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1. Introduction

Photonic crystals (PC) are structures with periodic variation of the refractive index in one, two

or three spatial dimensions. The dynamic development of experimental and theoretical work

on photonic crystals has been launched by Yablonovitch (1987; 1993) and Sajeev John (1987)

publications, although the idea of periodic structures had been known since Strutt (1887).

The main property of photonic crystal is the existence of a frequency range, for which the

propagation of electromagnetic waves in the medium is not permitted. These frequency

ranges are commonly known as photonic band gaps, giving the ability to modify the structure

parameters, e.g. group velocity, coherence length, gain, and spontaneous emission. This type

of periodic structures is used in both passive and active devices.

1.1 Two-dimensional photonic crystal lasers

Much of the research on active structures is devoted to efficient photonic sources of coherent

radiation. Photonic crystals are one of these structures, and they are used in lasers as mirrors

(Dunbar et al. (2005); Scherer et al. (2005)), active waveguides (Watanabe & Baba (2006)),

coupled cavities (Steinberg & Boag (2006)), defect microcavities (Asano et al. (2006); Lee et al.

(2004)), and the laser active region (Cojocaru et al. (2005)).

Lasers with defect two-dimensional photonic crystals are known for their high finesse (Monat

et al. (2001)) and very low threshold (Nomura et al. (2008)).

Photonic crystal band-edge lasers allow to obtain edge (Cojocaru et al. (2005)) and surface

emission (Turnbull et al. (2003); Vurgaftman & Meyer (2003)) of coherent light from large

cavity area. They also allow to control the output beam pattern by manipulation of the

primitive cell geometry (Iwahashi et al. (2010); Miyai et al. (2006)), provide low threshold

(Susa (2001)), and beams which can be focused to a size less than the wavelength (Matsubara

et al. (2008)).

The photonic crystal structures lasing wavelengths span from terahertz (Chassagneux et al.

(2009); Sirigu et al. (2008)), through infrared (Kim et al. (2006)) to visible (Lu et al. (2008);

Zhang et al. (2006)).
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2 Photonic Crystals Book 1

1.2 Radiation generation modeling in photonic crystal lasers

Laser action in photonic crystal structures has been theoretically studied and centered on

the estimation of the output parameters (Czuma & Szczepanski (2005); Lesniewska-Matys

et al. (2005)) and models describing light generation processes e.g. (Florescu et al. (2002);

Koba, Szczepanski & Kossek (2011); Sakai et al. (2010)). The most sophisticated and general

(it describes one-, two-, and three-dimensional structures) semiclassical model of light

generation in photonic structures is presented in (Florescu et al. (2002)). Theoretical analysis

of photonic crystal lasers based on two-dimensional plane wave expansion method (PWEM)

(Imada et al. (2002); Sakai et al. (2005)) and finite difference time domain method (FDTD)

(Imada et al. (2002); Noda & Yokoyama (2005)) confirm experimental results. Nevertheless

these methods suffer from important disadvantages, i.e. plane wave method gives a good

approximation for infinite structures, whereas finite difference time domain method is suited

for structures with only a few periods and consumes huge computer resources for the analysis

of real photonic structures. Therefore these methods are not very convenient for design and

optimization of actual photonic crystal lasers. Hence, different, less complicated methods

of analysis of two-dimensional photonic crystal lasers are developed. These methods are

meant to effectively support the design process of such lasers. They are based on a coupled

mode theory (Sakai et al. (2006); Vurgaftman & Meyer (2003)) and focused on square and

triangular lattice photonic crystals (Koba & Szczepanski (2010); Koba, Szczepanski & Kossek

(2011); Koba, Szczepanski & Osuch (2011); Sakai et al. (2007; 2010; 2008)).

The Sakai et al. (2007; 2010) works contain a mathematical description and numerical results

of the threshold analysis of two-dimensional (2-D) square lattice photonic crystal laser with

TM and TE polarization. They introduce general coupled mode relations for a threshold

gain, a Bragg frequency deviation and field distributions, and give calculation results for

some specific values of coupling coefficients. Additionally, in (Sakai et al. (2007)) the effect of

boundary reflections has been investigated, and it has been shown that the mode properties

can be adjusted by changing refractive index or boundary conditions.

In Sakai et al. (2008) paper, the analytical description of triangular lattice photonic crystal

cavity for TE polarization has been given. In this work the analysis was focused on the

coupled wave equations and the dependence of the resonant frequencies on the coupling

coefficients.

In Sakai et al. (2007; 2010; 2008) works threshold analysis has been conducted for specific

values of coupling coefficient and TM polarization for triangular has not been considered.

The equations for triangular lattice photonic crystal laser with TM polarization has been

shown in Koba, Szczepanski & Kossek (2011), and the evaluation of these is shown in this

chapter.

The mentioned semiclassical model, presented by Florescu et al. (2002) describing an above

threshold analysis is complicated and difficult to implement. To overcome this drawback,

this chapter also includes an overview of our works (Koba & Szczepanski (2010); Koba,

Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch (2011)), where we introduced easy

to implement models for an above threshold analysis of a two-dimensional photonic crystal

laser.
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Coupled Mode Theory of Photonic Crystal Lasers 3

Therefore, in the subsequent parts of this chapter we addressed the issues of the laser

threshold characteristics in the wide range of the coupling coefficient and described all four

cases of square and triangular lattice photonic crystal structures with TE and TM polarization.

We also describe an above threshold analysis for these structures.

Thus, in this chapter we will summon the analytical models of the threshold and above

threshold light generation in photonic crystal band-edge lasers considering square and

triangular lattice structures with TE and TM polarization. Theoretical evaluation in this

chapter is based on coupled wave model and energy theorem.

