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1. Introduction

Photonic crystals are modern artificially designed periodical systems capable to affect
the motion of photons in a similar way that the periodicity of the atomic potential
in a semiconductor crystal affects the motion of electrons. The physical properties of
light in a photonic crystal resemble those of electrons in atomic crystals, leading to
forbidden propagation of electromagnetic modes at certain frequencies, as demonstrated by
Yablonovitch (1987), Ho et al. (1990), Joannopoulos et al. (1995; 1997), etc. The existence of the
optical band gap (which is the part of the spectrum for which the wave propagation is not
possible) makes photonic crystals broadly interesting from many viewpoints of fundamental
research and applications. Recent studies are motivated by promising applications such as
purely optical integrated circuits [e.g., by Lin et al. (1998), Noda (2006), or Hugonin et al.
(2007)], artificial metamaterials with high tunability [Datta et al. (1993); Genereux et al. (2001);
Krokhin et al. (2002); Reyes et al. (2005)], high-sensitivity photonic biosensors [Block et al.
(2008); Skivesen et al. (2007)], or devices based on phenomena not accessible in conventional
media [Benisty (2009); Kosaka et al. (1998); Krokhin & Reyes (2004)]. It is also necessary for
accounting for structural colors of wings of butterflies or beetles, feathers of birds, or iridescent
plants [Kinoshita & Yoshioka (2005); Vukusic & Sambles (2003)].

Since the optical properties of photonic crystals strongly depend on their geometrical
structure, used materials, etc., their proper design is crucial for the correct device functionality.
Thorough theoretical analysis therefore takes place in the development, using various
numerical methods for calculation including methods of finite difference in the time or
frequency domain or finite element methods [Joannopoulos et al. (1995)]. One of the most
common calculation techniques applied to photonic crystals is the plane wave expansion
method, which is a frequency-domain approach based on the expansion of the fields and
material parameters into the Fourier (or reciprocal) space. The components of this expansion
represent the definite-frequency states. After some necessary truncation of the complete
basis (plane waves with a finite cutoff), the partial differential equations are then solved as
a linear-algebraic problem. However, the convergence rate of this method strongly depends
on the implementation of Maxwell’s equations in the truncated plane-wave basis [Meade
et al. (1993); Sozuer et al. (1992)]. In the case of periodic discontinuities (typical for photonic
crystals) the convergence is rather poor so that the computer calculations might become
extremely time- and memory-consuming.
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Because the underlying physical phenomenon in the optical behavior of photonic crystals is
based on diffraction (therefore the lattice constant of a periodic structure has to be in the same
length-scale as half the wavelength of the electromagnetic wave), several conclusions can be
advantageously adopted from the classical coupled-wave theory, one of the most effective
methods for modeling diffraction of electromagnetic waves by periodic gratings, which was
developed during several past decades. This can provide a high enhancement to the plane
wave expansion method, resulting in the reduction of the computation resources.

In the mid 1990s Li (1996) showed that Laurent’s “direct” rule, which had always
been adopted in conventional formulations to factorize the truncated Fourier series that
corresponds to products of two periodic functions, presents bad convergence when the two
functions of the product are simultaneously discontinuous. He suggested three Fourier
factorization rules (briefly summarized in Section 2.3) and applied them to one-dimensional
(1D) diffraction gratings. This major breakthrough in the grating theory (called “fast Fourier
factorization”) was soon applied by many authors to various grating structures with arbitrary
periodic reliefs, anisotropic [Li (1998)] and slanted [Chernov et al. (2001)] periodic systems,
their various combinations [Li (2003); Watanabe (2002); Watanabe et al. (2002)], and other
systems [Bonod et al. (2005a;b); Boyer et al. (2004)].

Later Li (1997) applied the factorization rules to two-dimensional (2D) periodic structures
treated by “zigzag” Fourier expansion, which yielded an improvement for rectangular dots
or holes. However, Popov & Neviere (2000) have pointed out that the staircase approximation
(of the coupled wave theory using the slicing of relief profiles) in combination with the
traditional formulation of differential equation within one slice violates Li’s factorization
rules. This was a major complication for the analysis of the periodic systems made of rounded
elements. Therefore, they applied a coordinate transform to treat individually the normal and
tangential components of the electric field on 1D sinusoidal-relief gratings, which enabled the
application of the correct rule for each field component and thus improved the convergence.

Later David et al. (2006) utilized the normal–tangential field separation to 2D photonic crystals
composed of circular or elliptical holes. Similarly, Schuster et al. (2007) applied this method to
2D gratings, and also suggested more general distributions of polarization bases [Gotz et al.
(2008)]. These approaches, always dealing with linear polarizations, enabled a significant
improvement of the convergence properties, but ignored the fact that the transformation
matrix between the Cartesian and the normal–tangential component bases of polarization
became discontinuous at the center and along the boundaries of the periodic cell, which
slowed down the resulting convergence. To overcome these discontinuities, a distribution
of more complex (i.e., generally elliptic) polarization bases was recently suggested to improve
optical simulations of 2D gratings and photonic crystals [Antos (2009); Antos & Veis (2010)].

Our chapter will describe in detail the application of the Fourier factorization rules to the plane
wave expansion method for numerical analysis of general photonic crystals. Section 2 will
introduce the principle of the plane wave expansion together with the notation of matrices
and factorization theorems. Section 3 will refer to 1D photonic structures made as periodic
stratified media. The consistency of the correct factorization rules with classical theory of Yeh
et al. (1977) and Yariv & Yeh (1977) will be shown, pointing to the correct boundary conditions
of the tangential components of the electric and magnetic field on multilayer interfaces.
Section 4 will repeat our previously described methodology for 2D photonic crystals made
of circular elements, and Section 5 will generalize it to elements of other shapes. Sections 6
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Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals 3

and 7 will propose how to factorize anisotropic and three-dimensional (3D) photonic crystals,
respectively.

