flow rate and feed temperature can be regarded as important 

manipulated variables for CO conversion either in servo or regulatory control. 
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Fig. 5.3. Historical data: Delta_T versus feed flow rate. 
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Fig. 5.4. Sensitivity Analysis. 
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However, it is important not only to provide control feasibility, but also to assure that the 

control can lead to optimal conversion values. Figure 5.5 presents a sensitivity analysis 

study focusing on the effect of feed composition. The reactor feed flow rate was kept 

constant in all simulations, while two different feed compositions were chosen, more 

specifically, the design feed composition (COMP1) and a feed composition involving an 

increase in CO amount (COMP2). For each feed composition, the temperature of the feed 

stream was changed in order to evaluate the correspondent resulting Delta_T values and the 

maximum conversion was determined and plotted. For COMP1, the maximum conversion 

is reached at a Delta_T value equal to roughly 3.7. Consequently, for this feed composition 

and feed flow rate, the feed temperature set-point needs to be roughly 1.01. The same 

analysis can be performed for composition 2. 
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Fig. 5.5. Sensitivity Analysis: Composition. 

On the other hand, Figure 5.6 presents a sensitivity analysis study focusing on the effect of 
feed flow rate. The reactor feed composition was set equal to COMP2 and different values of 
the flow rate, FLOW1, FLOW2, FLOW3 were chosen. For each feed flow rate value, the 
temperature of the feed stream was changed in order to evaluate the correspondent 
resulting Delta_T values. For each feed flow rate, the maximum conversion was also 
determined and plotted. Considering the feed composition COMP2, for the feed flow rate 
close to the design value, Delta_T should be equal to 3.3 to lead to the maximum CO 
conversion, consequently, the feed temperature set-point should be roughly 1.02. Keeping 
the composition unchanged and increasing the flow rate by 35%, Delta_T should be equal to 
3.6 and, therefore, the feed temperature should be increased to approximately 1.05. 
Increasing the design value of the feed flow rate by 55%, Delta_T should be changed to 4.4, 
so the feed temperature should be increased to approximately 1.06. 
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Fig. 5.6. Sensitivity Analysis: Feed Flow. 

Based on the historical data and on the sensitivity analysis results, an alternative CO 

conversion control loop having the following features arises: 

• controlling Delta_T represents the same as controlling CO conversion; 

• controlling Delta_T can lead to optimal conversion values; 

• cascade structure can be used with Delta_T control mastering the loop by providing 

appropriate set-points to the reactor feed temperature control loop; 

• feedforward features may also be considered as if feed flow rate changes the Delta_T 

value leading to the optimal conversion needs to be updates as observed in Figure 7; 

• feedforward features may also be considered if feed analyzers can be installed, as any 

change in feed composition would lead to a different Delta_T set-point. 
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