2. Structure definition

This paper describes the two-dimensional photonic crystals which properties can be described

by the complex relative electrical permittivity ε. The cross sections of these structures are

shown schematically in Fig. 1

(a) (b)

Fig. 1. a) Square and b) triangular lattice photonic structure cross section. (εa and εb are
relative permittivities of rods and background material, respectively, a - lattice constant, L -
cavity length)

In crystallography the ideal crystal is described by the elementary cell. The shape of the

cell is defined by the basic vectors which linear combination allows to specify the location

of all nodes of the structure. Each node is connected to the base which may be constituted

by an atom, a group of atoms, molecules, etc. The photonic structures perfectly resemble

the microscopic nature of the crystal lattice in the mesoscopic scale. This allows using the

terminology adopted in the solid state physics to describe the photonic crystal.

In this chapter, only 2-D photonic crystals will be discussed. In the two-dimensional space,

there are five basic types of crystal lattice. This comprises a square, hexagonal, rectangular,

oblique, and rhombic lattice (Kittel (1995)). The square and hexagonal (also known as

triangular) lattices are the most common types of symmetry used in the practical realizations

of photonic cavities. The role of the base in such systems is often played by cylinders called

293Coupled Mode Theory of Photonic Crystal Lasers
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4 Photonic Crystals Book 1

rods or holes depending on the relative difference between the refractive index of the cylinders

and the surrounding material.

The structures in Fig. 1 a) and b) are constrained in the xy plane by the square region of

length L, and are assumed to be uniform and much larger than the wavelength in the the z

direction. The permittivity of the holes and background material is εa and εb, respectively.

The number of periods in the xy plane is finite, but large enough to be expanded in Fourier

series with small error. Schemes in Fig. 1 a) and 1 b) illustrate two spatial distributions of rods

for two-dimensional photonic crystal, respectively, with square and triangular lattice.

(a) (b)

Fig. 2. The scheme of a) a square lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

(a) (b)

Fig. 3. The scheme of a) a triangular lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

Fig. 2 a) and 3 a) show photonic crystal cross sections in xy plane with cylinders arranged in

square or triangular lattice with period a, and with depicted primitive vectors a1 and a2.

Fig. 2 b) and 3 b) show the reciprocal lattices corresponding, respectively, to the real square

and triangular lattice. In the described case, the nodes of a two-dimensional structure can be

294 Photonic Crystals – Introduction, Applications and Theory
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Coupled Mode Theory of Photonic Crystal Lasers 5

expressed by

x‖(l) = l1a1 + l2a2 (1)

where a1 and a2 are primitive vectors (Kittel (1995)), l1 and l2 are arbitrary integers, x‖
specifies the placement on the plane, x‖ = x̂x + ŷy, where x̂ and ŷ are unit vectors along

x and y axis, respectively. The area of primitive cell is ac = |a1 × a2| = a2 in case of square

lattice, and ac = |a1 × a2| =
√

3a2/2 in case of triangular lattice. Primitive vectors for square

lattice are described by the expressions: a1 = (a, 0), a2 = (0, a), and for the triangular lattice:

a1 =
(√

3a/2, a/2
)

, a2 = (0, a).

In general, the reciprocal vecotrs can be written in the following form:

G (h) = h1b1 + h2b2 (2)

where h1 and h2 are arbitrary integers, b1 and b2 are the primitive vectors of the

two-dimensional reciprocal lattice:

b1 =
2π

ac

(

a
(2)
y ,−a

(2)
x

)

, b2 =
2π

ac

(

−a
(1)
y , a

(1)
x

)

, (3)

where a
(i)
j is the j-th cartesian component (x or y) of the ai vector (i = 1 lub 2) (Sakai et al.

(2010)).

Using Equation 3 and the expressions for square and triangular lattice primitive vectors the

reciprocal primitive vectors are described by the following formulas:

b1 = (2π/a, 0) , b2 = (0, 2π/a) – square lattice (4)

and

b1 =
(

4π/
√

3a, 0
)

, b2 =
(

−2π/
√

3a, 2π/a
)

– triangular lattice. (5)

The infinite square or triangular photonic crystal can be described in terms of relative

permittivity by the functions:

ε−1
(

x‖
)

= ε−1
b +

(

ε−1
a − ε−1

b

)

∑
l

S
(

x‖ − x‖ (l)
)

(6)

in case of TE polarization, where it is more convenient to use the inverse of relative

permittivity, and

ε
(

x‖
)

= εb + (εa − εb)∑
l

S
(

x‖ − x‖ (l)
)

(7)

for TM polarization. In previous Equations, function S

S
(

x‖
)

=

{

1 dla x‖ ∈ O

0 dla x‖ �∈ O
(8)

specifies the location of rods in the structure, O is the area of the xy plane defined by the cross

section of the rod, which symmetry axis intersects the plane at the point x‖ = 0.

295Coupled Mode Theory of Photonic Crystal Lasers
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6 Photonic Crystals Book 1

The functions describing the structure need to be transformed to the frequency domain in

order to solve the wave equations. To do so, the crystal geometry is expressed in terms

of reciprocal lattice vector by the Fourier transformation of functions 6 and 7 (M. Plihal &

Maradudin (1991); M. Plihal et al. (1991)).

For TE polarization function ǫ−1(G) is written in the following form:

ǫ−1(G) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ε−1
a f + ε−1

b (1 − f ) , G‖ = 0

(

ε−1
a − ε−1

b

)

f
2J1(G‖R)
(G‖R)

, G‖ �= 0
(9)

and for the TM polarization function ǫ(G):

ǫ(G) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

εa f + εb (1 − f ) , G‖ = 0

(εa − εb) f
2J1(G‖R)
(G‖R)

, G‖ �= 0
(10)

where f = πr2/a2 – square lattice filling factor, f =
(

2π/
√

3
)

r2/a2 – triangular lattice filling

factor, r – rod radius, J1 – Bessel function of the first kind.

In further parts of this chapter four different cases have been analyzed. Two of them are

dedicated to square lattice cavities with TE and TM polarization, and two remaining to

triangular lattice structures also with TE and TM polarization.