2. Plane wave expansion

2.1 General remarks

The modes of photonic crystals are in principle the eigensolutions of the wave equation with
an inhomogeneous, periodic relative permittivity ε(r). One possible version of the wave
equation is the equation for the unknown electric field with an unknown frequency,

1

ε
∇× (∇×E) =

ω2

c2
E, (1)

where ω2/c2 is its eigenvalue (ω is the frequency and c the light velocity in vacuum) and

E(r) = e−ik·r ∑
m,n,l

emnle
−ik0(mpx+nqy+lsz) = ∑

m,n,l

emnle
−ik0(pm x+qny+sl z) (2)

is its eigenfunction, which has the form of a pseudoperiodic Floquet–Bloch function. Here
p = 2π/Λx, q = 2π/Λy, and s = 2π/Λz are the normalized reciprocal lattice vectors. For
simplicity we assume the periods Λj along the Cartesian axes throughout this chapter. For
brevity we have also defined k = k0[p0, q0, s0], pm = p0 + mp, qn = q0 + nq, and sl = s0 + ls.
(Analogously we could write the wave equation for an unknown magnetic field H or any
other field from Maxwell’s equations.)

Owing to the periodicity of the problem, the plane wave expansion method is the reference
method for the mode calculation. It is based on the Fourier expansion of the field such as in
Equation 2 and on the Fourier expansion of a material function, either the permittivity or the
impermittivity η(r) = 1/ε(r),

ε(r) = ∑
m,n,l

εmnle
−ik0(mpx+nqy+lsz) (3)

η(r) = ∑
m,n,l

ηmnle
−ik0(mpx+nqy+lsz) (4)

The rules for choosing the most appropriate material parameter and the most appropriate
field for the Fourier expansion are governed by various methods of Fourier factorization. In
the past, the E method (η and the electric displacement D were expanded), H method (η and
H were expanded), and Ho method (ε and E were expanded) were the typical choices.

2.2 Matrix notation

Now we carry out the transformation of the partial differential equations into matrix equations
in order to solve the eigenproblem by linear-algebraic methods. For simplicity we limit
ourselves to 1D and 2D photonic crystals, and always choose the direction of propagation
in the xy plane, so that ∂z = 0. With these restrictions we write

ε(x, y) =
+∞

∑
m,n=−∞

εmn e−i(mpx+nqy), (5)

f (x, y) =
+∞

∑
m,n=−∞

fmn e−i(pm x+qny). (6)
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where f is a component of the electric field. We will now derive the matrix expressions of the
fundamental relations

h(x, y) = ε(x, y) f (x, y), (7)

gx(x, y) = ∂x f (x, y), (8)

gy(x, y) = ∂y f (x, y), (9)

i.e., the relations of multiplication by a function and applying partial derivatives. Assuming

the expansions of the new functions h = ∑m,n hmn e−i(pm x+qny), gx = ∑m,n gx,mn e−i(pm x+qny),

and gy = ∑m,n gy,mn e−i(pm x+qny), we rewrite Equations 7–9 using the convolution rule, and
applying the partial derivatives as follows:

hmn =
+∞

∑
k,l=−∞

εm−k,n−l fkl , (10)

gx,mn = −ipm fmn, (11)

gy,mn = −iqn fmn. (12)

Assuming furthermore a finite number of the retained Fourier coefficients, i.e., using the

summation ∑
+M
m=−M ∑

+N
n=−N , we can renumber all the indices to replace the couple of two

sets m ∈ {−M, −M + 1, . . . , M} and n ∈ {−N, −N + 1, . . . , N} by a single set of indices
α ∈ {1, 2, . . . , αmax}, with αmax = (2M + 1)(2N + 1), related

α(m, n) = m + M + 1 + (n + N)(2M + 1), (13)

n(α) = (α − 1)div(2M + 1)− N, (14)

m(α) = (α − 1)mod(2M + 1)− M, (15)

where “div” denotes the operation of integer division and “mod” the remainder (the modulo
operation). Then we can rewrite Equations 10–12 into the matrix relations

[h] = [[ε]][ f ], (16)

[gx] = −ip [ f ], (17)
[

gy
]

= −iq [ f ], (18)

where [ f ], [h], [gx], and [gy] are column vectors whose αth elements are the Fourier [m, n]
elements of the functions f , h, gx, and gy, indexed by α(m, n) defined in Equation 13, and
where [[ε]], p, and q are matrices whose elements are defined

[[ε]]αβ = εm(α)−m(β),n(α)−n(β), (19)

pαβ = pm(α)δαβ, (20)

qαβ = qn(α)δαβ, (21)

where the indices on the right hand parts are defined by Equations 14 and 15 and where δαβ

denotes the Kronecker delta. As a summary we can say that the multiplication by a function
is in the reciprocal space represented by the matrix [[ε]] (in the sense of the limit αmax → ∞)
and that the partial derivatives are represented by the diagonal matrices −ip and −iq.
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Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals 5

For 1D periodicity we choose the inhomogeneity along the y axis. In this case the α index is
not necessary because the n index is sufficient,

ε(y) =
+∞

∑
n=−∞

εn e−inqy, (22)

f (y) =
+∞

∑
n=−∞

fn e−iqny, (23)

[[ε]]nk = εn−k, (24)

qnk = qnδnk. (25)

Here [[ε]] is a Toeplitz matrix (a matrix with constant diagonals).

2.3 Simplified theorems of Fourier factorization

Although the theorems were derived by Li (1996) for 1D periodic functions, we here
summarize them in the matrix formalism independent of the number of dimensions. Let f , h,
and ε be piecewise-continuous functions with the same periodicity related

h = ε f , (26)

and let [ f ], [h], and [[ε]] denote their matrices as defined in Section 2.2.

Theorem 1. If ε and f have no concurrent discontinuities, then the Laurent rule applied to
Equation 26 converges uniformly on the whole period and hence

[h] = [[ε]][ f ] (27)

can be applied with fast convergence.

Theorem 2. If ε and f have one or more concurrent discontinuities but h is continuous, then
Equation 26 can be transformed into the case of Theorem 1,

f =
1

ε
h, (28)

and hence

[ f ] =

[[

1

ε

]]

[h]. (29)

Accordingly, we can state

[h] =

[[

1

ε

]]−1

[ f ] (30)

referred to as the inverse rule. We say that the functions ε and f have complementary
discontinuities.

Theorem 3. If none of the requirements of the first two theorems are satisfied, then none of the
rules can be applied correctly because Equations 27 and 30 are no longer valid at the points
of discontinuities, which considerably slows down the convergence. Therefore, we should
carefully analyze the continuity of the functions and transform all the partial differential
formulae to the first two cases.
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3. One-dimensional photonic crystals

3.1 Geometry of the problem

Fig. 1 shows the geometrical configuration of a 1D photonic crystal made as periodic
alternation of two different layers with relative permittivities ε I and ε II , thicknesses d1 and
d2, with periodicity Λ along the y axis. The relative thickness of the first layer (with respect
to the period) is denoted w; the relative thickness of the second layer is then 1 − w. The
coordinate system is chosen to get the uniform problem along the z axis. This means that the
plane of incidence (plane defined by the vector of periodicity and the wave vector of incidence
k = k0[p0, q0, 0], here only hypothetical since the photonic crystal is infinite) coincides with
the xy plane.

plane of incidence 

I II 

d1 = w d2 = (1–w)  

y 

x 

z 

)(

1
00 yqxpik Iea
+

)(

1
00 yqxpik Ieb

)(

2
00 yqxpik IIea
+

)(

2
00 yqxpik IIeb

I 

(1) (2) (3) 

0 

d1 d2 

II 

(4) 

Fig. 1. Geometry of a 1D photonic crystal made as periodic alternation of two layers

Then we distinguish between two polarizations of electromagnetic fields which can be treated
independently. The transverse electric (TE) polarization has E perpendicular to the plane of
incidence (Ez, Hx, and Hy are nonzero). The transverse magnetic (TM) polarization has H

perpendicualar to the plane of incidence (Hz, Ex, and Ey are nonzero).

3.2 Application of Fourier factorization

Propagation in a 1D periodic medium, whose inhomogeneity along the y-axis is described
by the relative permittivity function ε(y), is governed by Maxwell’s equations (choosing the
coordinate system uniform along the z-axis, i.e., ∂z = 0)

∂yEz = −iωμ0Hx, ∂xEz = iωμ0Hy, ∂x Hy − ∂y Hx = iωε0ε(L)Ez, (31)

∂y Hz = iωε0ε(L)Ex, ∂x Hz = −iωε0ε(I)Ey, ∂xEy − ∂yEx = −iωμ0Hz, (32)

324 Photonic Crystals – Introduction, Applications and Theory
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Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals 7

where the first and the second row corresponds to the TE and the TM polarization,
respectively. The formal labels of the relative permittivity, (L) and (I), means that the
multiplication with the corresponding component of the electric field will be (according to
the factorization rules) treated by either the Laurent rule (L) or the inverse rule (I). This is
due to the fact that Ez and Ex are continuous functions (because they are tangential to the
discontinuities of ε), whereas Ey is the component normal to the discontinuities and hence
discontinuous (while the product εEz is continuous). By separating one field in each case, we
obtain the wave equations

−
(

∂2
x + ∂2

y

)

Ez = ω2

c2 ε(L)Ez, (TE) (33)

−
(

1
ε(I)

∂2
x + ∂y

1
ε(L)

∂y

)

Hz = ω2

c2 Hz (TM) (34)

or, after expanding the permittivity or impermittivity and the fields into the Fourier series, the
matrix formulae

[[ε]]−1
(

p2
0 + q2

)

[Ez] =
ω2

c2 [Ez], (TE) (35)
([[

1
ε

]]

p2
0 + q[[ε]]−1q

)

[Hz] =
ω2

c2 [Hz]. (TM) (36)

3.3 Consistency with Yeh’s theory for the small-period limit

For the small-period limit the validity of these rules can be analytically verified by treating
the periodic structure as alternation of two homogeneous layers, where we use the boundary
conditions for the continuity of the tangential electric and magnetic fields on all interfaces.
Now the function ε is assumed constant (ε I or ε II) within each layer of the thickness d1 or d2.
According to the geometry in Fig. 1, the field in the jth layer has the dependence

E
(j)
z (x, y) = e−ik0 p0x[aje

−ik0qj(y−yj) + bje
ik0qj(y−yj)], (37)

where qj = (ε j − p2
0)

1/2, with ε j = ε I for odd j and ε j = ε II for even j. It is coupled with the
field in the next layer by the matrix equation

[

aj+1

bj+1

]

= Cj

[

Pj 0

0 1
Pj

]

[

aj

bj

]

, Cj =

[

αj β j

β j αj

]

, (38)

where αj = 1
2 (1 + qj/qj+1), β j = 1

2 (1 − qj/qj+1) for the TE polarization, or αj = 1
2 (1 +

ε jqj+1/ε j+1qj), β j =
1
2 (1 − ε jqj+1/ε j+1qj) for the TM polarization, and Pj = e−ik0qjdj for both

polarizations. Obviously, qj = (ε j − p2
0)

1/2, assuming the e−ik0 p0x factor of all fields.

Applying the small-period approximation (Pj)
±1 ≈ 1 ∓ ik0qjdj to the problem of propagation

through the whole period,
[

a3

b3

]

= Ω

[

a1

b1

]

, Ω = C2

[

P2 0

0 1
P2

]

C1

[

P1 0

0 1
P1

]

, (39)

yields the eigenvalues of the Ω operator

Ω± = 1 ± ik0Λ

√

ε0 − p2
0, (TE) (40)

Ω± = 1 ± ik0Λ

√

(1 − p2
0η0)ε0. (TM) (41)
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with

ε0 = wε I + (1 − w)ε II , (42)

η0 = wηI + (1 − w)ηII , (43)

Assuming a Floquet mode with the eigenvalues of Ω being Ω± = e±ik0q0Λ ≈ 1 ± ik0q0Λ, we
see that in the small-period limit the periodic structure behaves as a homogeneous anisotropic
medium with the y-component of the normalized wave vector q0 = (ε0 − p2

0)
1/2 for the TE

polarization and q0 = [(1 − p2
0η0)ε0]

1/2 for the TM polarization. These formulae are identical
with Equations 35 and 36 if we retain only the 0th element of all matrices. This is a very
interesting disclosure that the results obtained by Yeh and coauthors already in 1970s are
consistent with the extensive, more general research carried out in 1990.