In the next parts of this chapter the threshold and above threshold analysis of the photonic

crystal laser operation has been shown for the defined structures.

3. A threshold analysis

3.1 Coupled-wave equations

In general, the scalar wave equations for the electric and magnetic fields Ez and Hz,

respectively, are written in the following form (M. Plihal & Maradudin (1991); M. Plihal et al.

(1991)):

∂2Ez

∂x2
+

∂2Ez

∂y2
+ k2Ez = 0 (11)

and
∂

∂x

{

1

k2

∂

∂x
Hz

}

+
∂

∂y

{

1

k2

∂

∂y
Hz

}

+ Hz = 0 (12)

where the constant k is given by (Sakai et al. (2007))

k2 = β2 + 2i (α − αL) β + 2β ∑
G �=0

κ (G) exp (i (G · r)) (13)

296 Photonic Crystals – Introduction, Applications and Theory
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Coupled Mode Theory of Photonic Crystal Lasers 7

in case of TM modes, and (Sakai et al. (2010))

1

k2
=

1

β4

(

β2 − i2 (α − αL) β + 2β ∑
G �=0

κ(G) exp (i (G · r))

)

(14)

in case of TE modes. In Equations 13 and 14 β = 2πε1/2
0 /λ where ε0 = ε (G = 0) is the

averaged dielectric permittivity (ε1/2
0 corresponds to averaged refractive index n), α is an

averaged gain in the medium, κ(G) is the coupling constant, λ is the Bragg wavelength,

and G = (mb1, nb2) is the reciprocal lattice vector, m and n are arbitrary integers, b1 and

b2 vary depending on the structure symmetry. Therefore, these vectors are expressed in the

following forms b1 =
(

βs
0, 0

)

and b2 =
(

0, βs
0

)

for square lattice, and b1 =
(

βt
0, 0

)

and b2 =
(

−βt
0/2,

√
3βt

0/2
)

for triangular lattice structure, where βs
0 = 2π/a and βt

0 = 4π/
√

3a. In the

derivation of Equations 13 and 14 following e.g. (Sakai et al. (2007)), we set α ≪ β ≡ 2πε1/2
0

λ ,

εG �=0 ≪ ε0, and αG ≪ β. In these equations the periodic variation in the refractive index is

included as a small perturbation and appears in the third term through the coupling constant

κ (G) of the form:

κ (G) = − π

λε1/2
0

ε(G)± i
α (G)

2
. (15)

In Equation 15, plus sign refers to TM polarization (Equation 13), while minus sign refers to TE

polarization (Equation 14). Furthermore, we set α(G)|G �=0 = 0 neglecting spatial periodicity

of gain. In the vicinity of the Bragg wavelength only some of the diffraction orders contribute

in a significant way, where in general, a periodic perturbation produces an infinite set of

diffraction orders. Therefore the Bragg frequency orders have to be cautiously chosen. The

Bragg frequency corresponding to the Γ point in the photonic band structure, e.g. (Sakai

et al. (2007)) is chosen for the purpose of this paper, and the most significantly contributing

coupling constants are expressed as follows:

κ1 = κ(G)||G|=βs,t
0

κ2 = κ(G)||G|=
√

3βs,t
0

κ3 = κ(G)||G|=2βs,t
0

(16)

In Equations 11 and 12 electric and magnetic fields for the infinite periodic structure are given

by the Bloch modes, (M. Plihal & Maradudin (1991); Vurgaftman & Meyer (2003)):

Ez (r) = ∑
G

e(G) exp (i (k + G) · r) (17)

and

Hz (r) = ∑
G

h(G) exp (i (k + G) · r) (18)

where the functions e(G) and h(G) correspond to plane wave amplitudes, and the wave

vector is denoted by k. In the first Brillouin zone at the Γ point the wave vector vanishes

k = 0, see e.g. (Sakai et al. (2006)). For a finite structure, the amplitude of each plane wave

is not constant, so e(G) and h(G) become functions of space. At the Γ point we consider

only the amplitudes (e(G), h(G)) which are meant to be significant, i.e. in most cases with

|G| = βs,t
0 , except for square lattice with TE polarization where additional h(G) amplitudes

297Coupled Mode Theory of Photonic Crystal Lasers
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8 Photonic Crystals Book 1

with |G| =
√

2βs
0 have to be included (Sakai et al. (2006)). The contributions of other waves

of higher order in the Bloch mode are considered to be negligible.

3.1.1 Square lattice - TM polarization

Considering square lattice photonic crystal with TM polarization, it is assumed that at the

Γ point the most significant contribution to coupling is given by the electric waves which

fulfill the condition
(

|G| = βs
0

)

. Thus, all higher order electric wave expansion coefficients
(

|G| ≥
√

2β0

)

are negligible. Four basic waves most significantly contributing to coupling

are depicted in Fig. 4.

Fig. 4. Schematic cross section of square lattice photonic crystal laser active region, where the
four basic waves involved in coupling for TM polarization are shown.

Equation 17 describes infinite structures. It is possible to take into account the fact that the

structure is finite by using the space dependent amplitudes, e.g. (Sakai et al. (2007)). Thus,

the electric field given by Equation 17 in the finite periodic structure can be expressed in the

following way:

Ez = Es
1(x, y)e−iβs

0x + Es
2(x, y)eiβs

0x + Es
3(x, y)e−iβs

0y + Es
4(x, y)eiβs

0y (19)

In Equation 19 Es
i , i = 1..4 are the four basic electric field amplitudes propagating in four

directions +x, −x, +y, y. These amplitudes correspond to e(G) in Equation 17. In the further

analysis, we will drop the space dependence notation.