3.4 Numerical example

Example of the comparison of applying the correct Fourier factorization rules with applying
the opposite ones is shown in Fig. 2 for both polarizations. The normalized eigenfrequency
ωΛ/2πc of the first band is displayed according to N; the structure is made as two alternating
layers of the equal thicknesses 500 nm (Λ = 1000 nm) and permittivities ε I = 3 and ε II = 1.
The wave vector is chosen k = (0.5π/Λ)[1, 1, 0].
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Fig. 2. Convergence properties of the correct factorization compared with the opposite one

4. Two-dimensional photonic crystals with circular elements

4.1 Geometry of the problem

Fig. 3 displays the geometrical arrangement of a 2D photonic crystal made as bi-periodic
alternation of rods or holes with a cylindrical cross-section. Instead of a single vector of
periodicity we now have the plane of periodicity (determined by two vectors of periodicities
defining a unit cell), which here coincides with the xy plane. For simplicity we choose the
incidence direction in the plane of periodicity, so that we can again distinguish between two
independent polarizations. The plane of incidence is now determined along the propagation
wave vector k = k0[p0, q0, 0] and perpendicular to the plane of periodicity. The TE
polarization has now H along the z axis, which is now the more difficult case (with nonzero
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Fig. 3. Geometry of a 2D photonic crystal made as bi-periodic alternation of rods or holes

Hz, Ex, Ey), while the TM polarization has E along the z axis (nonzero Ez, Hx, Hy), which is
now the simple case.

x 

y 

(a) Square periodicity

3 

(b) Hexagonal periodicity

Fig. 4. Two examples of 2D periodic arrangements; below are the first Brillouin zones in the
reciprocal space

As an example, in Fig. 3 we have chosen the xz plane as the plane of incidence, but we
could choose any plane parallel with the z axis provided that we want to treat the TE and
TM polarizations independently. In general, the plane of incidence is determined by the k

vector in the reciprocal space as displayed in Fig. 4, whose particular symmetry points are
denoted Γ, X, M, or K according to the corresponding periodicity.

In this section we study a 2D photonic crystal composed of infinite cylinders with a circular
cross-section with either square [Fig. 4(a)] or hexagonal [Fig. 4(b)] periodicity. For the square
symmetry the unit cell has the dimensions Λx = Λy = Λ, and for the hexagonal symmetry

327Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals
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it can be chosen as an Λ-by-Λ
√

3 rectangle. The corresponding first Brillouin zones of the
reciprocal space are depicted in the bottom part of Fig. 4.

Maxwel’s equation are again

∂yEz = −iωμ0Hz, ∂xEz = iωμ0Hy, ∂x Hy − ∂y Hx = iωε0εEz, (44)

∂y Hz = iωε0εEx, ∂x Hz = −iωε0εEy, ∂xEy − ∂yEx = −iωμ0Hz. (45)

However, now we cannot put there the labels (L) or (I) for the factorization type as easily
as above, because the discontinuities of the permittivity function are now mixed among the
components of E.

Assuming a hypothetical anisotropy of the relative permittivity function, we define a scaled
electrical displacement D̃,

[

D̃x

D̃y

]

= ε

[

Ex

Ey

]

=

[

εxx εxy

εyx εyy

] [

Ex

Ey

]

, (TE) (46)

D̃z = εzzEz = ε(L)Ez, (TM) (47)

where εzz is obviously the only component of the permittivity tensor for which we can use the
Laurent rule.

Defining also a 2-by-2 matrix of electrical impermittivity η = ε−1 helps in the formulation of
the wave equations

(−∂yηxx∂y + ∂xηyx∂y + ∂yηxy∂x − ∂xηyy∂x)Hz = ω2

c2 Hz, (TE) (48)

−
(

∂2
x + ∂2

y

)

Ez = ω2

c2 ε(L)Ez, (TM) (49)

where ηjk are the components of the electrical impermittivity. For the simplicity of the TM
polarization case we below focus our attention only to the TE polarization.

4.2 Methods of Fourier factorization

In this section we compare several models corresponding to different factorization
approaches.

4.2.1 Elementary (Cartesian) method (Model A)

First, Model A assumes the solution in the basis of the x̂ and ŷ polarizations uniform within
the periodic cell, where in accordance with Ho et al. (1990) we choose the Laurent rules

[D̃x] = [εEx] = [[ε]][Ex], (50)

[D̃y] = [εEy] = [[ε]][Ey]. (51)

The components of the electric impermittivity in Equation 48 then becomes [[ε]]−1 for the cases
of ηxx, ηyy, and zero for the cases of ηxy, ηyx, or

[[η]]A =

[

[[ε]]−1 [[0]]
[[0]] [[ε]]−1

]

. (52)

For illustration we show the distribution of the first basis polarization vector (identical with
the constant vector x̂) in Fig. 5(a), where the black circle denotes the element boundary (the
permittivity discontinuity).
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4.2.2 Normal vector method (Model B)

(a) Model A

r 

(b) Model B

r 

(c) Model C

/2 

r 

R 

R 

/2 

(d) Model C’

Fig. 5. Distribution of the basis polarization vector u for the factorization models

According to the factorization theorems, neither the Laurent rule nor the inverse rule is correct
for both products in Equations 50 and 51, because both pairs of functions have concurrent
discontinuities and both products D̃x and D̃y are discontinuous as well. On the other hand,
by an appropriate change of the polarization bases at all points (using a space-dependent
Jones matrix transform F),

[

Ex

Ey

]

= F

[

Eu

Ev

]

, (53)

we can treat independently the normal (u) and tangential (v) components of the fields by the
correct rules,

[D̃u] = [[1/ε]]−1[Eu], (54)

[D̃v] = [[ε]][Ev]. (55)
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The field components Eu, D̃u are normal to the discontinuities of the relative permittivity
function, while Ev, D̃v are tangential. The factorization rules used in Equations 54 and 55 are
justified simply because Ev and D̃u are continuous.

A suitable distribution of the matrix F within the periodic cell can obviously be the rotation

F =

[

cos φ − sin φ
sin φ cos φ

]

, (56)

where the polar angle φ(x, y) is in the first cell distributed according to the polar coordinates
reiφ = x + iy, and then periodically repeated over the entire 2D space. This enables defining
the matrices [[c]], [[s]] from the corresponding 2D-periodic functions c = cos φ, s = sin φ.