Knowing the reciprocal lattice vectors for the square lattice PC, the coupling coefficients κ(G)
16 can be written as:

κ1 =
π (εa − εb)

a (εa f + εb (1 − f ))

2 f J1

(

2
√

π f
)

(

2
√

π f
) (20)

κ2 =
π (εa − εb)

a (εa f + εb (1 − f ))

2 f J1

(

2
√

2π f
)

(

2
√

2π f
) (21)

κ3 =
π (εa − εb)

a (εa f + εb (1 − f ))

2 f J1

(

4
√

π f
)

(

4
√

π f
) (22)
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Coupled Mode Theory of Photonic Crystal Lasers 9

Putting Equations 13 and 19 into Equation 11, and assuming the slow varying electromagnetic

field, one can get the set of coupled mode equations (Sakai et al. (2007)):

− ∂

∂x
Es

1 + (α − αL − κ0 − iδ) Es
1 = (iκ3 − κ0) Es

3 + iκ2 (Es
2 + Es

4) (23)

∂

∂x
Es

3 + (α − αL − κ0 − iδ) Es
3 = (iκ3 − κ0) Es

1 + iκ2 (Es
2 + Es

4) (24)

− ∂

∂y
Es

2 + (α − αL − κ0 − iδ) Es
2 = (iκ3 − κ0) Es

4 + iκ2 (Es
1 + Es

3) (25)

∂

∂y
Es

4 + (α − αL − κ0 − iδ) Es
4 = (iκ3 − κ0) Es

2 + iκ2 (Es
1 + Es

3) (26)

where

δ = (β2 − βs2
0 )/2β ≈ β − βs

0 (27)

is the Bragg frequency deviation, κ2 and κ3 are coupling coefficients expressed by Equations

21 and 22 (Sakai et al. (2007)). The κ2 coefficient is responsible for orthogonal coupling (e.g. the

coupling of Es
1 to Es

2 and Es
4), and κ2 corresponds to backward coupling (e.g. the coupling of

Es
1 to Es

3). The additional coefficient κ0 denotes surface emission losses, and it is proportional

to κ1 (Sakai et al. (2007; 2010)). Solution of Equations 23-26 for the boundary conditions:

Es
1(−

L

2
, y) = Es

3(
L

2
, y) = 0, Es

2(x,− L

2
) = Es

4(x,
L

2
) = 0 (28)

defines eigenmodes of the photonic structure. The analysis of this solution will be shown in

section 3.2.

3.1.2 Square lattice - TE polarization

In the square lattice photonic crystal cavity with TE polarization, as mentioned before, the

coupling process involves magnetic waves satisfying following conditions: (|G| = β0) and
(

|G| =
√

2β0

)

, (Sakai et al. (2010)), neglecting higher order Bloch modes. Eight basic waves

most significantly contributing to coupling are depicted in Fig. 5.

Similarly as in the case of TM polarization, the equation for magnetic field (Equation 18)

describes modes for infinite structure. Thus, the finite dimensions of the structure are

described by spatial dependence of magnetic field amplitudes (Sakai et al. (2010)), and the

magnetic field 18 is written in the following form:

Hz(r) =Hs
1(x, y)e−iβs

0x + Hs
5(x, y)eiβs

0x + Hs
3(x, y)e−iβs

0y + Hs
7(x, y)eiβs

0y + Hs
2(x, y)e−iβs

0x−iβs
0y

+ Hs
4(x, y)eiβs

0x−iβs
0y + Hs

6(x, y)eiβs
0x+iβs

0y + Hs
8(x, y)e−iβs

0x+iβs
0y (29)

In Equation 29 Hs
i , i = 1..8 are the eight basic magnetic field amplitudes of waves propagating

in directions schematically shown in Fig. 5. These amplitudes correspond to h(G) in Equation

18. Joining Equations 14, 29, and 12, and assuming slowly varying amplitudes, the coupled

299Coupled Mode Theory of Photonic Crystal Lasers
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10 Photonic Crystals Book 1

Fig. 5. Schematic cross section of square lattice photonic crystal laser active region, where the
eight basic waves involved in coupling for TE polarization are shown.

wave equations for TE modes in square lattice PC are obtained (Sakai et al. (2010)):

− ∂

∂x
Hs

1 + (α − αL − κ0 − iδ) Hs
1 = (iκ3 − κ0) Hs

5 + i
2κ2

1

βs
0

(2Hs
1 + Hs

3 + Hs
7) (30)

∂

∂x
Hs

5 + (α − αL − κ0 − iδ) Hs
5 = (iκ3 − κ0) Hs

1 + i
2κ2

1

βs
0

(2Hs
5 + Hs

3 + Hs
7) (31)

− ∂

∂x
Hs

3 + (α − αL − κ0 − iδ) Hs
3 = (iκ3 − κ0) Hs

7 + i
2κ2

1

βs
0

(2Hs
3 + Hs

1 + Hs
5) (32)

∂

∂x
Hs

7 + (α − αL − κ0 − iδ) Hs
7 = (iκ3 − κ0) Hs

3 + i
2κ2

1

βs
0

(2Hs
7 + Hs

1 + Hs
5) (33)

In Equations 30-33, the spatial dependence of Hs
i , i = 2, 4, 6, 8 amplitudes was neglected, and

it was assumed that α ≪ δ. In Equations 30-33, δ is the Bragg frequency deviation, given by

27. The coupling coefficients κ1, κ2, and κ3, defined by Equations 16 are expressed by (Sakai

et al. (2010; 2008)):

κ1 =
π
(

ε−1
a − ε−1

b

)

a
(

ε−1
a f + ε−1

b (1 − f )
)

2 f J1

(

2
√

π f
)

(

2
√

π f
) (34)

κ2 =
π
(

ε−1
a − ε−1

b

)

a
(

ε−1
a f + ε−1

b (1 − f )
)

2 f J1

(

2
√

2π f
)

(

2
√

2π f
) (35)

κ3 =
π
(

ε−1
a − ε−1

b

)

a
(

ε−1
a f + ε−1

b (1 − f )
)