Let u and v be the two columns of the matrix F, both being mutually orthogonal basis vectors
of linear polarization. From the above definitions we see that u is a polarization vector normal
to the structure discontinuities, whereas v is tangential. In Fig. 5(b) we show the distribution
of u within the periodic cell. The basis polarization vectors are constant along the lines of the
constant azimuth (φ = const) and rotate as φ increases. It is obvious that the matrix function
F(x, y) has no discontinuities concurrent with the electric field, so that we can use both Laurent
and inverse rules for the transformation of polarization, e.g.,

[

[Ex]
[Ey]

]

= [[F]]

[

[Eu]
[Ev]

]

, (57)

[[F]] =

[

[[c]] [[−s]]
[[s]] [[c]]

]

. (58)

Combining Equations 54, 55, and 57 yields
[

[Ex]
[Ey]

]

= [[F]]

[

[[ 1
ε ]] [[0]]

[[0]] [[ε]]−1

]

[[F−1]]

[

[D̃x]
[D̃y]

]

, (59)

from where we derive the electric impermittivity in the reciprocal space (corresponding to
Model B)

[[η]]B = [[F]]

[

[[ 1
ε ]] [[0]]

[[0]] [[ε]]−1

]

[[F−1]]

=

[

[[ 1
ε ]][[c

2]] + [[ε]]−1[[s2]], [[ 1
ε ]][[cs]]− [[ε]]−1[[cs]]

[[ 1
ε ]][[cs]]− [[ε]]−1[[cs]], [[ 1

ε ]][[s
2]] + [[ε]]−1[[c2]]

]

, (60)

whose components are immediately applicable to Equation 48.

4.2.3 Method with elliptical polarization bases (Model C)

The above approach (Model B) only deals with linear polarizations and thus suffers from
the fact that the matrix function F(x, y) has a singularity at the central point of the periodic
cell and other discontinuities along the cell boundaries. This slows down the convergence of
the numerical implementation, as will be evidenced below. On the other hand, we can make F
continuous by using complex functions ξ and ζ or, in other words, by defining u, v as complex
vectors corresponding to generally elliptic polarizations,

u =

[

ξ
ζ

]

, v =

[

−ζ∗

ξ∗

]

(61)
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(still orthogonal). By means of rotation θ and ellipticity ǫ we define the first basis vector

u = eiθ

[

cos θ − sin θ
sin θ cos θ

] [

cos ǫ
i sin ǫ

]

, (62)

where

θ(r, φ) = φ, (63)

ǫ(r, φ) =

{

π
8

(

1 + cos πr
R

)

(r ≤ R)
π
8

{

1 + cos
π[r+D(φ)−2R]

D(φ)−R

}

(r > R).
(64)

Here R denotes the radius of the circular element and

D(φ) =
Λ/2

max(| cos φ|, | sin φ|) (65)

is the distance from the cell’s center to its edge. In Equation 62 the Jones vector on the right
represents a polarization ellipse (with ellipticity ǫ) oriented along the x coordinate, the matrix
in the middle rotates this polarization by the azimuth θ, and the factor eiθ preserves the
continuity of the phase at the center and along the boundaries of the cell. This continuity
can be easily checked by evaluating the limits

lim
r→0

u = lim
r→D(φ)

u =
1√
2

[

1
i

]

, (66)

which is the vector of left circular polarization (independent of φ).

The distribution of the basis polarization vector u within the periodic cell is shown in Fig. 5(c).
Here the azimuth of the polarization ellipse is constant along the lines coming from the cell’s
center, which is similar to Model B. However, the ellipticity is now zero (corresponding to
linear polarization) only on the boundaries of the circular element, has the maximum value
(π/4 for circular polarization) at the cell’s center and along its boundaries, and continuously
varies (with a smooth sine dependence) in the intermediate ranges. Thus we obtain a smooth
and completely continuous matrix function F(x, y), which is analogously used to calculate the
impermittivity in the reciprocal space

[[η]]C =

[

[[ 1
ε ]][[ξξ∗]] + [[ε]]−1[[ζζ∗]], [[ 1

ε ]][[ξζ∗]]− [[ε]]−1[[ξζ∗]]
[[ 1

ε ]][[ξ
∗ζ]]− [[ε]]−1[[ξ∗ζ]], [[ 1

ε ]][[ζζ∗]] + [[ε]]−1[[ξξ∗]]

]

. (67)

In the case of the hexagonal periodicity we define u and the other periodic quantities inside
one hexagon (half the area of the rectangular unit cell) where we can use formally the same
equations as above, except for

D(φ) =
Λ/2

max
n=0,...,5

[

cos
(

φ − nπ
3

)] , (68)

which is now the distance from the hexagon’s center to its edge. Here Λ is the hexagon’s
shortest width (equal to the width Λx of the rectangular cell).

331Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals

www.intechopen.com



14 Will-be-set-by-IN-TECH

4.2.4 Modified method for densely arranged elements (Model C’)

To analyze a more complicated situation, we consider a photonic crystal with square
periodicity where circular elements are densely arranged near each other, i.e., where the
radius R is almost the half width Λ/2 of the periodic cell. Then the convergence properties of
F becomes worse, which affects all the derived quantities. For this reason we again redefine
the polarization distribution. For the modified Model C’ we define u to be still same inside the
circle (r < R), but different outside. Assuming the rotation and ellipticity along the boundary
of the square cell

θb(φ) = θ (D(φ), φ) = π
2 round

(

φ/ π
2

)

, (69)

ǫb(φ) = ǫ (D(φ), φ) = π
8 (1 − cos 4φ) (70)

(where “round” denotes rounding towards the nearest integer), we define the rotation and
ellipticity outside the circle (r > R) as

θ(r, φ) = 1
2

{

θb(φ) + φ + [θb(φ)− φ] cos
π[r+D(φ)−2R]

D(φ)−R

}

, (71)

ǫ(r, φ) =
ǫb(φ)

2

{

1 + cos
π[r+D(φ)−2R]

D(φ)−R

}

. (72)

Assuming otherwise the same Equations 59, 61, 62, and 65, we obtain for [[η]]C′ formally the
same matrix as in Equation 67, except that the functions ξ and ζ are now derived from different
azimuth and ellipticity distributions of u. Note that u is again continuous along the cell’s
boundaries; to evaluate its precise limits [when x → ±D(0), y = const or y → ±D(φ/2),
x = const] would now be more complicated. The distribution of the basis polarization vector
u within the periodic cell is depicted in Fig. 5(d) together with dimensions.

4.3 Numerical examples

We examine the numerical performances of all factorization models presented in Section 4.2 on
three samples of 2D photonic crystals, for which we calculate the eigenfrequencies ωκ (where
the band number κ = 1 stands for the lowest eigenfrequency, κ = 2 for the second lowest, etc.)
and the corresponding eigenvectors [Hz]κ of Equation 48. All convergences will be presented
according to the maximum Fourier harmonics retained inside the periodic medium, which
will be kept same for the x and y directions (M = N).