2 f J1

(

4
√

π f
)

(

4
√

π f
) (36)

In contrast to TM polarization, in Equations 30-33, the coupling coefficient responsible for

coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
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Coupled Mode Theory of Photonic Crystal Lasers 11

meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes

the coupling of e.g. waves Hs
1, Hs

2 , and Hs
8. Solution of Equations 30-33 for the following

boundary conditions:

Hs
7(−

L

2
, y) = Hs

5(
L

2
, y) = 0, Hs

3(x,− L

2
) = Hs

7(x,
L

2
) = 0 (37)

defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.1.3 Triangular lattice - TM polarization

In the triangular lattice photonic crystal cavity with TM polarization, the coupling process

involves waves satisfying following conditions (|G| = β0), neglecting higher order Bloch

modes (Koba, Szczepanski & Kossek (2011); Sakai et al. (2008)). Six basic waves most

significantly contributing to coupling are depicted in Fig. 6.

Fig. 6. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TM polarization are shown.

The space dependent amplitudes for electric field e(G) (Equation 17) in triangular lattice

photonic crystal cavity are written in the following form (Koba, Szczepanski & Kossek (2011)):

Ez = Et
1(x, y)e−iβt

0x + Et
2(x, y)e−i

βt
0

2 x−i

√
3βt

0
2 y + Et

3(x, y)ei
βt

0
2 x−i

√
3βt

0
2 y

+Et
4(x, y)eiβt

0x + Et
5(x, y)ei

βt
0

2 x+i

√
3βt

0
2 y + Et

6(x, y)e−i
βt

0
2 x+i

√
3βt

0
2 y (38)

In Equation 38, Et
i , i = 1..6, are the six electric field amplitudes propagating in the symmetry

directions, Fig. 6. Combining Equations 13, 38 and 11, and assuming slowly varying

amplitudes, the coupled wave equations for TM modes in triangular lattice PC are obtained:

− ∂

∂x
Et

1 + (α − αL − κ0 − iδ)Et
1 = iκ1

(

Et
2 + Et

6

)

+ iκ2

(

Et
3 + Et

5

)

+ (iκ3 − κ0) Et
4 (39)
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− 1

2

∂

∂x
Et

2 −
√

3

2

∂

∂y
Et

2 + (α − αL − κ0 − iδ) Et
2 =

= iκ1

(

Et
1 + Et

3

)

+ iκ2

(

Et
4 + Et

6

)

+ (iκ3 − κ0) Et
5 (40)

1

2

∂

∂x
Et

3 −
√

3

2

∂

∂y
Et

3 + (α − αL − κ0 − iδ) Et
3 =

= iκ1

(

Et
2 + Et

4

)

+ iκ2

(

Et
1 + Et

5

)

+ (iκ3 − κ0) Et
6 (41)

∂

∂x
Et

4 + (α − αL − κ0 − iδ)Et
4 = iκ1

(

Et
3 + Et

5

)

+ iκ2

(

Et
2 + Et

6

)

+ (iκ3 − κ0) Et
1 (42)

1

2

∂

∂x
Et

5 +

√
3

2

∂

∂y
Et

5 + (α − αL − κ0 − iδ) Et
5 =

= iκ1

(

Et
4 + Et

6

)

+ iκ2

(

Et
1 + Et

3

)

+ (iκ3 − κ0) Et
2 (43)

−1

2

∂

∂x
Et

6 +

√
3

2

∂

∂y
Et

6 + (α − αL − κ0 − iδ) Et
6 =

= iκ1

(

Et
1 + Et

5

)

+ iκ2

(

Et
2 + Et

4

)

+ (iκ3 − κ0) Et
3 (44)

In Equations 39-44, like in the case of square lattice, δ is the Bragg frequency deviation, given

by Equation 27, while κ1, κ2, and κ3 are the coupling coefficients, which are defined by 16 and

as follows (Koba, Szczepanski & Kossek (2011)):

κ1 =
π (εa − εb)

a ( f εa + (1 − f ) εb)

2 f J1(
√

8π f /
√

3)
√

8π f /
√

3
(45)

κ2 =
π (εa − εb)

a ( f εa + (1 − f ) εb)

2 f J1(
√√

38π f )
√√

38π f
(46)

κ3 =
π (εa − εb)

a ( f εa + (1 − f ) εb)

f J1(2
√

8π f /
√

3)
√

8π f /
√

3
(47)

These coefficients describe strength and direction of the coupling of the waves, e.g. the

coupling of Et
1 and Et

4 is described by κ3, the coupling of Et
1, Et

2, and Et
6 by κ1, and the coupling

of Et
1, Et

3, and Et
5 by κ2. In Equations 39-44, there is an additional coefficient κ0 which, like in

the square lattice case, is responsible for surface emission losses (Kazarinov & Henry (1985);

Vurgaftman & Meyer (2003)). Solution of Equations 39-44 for the boundary conditions:

Et
1(−

L

2
, y) = 0, Et

2(−
L

2
, y) = Et

2(x,− L

2
) = 0, Et

3(
L

2
, y) = Et

3(x,− L

2
) = 0,

Et
4(

L

2
, y) = 0, Et

5(
L

2
, y) = Et

5(x,
L

2
) = 0, Et

6(−
L

2
, y) = Et

6(x,
L

2
) = 0 (48)

defines structure eigenmodes at lasing threshold.
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3.1.4 Triangular lattice - TE polarization

In the triangular lattice photonic crystal cavity with TE polarization, the coupling process

involves waves satisfying the same condition as it was stated in TM polarization case, i.e.

(|G| = β0), (Sakai et al. (2008)), neglecting higher order Bloch modes. Six basic waves most

significantly contributing to coupling are depicted in Fig. 7.

Fig. 7. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h(G) (Equation 18) in the triangular lattice photonic crystal

cavity are written as follows (Sakai et al. (2008)):

Hz = Ht
1(x, y)e−iβ0x + Ht

2(x, y)e−i
β0
2 x−i

√
3β0
2 y + Ht

3(x, y)ei
β0
2 x−i

√
3β0
2 y

+Ht
4(x, y)eiβ0x + Ht

5(x, y)ei
β0
2 x+i

√
3β0
2 y + Ht

6(x, y)e−i
β0
2 x+i

√
3β0
2 y (49)

In Equation 49, Ht
i , i = 1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Fig. 7. Combining Equations 14, 49 and 12, and assuming slowly varying magnetic

field amplitudes, the coupled wave equations for TE modes in triangular lattice PC are

obtained:

− ∂

∂x
Ht

1 + (α − αL − κ0 − iδ)Ht
1 = −i

κ1

2

(

Ht
2 + Ht

6

)

+ i
κ2

2

(

Ht
3 + Ht

5

)

+ (iκ3 − κ0) Ht
4 (50)

−1

2

∂

∂x
Ht

2 −
√

3

2

∂

∂y
Ht

2 + (α − αL − κ0 − iδ) Ht
2 =

= −i
κ1

2

(

Ht
1 + Ht

3

)

+ i
κ2

2

(

Ht
4 + Ht

6

)

+ (iκ3 − κ0) Ht
5 (51)

1

2

∂

∂x
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3 −
√

3

2

∂

∂y
Ht

3 + (α − αL − κ0 − iδ) Ht
3 =

= −i
κ1

2

(

Ht
2 + Ht

4

)

+ i
κ2

2

(

Ht
1 + Ht

5

)

+ (iκ3 − κ0) Ht
6 (52)

∂

∂x
Ht

4 + (α − αL − κ0 − iδ)Ht
4 = −i

κ1

2

(

Ht
3 + Ht

5

)

+ i
κ2

2

(

Ht
2 + Ht

6

)

+ (iκ3 − κ0) Ht
1 (53)
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1

2

∂

∂x
Ht

5 +

√
3

2

∂

∂y
Ht

5 + (α − αL − κ0 − iδ) Ht
5 =

= −i
κ1

2

(

Ht
4 + Ht

6

)

+ i
κ2

2

(

Ht
1 + Ht

3

)

+ (iκ3 − κ0) Ht
2 (54)

−1

2

∂

∂x
Ht

6 +

√
3

2

∂

∂y
Ht

6 + (α − αL − κ0 − iδ) Ht
6 =

= −i
κ1

2

(

Ht
1 + Ht

5

)

+ i
κ2

2

(

Ht
2 + Ht

4

)

+ (iκ3 − κ0) Ht
3 (55)

where the coupling coefficients κ1, κ2, and κ3 are described by

κ1 =
−π

(

ε−1
a − ε−1

b

)

a
(

f ε−1
a + (1 − f ) ε−1

b

)

2 f J1(
√

8π f /
√

3)
√

8π f /
√

3
(56)

κ2 =
−π

(

ε−1
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b

)

a
(

f ε−1
a + (1 − f ) ε−1

b

)

2 f J1(
√

8π f
√

3)
√

8π f
√

3
(57)

κ3 =
−π

(

ε−1
a − ε−1

b

)

a
(

f ε−1
a + (1 − f ) ε−1

b

)

f J1(2
√

8π f /
√

3)
√

8π f /
√

3
(58)

and have the same physical meaning like it was described in the TM polarization case. The

boundary conditions for the square region of PC with triangular symmetry are written as:

Ht
1(−

L

2
, y) = 0, Ht

2(−
L

2
, y) = Ht

2(x,− L

2
) = 0, Ht

3(
L

2
, y) = Ht

3(x,− L

2
) = 0,

Ht
4(

L

2
, y) = 0, Ht

5(
L

2
, y) = Ht

5(x,
L

2
) = 0, Ht

6(−
L

2
, y) = Ht

6(x,
L

2
) = 0. (59)

3.2 Numerical analysis of the PC laser threshold operation

3.2.1 Square lattice - TM and TE polarization

In Fig. 8 enlarged areas of a square lattice photonic crystal dispersion characteristics for the

first four modes (A,B,C,D) in the vicinity of Γ point are shown. At the photonic band edge, i.e.

at the Γ point, the cavity finesse increases, hence the active medium is used more efficiently.

The dispersion curves are plotted for a) TM polarization and b) TE polarization. The plane

wave method (Johnson & Joannopoulos (2001)) was used to plot the dispersion characteristic

for the infinite two-dimensional PC structure with circular holes εb = 9.8 arranged in square

lattice with background material εa = 12.0. The rods radius to lattice constant ratio was set

to 0.24. In each plot, i.e. Fig. 8a) and Fig. 8b), one can observe two degenerate modes: B,C

for TM polarization and C,D for TE polarization. They have the same frequency at Γ point.

Modes A have the lowest frequency.

In Fig. 8 each of the marked points (A,B,C,D) represents a mode, which is characterized

by: Bragg frequency deviation δ, threshold gain α, and threshold field distribution. These

characteristic values were calculated by the numerical solution of Equations 23-26 for TM
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(a) (b)

Fig. 8. An enlarged area of a square lattice photonic crystal dispersion curves for the first four
modes in the vicinity of Γ point. Square lattice, a) TM polarization, and b) TE polarization.

polarization and Equations 30-33 for TE polarization. In order to assign appropriate points

A,B,C,D to the obtained numerical values, it was necessary to use the analytic expressions for

the Bragg frequency deviation (Sakai et al. (2006)):

δA = −2κ2 − κ3, δB,C = κ3, δD = 2κ2 − κ3 (60)

in case of TM polarization, and

δA = −8κ2
1/β0 − κ3, δB = −κ3, δC,D = −4κ2

1/β0 + κ3 (61)

in case of TE polarization. These expressions were obtained from Equations 23-26 and 30-33

where no gain (α = 0), no loss (κ0 = 0, αL = 0), and no spatial dependence of electric

or magnetic field amplitude were assumed. Sets of Equations 23-26 and 30-33 were solved

numerically for the wide range of coupling coefficients (κ1, κ2, κ3). We grouped obtained

solutions:
(

(δ, α, Es
m)

j
)

κ3i

or
(

(δ, α, Hs
m)

j
)

κ3i

, where κ3i corresponds to subsequent values of

coupling coefficient for different modes j = A, B, C, D; m = 1..4, s-denotes square lattice.