First, Sample S1 is a square array of cylindrical rods of the circular cross-section with the
diameter 2R = 500 nm, square period Λ = 1000 nm, relative permittivity of the rods ε1 = 9,
and relative permittivity of the surrounding medium corresponding to vacuum (ε2 = 1). Its
dispersion relation is displayed in Fig. 6(a). Similarly, for Sample S2 we assume exactly the
same parameters except the diameter of the rods, now being 2R = 900 nm. This corresponds
to densely arranged elements (the distance between two adjacent rods is only 100 nm). Finally,
for Sample H we consider a hexagonal array of cylindrical holes of the circular cross-section
with the diameter 2R = 600 nm, hexagonal periodicity Λ = 1000 nm (corresponding to the

rectangular cell of the dimensions Λx = 1 μm, Λy =
√

3 μm), relative permittivity of the
holes corresponding to vacuum (ε1 = 1), and relative permittivity of the substrate medium
(surrounding holes) ε2 = 12. The dispersion relation of Sample H is displayed in Fig. 6(b).

For our analysis we choose the eigenmodes Γ2 and Γ3 of Sample S1, the eigenmode X3 of
Sample S2, and the eigenmode M1 of Sample H, where the letter denotes a point of symmetry
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Fig. 6. Photonic band structures of two samples
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S2-X3 

H-M1 

Fig. 7. Amplitude distributions of the scaled magnetic field |Hz| within the unit cell of four
chosen eigenmodes

and the number corresponds to the band. The amplitude distributions of the modes are
displayed in Fig. 7, and the corresponding convergence properties of the eigenfrequencies
calculated by the above described models are shown in Fig. 8 (Model C’ is only compared for
Sample S2).

The result of a careful comparison of the numerical efficiencies of all the factorization models
can be summarized as follows. Models B, C, and C’ always converge considerably faster
than Model A. Model C converges faster (having usually one order higher precision) than
Model B with two exceptions. The first exception is the case such as in Fig. 7 (S1-Γ2) and
Fig. 8(a), where the discontinuities of the polarization transformation matrix F coincide with
a nearly zero amplitude of the field, so that the discontinuities do not manifest themselves.
The second exception is the case such as Fig. 7 (S2-X3) and Fig. 8(d), where the elements
are densely arranged which causes rapid variations of the ellipticity between two adjacent
elements (which are very close to each other); this requires more Fourier components than the
weak discontinuity of the linear polarization u in Model B. The problem is solved in Model C’,
which obviously converges fastest among all the four models applied to Sample S2.
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Fig. 8. Convergences of the Fourier factorization methods for three samples

5. Two-dimensional photonic crystals with non-circular elements

In this section we briefly show numerical efficiencies of three factorization models derived
above (Models A, B, and C) applied to 2D photonic crystals made as long elements of other
shapes, namely rods with the square cross-section and tubes with the ring and split-ring
cross-sections, arranged with the square periodicity. For all the three samples we choose the
permittivity of the elements ε = 9 and permittivity of vacuum ε = 1 for the surrounding
medium.

5.1 Periodic rods with the square cross-section

For the photonic crystals made of square-sectioned rods, the period is chosen Λ = 1000 nm,
and the width of the square d = 600 nm. The distribution of the basis polarization vector u,
analogously to Section 4, is displayed in Fig. 9 for all the three compared models.

For Model A, of course, u = x̂ as visible in Fig. 9(a). For Model B, we divide the unit cell into
four parts by its diagonals (the lines x = y and x = −y). The vector u(φ), depending only
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(a) Model A (b) Model B (c) Model C

Fig. 9. Polarization distribution of the factorization methods for periodic squares

on the azimuthal angle, is set x̂ for φ ∈ 〈−π
4 , π

4 ) ∪ 〈 3π
4 , 5π

4 ), and ŷ for the remaining angles.
This means that u is always linear, perpendicular to the permittivity discontinuities, and its
discontinuities (along the lines x = y and x = −y) have no concurrent discontinuities with
the permittivity function except those at the four corners of the square. Hence, Model B here
fulfills nearly the same conditions for the application of the factorization rules as demanded
in Section 4 for circular elements.

For Model C we divide the unit cell into four areas in the same manner. This time, however,
the basis vector u(r, φ) depends on both polar coordinates and the corresponding polarization
is in general elliptic. In analogy with Section 4 we want u to be perpendicular to the
permittivity discontinuities and to remove its discontinuities as much as possible. The most
simple way how to do this, although the discontinuities will not be completely removed, is
to set the azimuth θ(φ) of the polarization to zero for φ ∈ 〈−π

4 , π
4 ) ∪ 〈 3π

4 , 5π
4 ), and π

2 for
the remaining angles, and to use Equation 64 for the ellipticity distribution, where D(φ) now
corresponds to the square element.

n
o
rm

a
liz

e
d
 f

re
q
u
e
n
c
y
 

N 

Fig. 10. Convergence of the factorization methods for rods with the square cross-section
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The numerical efficiencies of all the three models are displayed in Fig. 10 for the 3rd band of
the symmetry point Γ. As clearly visible, Models B and C converge considerably faster than
Model A, with Model C being a little better. Although the improvement from Model B towards
Model C is not so distinct, it could be improved by a more careful choice of a completely
continuous distribution of the polarization basis.

5.2 Periodic hollow cylinders

For the photonic crystals made of periodic hollow cylinders (tubes with the symmetric ring
cross-section) we choose the period Λ = 1000 nm, the inner diameter (the diameter of the
inner circular hole) R1 = 400 nm, and the outer diameter R2 = 680 nm. The distribution of
the basis polarization vector u for all the three compared models is displayed in Fig. 11.

(a) Model A (b) Model B (c) Model C

Fig. 11. Polarization distribution of the factorization methods for hollow cylinders

For Model A again u = x̂. For both Models B and C we use the same polarization distributions
as in Section 4 for the inner area (r < R1) and for the outer area (r > R2). For the annulus
area (R1 < r < R2) we simply choose the polarization distribution same as that in Model B.
These distributions are obviously the most straightforward analogies of the distributions used
in Section 4 for circular elements.

The numerical efficiencies of all the three models are displayed in Fig. 12 for the 3rd band
of the symmetry point Γ. As clearly visible, Models B and C converge considerably faster
than Model A, but now Model C exhibits no improvement against Model B. This is because
the discontinuities of u at the center and along the boundaries of the periodic cell quite well
coincide with the zero amplitude of the mode, as visible in the inset of Fig. 12, so that the
discontinuities do not manifest themselves in the calculations.