Assigning numerical values of δj to analytical solutions 60 and 61 (δA, δB,C, δD), we obtained

the mode structure of 2-D square lattice PC laser with TM and TE polarization.

Fig. 9 and 10 show the field distributions |∑m |Es
m|2| and |∑m |Hs

m|2|, respectively,

corresponding to the modes: A - Fig. 9a), D - Fig. 9b), B,C - Fig. 9c), d) for TM modes,

and A - Fig. 10a), B - Fig. 10b), C, D - Fig. 10c), d) for TE modes. The plots were made

for the normalized coupling coefficients |κ1L| = 10.96, |κ2L| = 8, |κ3L| = 4 and filling

factor f = 0.16. In each case (TM and TE polarization), the doubly degenerate modes are

orthogonal and show saddle-shaped patterns. All non-degenerate modes are similar and

exhibit Gaussian-like pattern, and this suggests that these modes should more efficiently use

the photonic cavity. These modes also have lower threshold , Fig. 11.

In Fig. 11a) and 11b), the normalized threshold gain αL was plotted as a function of Bragg

frequency deviation δL, for various values of the normalized coupling coefficient |κ3L| (it

takes values from 0.01 to 50).

Fig. 11a) and 11b) show that by increasing the value of coupling coefficient the Bragg

frequency deviation increases and the threshold gain decreases. Simultaneously, for larger
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(a) (b)

(c) (d)

Fig. 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points
from Fig. 8a), respectively. Square lattice, TM polarization.

(a) (b)

(c) (d)

Fig. 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points
from Fig. 8b), respectively. Square lattice, TE polarization.

values of coupling coefficient the threshold gain tends to similar values. This tendency is due

to growing field confinement in the cavity (all modes become Gaussian-like). In this case the
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(a) (b)

Fig. 11. The dependence of threshold gain versus Bragg frequency deviation. Square lattice,
a) TM polarization and b) TE polarization.

mode designation is only possible by the frequency deviation δ. It is also worth noting that the

threshold gain values for mode A are the lowest in wide range of coupling coefficient. These

modes (A for TM and TE polarization) by having the lowest threshold and by using the active

medium in the most efficient way, are favored for lasing.

3.2.2 Triangular lattice - TM and TE polarization

Repeating all the calculations shown for square lattice structures, we obtained threshold

characteristics for triangular lattice structures. In Fig. 12 enlarged areas of triangular lattice

photonic crystals dispersion curves for the first six modes (A,B,C,D,E,F) in the vicinity of

Γ point are shown. Fig. 12a) coresponds to TM polarization, and Fig. 12b) refers to TE

polarization. The circular holes εb = 9.8 arranged in triangular lattice with background

material εa = 12.0 were assumed. The rods radius to lattice constant ratio was set to 0.24.

In each plot, i.e. Fig. 12a) and Fig. 12b), there can be two pairs of doubly degenerate modes

observed: B,C and D,E for TM polarization, and B,C and E,F for TE polarization (they have

the same frequency at the Γ point). Modes A have the lowest frequency.

Bragg frequency deviation (for points marked as A,B,C,D,E,F in Fig. 12) depending on

coupling coefficient is analytically expressed in the following form for the TM polarization:

(a) (b)

Fig. 12. An enlarged area of dispersion curves of photonic crystal for the first four modes in
the vicinity of Γ point. Triangular lattice, a) TM polarization, and b) TE polarization.
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δA = −2κ1 − 2κ2 − κ3, δB,C = −κ1 + κ2 + κ3,

δD,E = κ1 + κ2 − κ3, δF = 2κ1 − 2κ2 + κ3 (62)

and for TE polarization:

δA = −2κ1 − 2κ2 − κ3, δB,C = −κ1 + κ2 + κ3,

δD,E = κ1 + κ2 − κ3, δF = 2κ1 − 2κ2 + κ3. (63)

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Electromagnetic field distributions corresponding to a)A, b)F, c)B, d)C, e)D, and f)E
points from Fig. 12a), respectively. Triangular lattice, TM polarization.

Fig. 13 shows the field distributions |∑m |Et
m|2|, m = 1..6 corresponding to the modes: A

- Fig. 13a), F - Fig. 13b), B,C - Fig. 13c), d), D,E - Fig. 13e), f). Fig. 14 shows the field

distributions |∑m |Ht
m|2|, m = 1..6 corresponding to the modes: A - Fig. 14a), D - Fig. 14b),

B,C - Fig. 14c), d), E,F - Fig. 14e), f). We set the values of the normalized coupling coefficients

for TM and TE polarization as follows |κ1L| = 13.96, |κ2L| = 6.6, |κ3L| = 4, and the value

of the filling factor f = 0.16. In case of TM and TE polarization, all degenerate modes are
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Electromagnetic field distributions corresponding to a)A, b)D, c)B, d)C, e)E, and f)F
points from Fig. 12b), respectively. Triangular lattice, TE polarization.

(a) (b)

Fig. 15. The dependence of threshold gain versus Bragg frequency deviation. Triangular
lattice, a) TM polarization, and b) TE polarization.
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orthogonal and show similar patterns. For TM polarization, Fig. 13, modes B,C are very

similar to the non-degenerate mode A. This means that the coupling coefficients have values

for which the modes tend to converge. Similarly for TM polarization, Fig. 14, where two pairs

of doubly-degenerate modes are similar to non-degenerate mode A. Likewise, it is due to high

values of coupling coefficients and mode convergence.