5.3 Periodic split hollow cylinders

For the photonic crystals made of split hollow cylinders (tubes with an asymmetric, split ring
cross-section) we choose the period Λ = 1000 nm, the inner diameter (the diameter of the
inner semi-circular hole) R1 = 600 nm, the outer diameter R2 = 720 nm, and the relative
azimuthal length of the ring wφ = 0.9 (where wφ = 1 means the complete, symmetric ring).
The distributions of the basis polarization vector u for all the three compared models are
displayed in Fig. 13.
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Fig. 12. Convergence of the factorization methods for hollow cylinders

(a) Model A (b) Model B (c) Model C

Fig. 13. Polarization distribution of the factorization methods for split hollow cylinders

Since the area of splitting is quite small compared to the full area of the unit cell, we have
chosen the polarization distributions of all the three models exactly same as for the symmetric
rings in Section 5.2. The condition for normal u and tangential v is not satisfied on the surface
proportional to the length 2 × 120 = 240 nm, but is satisfied on the surface proportional
to 0.9 × 2π(R1 + R2) ≈ 7 464 nm, which is 30 times higher area, justifying this negligence.
Of course, for modes with most of electromagnetic field resonating in the critical area this
approximation would be insufficient.

The numerical efficiencies of all the three models are displayed in Fig. 14, again for the 3rd
band of the symmetry point Γ. We can describe these performances by exactly the same
conclusion as for the symmetric rings in Section 5.2. Models B and C converge similarly and
both considerably faster than Model A. The discontinuities of u at the center and along the
boundaries of the periodic cell again coincide with the zero amplitude of the mode, though
with some deviations visible in the inset of Fig. 14.
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Fig. 14. Convergence of the factorization methods for split hollow cylinders

6. Anisotropic photonic crystals

In this section we will briefly demonstrate the application of the factorization rules to 2D
photonic crystals made of anisotropic materials, again with the plane of incidence parallel
to the z axis (with geometry of Fig. 3). Unlike the isotropic crystals, now the TE and TM
polarizations are not separable. Instead of the scalar permittivity we define and expand the
components of the relative permittivity tensor function

ε jk(x, y) =
+∞

∑
m,n=−∞

ε jk,mne−i(mpx+nqy), (73)

where ε jk,mn are the Fourier coefficients. The wave equation for a generally anisotropic
medium, now described by the permittivity tensor

ε =

⎡

⎢

⎢

⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤

⎥

⎥



, (74)

is the operator equation

ĈE =
ω2

c2
E, Ĉ = ε−1

⎡

⎢

⎢

⎣

−∂2
y ∂x∂y 0

∂x∂y −∂2
x 0

0 0 −∂2
x − ∂2

y

⎤

⎥

⎥



. (75)

Similarly as above, Model A assumes all components of the permittivity tensor treated by the
Laurent rule, i.e.,

[D̃j] = ∑
k

[[ε jk]][Ek]. (76)
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To apply the factorization correctly, we must again separate the normal and tangential
components of all fields for which we can use the correct rules. Let us define a
space-dependent matrix transform F(x, y) so that

⎡

⎣

Ex

Ey

Ez

⎤

 = F

⎡

⎣

Eu

Ev

Ez

⎤

 , (77)

where Eu and Ev are the normal and tangential components of the vector E to all
discontinuities of the permittivity.

Analogously to Section 4, for the case of circular elements we can choose the polarization basis
distribution corresponding to Models B and C as

F =

⎡

⎢

⎣

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎤

⎥


, (Model B) (78)

F =

⎡

⎢

⎣

ξ −ζ∗ 0

ζ ξ∗ 0

0 0 1

⎤

⎥


, (Model C) (79)

where the matrix elements have the same meaning as in Section 4. In the new coordinates we
can write

⎡

⎣

D̃u

D̃v

D̃z

⎤

 =

⎡

⎢

⎣

εuu εuv εuz

εvu εvv εvz

εzu εzv εzz

⎤

⎥



⎡

⎣

Eu

Ev

Ez

⎤

 . (80)

Now let us separate two sets of quantities, those which are continuous (D̃u, Ev, Ez) and those
which are not continuous (D̃v, D̃z, Eu) to the discontinuities of the permittivity. Expressing
the second set according to the first one yields

⎡

⎣

Eu

D̃v

D̃z

⎤

 = G

⎡

⎣

D̃u

Ev

Ez

⎤

 , G =

⎡

⎢

⎢

⎢

⎣

1
εuu

− εuv
εuu

− εuz
εuu

εvu
εuu

εvv − εvuεuv
εuu

εvz − εvuεuz
εuu

εzu
εuu

εzv − εzuεuv
εuu

εzz − εzuεuz
εuu

⎤

⎥

⎥

⎥



, (81)

for which we can simply use the Laurent rule,

⎡

⎢

⎣

[Eu]

[D̃v]

[D̃z]

⎤

⎥


= [[G]]

⎡

⎢

⎣

[D̃u]

[Ev]

[Ez]

⎤

⎥


. (82)

From this we express [D̃j] according to [Ej],

⎡

⎢

⎣

[D̃u]

[D̃v]
[D̃z]

⎤

⎥


= [[ε{uvz}]]B, C

⎡

⎢

⎣

[Eu]

[Ev]

[Ez]

⎤

⎥


, (83)
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with

[[ε{uvz}]]B, C
=

⎡

⎢

⎢

⎢

⎢

⎣

[[

1
εuu

]]−1
,

[[

1
εuu

]]−1[[
εuv
εuu

]]

,
[[

εvu
εuu

]][[

1
εuu

]]−1
,
[[

εvv − εvuεuv
εuu

]]

+
[[

εvu
εuu

]][[

1
εuu

]]−1[[
εuv
εuu

]]

,
[[

εzu
εuu

]][[

1
εuu

]]−1
,
[[

εzv − εzuεuv
εuu

]]

+
[[

εzu
εuu

]][[

1
εuu

]]−1[[
εuv
εuu

]]

,

[[

1
εuu

]]−1[[
εuz
εuu

]]

[[

εvz − εvuεuz
εuu

]]

+
[[

εvu
εuu

]][[

1
εuu

]]−1[[
εuz
εuu

]]

[[

εzz − εzuεuz
εuu

]]

+
[[

εzu
εuu

]][[

1
εuu

]]−1[[
εuz
εuu

]]

⎤

⎥

⎥

⎥

⎥



. (84)

Finally we obtain the matrix of permittivity in the Cartesian coordinates via the formula

[[ε{xyz}]]B, C
= [[F]][[ε{uvz}]]B, C

[[F−1]], (85)

where the index B or C corresponds to the chosen model.

7. Distribution of polarization basis for 3D structures

In this section we will suggest how to create the polarization basis distribution for a 3D
photonic crystal. Unlike the previous cases, we now have a fully vectorial wave Equation 1.
The corresponding material equation D̃ = ε(x, y, z)E must be changed to separate the normal
and tangential components of the fields to the ε discontinuities, which are now surfaces in
the 3D space. For simplicity we assume a 3D photonic crystal made as spheres (with the
radius R) arranged in the space with the cubic periodicity. To make a 3D analogy with Model C
described in the previous sections, we must find a matrix transform F(x, y, z) whose columns,
denoted u, v, and w, are complex vectorial functions of space, mutually orthonormal and
continuous at all points, where u is the normal vector at each point of the sphere’s surface and
v and w are tangential.

As the first step we choose the distribution of these vectors on the sphere. Defining the
spherical coordinates

x = r sin ϑ cos φ, (86)

y = r sin ϑ sin φ, (87)

z = r cos ϑ (88)

and the corresponding unit vectors r̂, ϑ̂, and φ̂ (pointing along the increase of the
corresponding coordinate) helps us to define the vectors

uR(ϑ, φ) = u(R, ϑ, φ) = ei(ϑ+φ)r̂, (89)

vR(ϑ, φ) = v(R, ϑ, φ) = ei(ϑ+φ) 1√
1 + cos2 ϑ

(ϑ̂+ iφ̂ cos ϑ), (90)

wR(ϑ, φ) = w(R, ϑ, φ) = ei(ϑ+φ) 1√
1 + cos2 ϑ

(ϑ̂ cos ϑ − iφ̂). (91)
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Obviously, u is normal on the whole sphere’s surface. The vector v corresponds to the left
circular polarization at the sphere’s poles (z = ±R), to the vertical linear polarization on the
sphere’s equator (z = 0), and is elliptical and continuous in the intermediate ranges. The
vector w is simply chosen orthogonal to both u and v. Both v and w are tangential to the
sphere’s surface.

If we extend the radial dependence of the vectors defined by Equations 89–91 to the entire
cubic cell (formally replacing R by r), then we obtain some analogy with Model B. The
obtained matrix F has no concurrent discontinuities with ε, but it is discontinuous at the center
and on the boundaries of the cubic cell. To remove the discontinuity at the cell’s center, we
will proceed differently.

As the second step, we define the basis vectors at the center of the sphere,

u0 = u(0, ϑ, φ) =
1√
2
(x̂− iŷ), (92)

v0 = v(0, ϑ, φ) = ẑ, (93)

w0 = w(0, ϑ, φ) =
1√
2
(x̂+ iŷ), (94)

which are again mutually orthogonal. Then we extend u onto the whole cubic cell,

uext(r, ϑ, φ) =

{

1
2 (u0 +uR) +

1
2 (u0 −uR) cos πr

R (r ≤ R)
1
2 (u0 +uR) +

1
2 (u0 −uR) cos

π(r+D−2R)
D−R (R < r ≤ D).

(95)

where D(ϑ, φ) is the distance from the cell’s center to its boundary along the ray determined
by the spherical angles. The desired unit vector of the polarization basis is then

u = Auuext, (96)

where Au = [ 1
2 (1 + cos2 πr

R )]−1/2 for r < R and Au = [ 1
2 (1 + cos2 π(r+D−2R)

D−R )]−1/2 for r > R
is a scalar function ensuring that u becomes a unit vector everywhere. We could extend v and
w in a similar way,

vext(r, ϑ, φ) =

{

1
2 (v0 + vR) +

1
2 (v0 − vR) cos πr

R (r ≤ R)
1
2 (v0 + vR) +

1
2 (v0 − vR) cos

π(r+D−2R)
D−R (R < r ≤ D).

(97)

wext(r, ϑ, φ) =

{

1
2 (w0 +wR) +

1
2 (w0 −wR) cos πr

R (r ≤ R)
1
2 (w0 +wR) +

1
2 (w0 −wR) cos

π(r+D−2R)
D−R (R < r ≤ D).

(98)

but it is not clear whether vext or wext are both perpendicular to u and mutually. To ensure it
we define

v = Av(1 − Pu)vext, (99)

where Pu = uu† is the projector into the space of vectors proportional to u, so that 1 − Pu is
the projector to its orthogonal complement. Similarly,

w = Aw(1 − Pu − Pv)wext, (100)

where 1 − Pu − Pv is the projector into the space of vectors perpendicular to both u and v.
Here Av and Aw are analogously chosen scalar functions ensuring the unit size of the
corresponding vectors.
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Finally, the matrix of permittivity in the reciprocal space with correct Fourier factorization,
directly applicable to the wave Equation 1, becomes

[[ε]]C = [[F]]

⎡

⎣

[[ 1
ε ]]

−1
[[0]] [[0]]

[[0]] [[ε]] [[0]]
[[0]] [[0]] [[ε]]

⎤

 [[F−1]], (101)

because the first element on the diagonal corresponds to the normal (u) components of the
fields and the other two correspond to the tangential components (v, w) of the fields.

8. Conclusion

We have derived the methodology how to apply the Fourier factorization rules of Li (1996) to
various photonic crystals. For the case of 1D crystals there is clear consistency of the correct
rules with the classical theory of Yeh et al. (1977). For 2D crystals the convergence properties
strongly depend on the chosen distribution of the polarization basis; we have shown that it
is desirable to choose a distribution as smooth as possible. The method is also usable for
periodic elements of any shape, where complicated shapes require complicated distributions
of polarization bases. We can also use it to simulate 2D periodic elements made of anisotropic
materials, as well as 3D periodic crystals. Moreover, the method can also be used to photonic
devices such as photonic crystal waveguides by applying the demonstrated methodology
to the device supercell. It is particularly advantageous for devices where high accuracy is
required, e.g., for analyzing defect modes near photonic band edges [Dossou et al. (2009);
Mahmoodian et al. (2009)], and for large devices for which the available computer memory
enables calculations with only a few Fourier components (photonic crystals fibers with large
cladding, or asymmetric 3D crystals).
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