In Fig. 15a), and 15b) the normalized threshold gain αL was plotted as a function of Bragg

frequency deviation δ, for various values of the normalized coupling coefficient |κ3L| ∈
(0.01; 50).

Fig. 15 shows similar tendency as in square lattice examples, i.e. by increasing the values of

coupling coefficient the Bragg frequency deviation increases and the threshold gain decreases.

Simultaneously, for larger values of coupling coefficient the threshold gain tends to similar

values. This fact is due to the growing field confinement in the cavity (all modes become

Gaussian-like, e.g. Fig. 13 and 14). The mode designation is only possible by obtaining the

frequency deviation δ values. The difference in the threshold gain values of degenerate modes

stems from numerical inaccuracy, and the threshold gain values should be averaged.

4. An above threshold analysis

The above threshold analysis of light generation in square and triangular lattice

two-dimensional photonic crystal laser is based on the energy theorem, presented in e.g.

(Koba & Szczepanski (2010)). The introduction of the energy theorem into previously

presented coupled wave equations is straightforward but requires laborious calculations. This

section presents the results of these calculations, while accurate derivations can be found in

(Koba & Szczepanski (2010); Koba, Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch

(2011)).

At the basis of the described analysis lies a statement that the energy generated in the structure

is equal to the energy leaving the structure and the energy lost in it. In general, the gain

coefficient is a function of a small signal gain coefficient α0, saturation intensity IS, electric

field intensity in the laser structure I, and the shape of gain bandwidth. In the case of a

homogenous broadening and the laser action near resonance the gain coefficient is expressed

in the following form:

α =
α0

1 + (Iin + η Icoh) /IS
. (64)

In this equation Iin = ∑i |Ei|2 denotes noncoherent component of the electric field, whereas

Icoh = ∑i �=j EiE
∗
j is the coherent component, and is responsible for the spatial hole burning

effect. The strength of this effect is described by the phenomenological coefficient η ∈ (0, 1).

Equations presented in this section describe the relations between normalized small signal

gain coefficient and the laser output power, structure losses, and structure coupling coefficient.

4.1 Square lattice - TM and TE polarization

In order to obtain the expressions describing the small signal gain coefficient in square lattice

photonic crystal laser for TM and TE polarization we used the sets of coupled wave Equations

23 - 26 and 30 - 33, (Koba & Szczepanski (2010); Koba, Szczepanski & Osuch (2011)). We added
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these sets of equations respectively with their complex conjugates and into each obtained

equation we introduced the expression for the nonlinear gain Equation 64. These steps led us

to the equations for small signal gain with above threshold field distributions. We replaced

the above threshold distributions with the threshold field distributions which we found by

numerical solutions of the sets of Equations 23-26 and 30-33. The accuracy of this threshold

approximation has been discussed in (Szczepanski (1985)). The final expressions for the small

signal gain coefficient of square lattice photonic crystal laser are:

α0 =

{

∫∫

(αL + κ0) Mth − 2κ0ℜ (Tth) dxdy +
Wth

2

}

⎧

⎨
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⎭

−1

(65)

where
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in case of TM polarization, and
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where
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TTE
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Hs
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in case of TE polarization. In these equations Et
i , i = 1..4 and Ht

i , i = 1, 3, 5, 7 are the electric

and magnetic field amplitudes at the lasing threshold (Koba & Szczepanski (2010); Koba,

Szczepanski & Osuch (2011)).
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4.2 Triangular lattice - TM and TE polarization

Expressions describing the small signal gain coefficients for triangular lattice photonic crystal

laser are obtained in the analogical way as we have done for square lattice structure. All

necessary calculations can be found in (Koba, Szczepanski & Kossek (2011); Koba, Szczepanski

& Osuch (2011)). The starting points for these calculations are Equations 39-44 and 50-55 for

TM and TE polarization, respectively. The small signal gain coefficient in triangular lattice

photonic crystal laser with TM polarization is described as follows:

α0 =

{

∫∫

(αL + κ0)Mth − 2κ0ℜ
(

Et
1Et∗

4 + Et
2Et∗

5 + Et
3Et∗

6

)

dxdy +
Wth

2

}

·

⎧

⎨

⎩

∫∫

Mth

1 + Pout
PS

Mth+ηTth

Wth

dxdy

⎫

⎬

⎭

−1

(67)

where

Mth =
6

∑
m=1

∣

∣Et
m

∣

∣

2
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∑
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n ,
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and for the TE polarization:

α0 =

{

∫∫

(αL + κ0)Mth − 2κ0ℜ
(

Ht
1Ht∗

4 + Ht
2Ht∗

5 + Ht
3Ht∗

6

)

dxdy +
Wth

2
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·
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⎫
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−1

(68)

where

Mthq =
6

∑
m=1
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∣Ht
m

∣

∣

2
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thq =
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∣
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TTE
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∂
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Ht

m
∂
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and
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for TE polarization. In Equations 67 and 68 Et
i , i = 1..6 and Ht

i , i = 1, 3, 5, 7 are the electric and

magnetic field components at the lasing threshold, respectively.

In Equations 65-68, the distinguished factors Mth, Wth, and Tth are associated with total power

in the structure, outgoing power, and the spatial hole burning effect. Moreover, in case of TE

polarization, an additional factors TTE
th and MTE

th are included to take into account the electric

dipole interaction in terms of magnetic field.

Equations 65-68 allow us to plot the characteristics showing the behavior of small signal gain

for different structure parameters.

4.3 Numerical analysis

This section is devoted to the analysis of numerical solutions of Equations 65-68. As

mentioned earlier, the field distributions in Equations 65, 66, 67, and 68 are those which exist

at lasing threshold. We obtained these threshold field distributions by numerically solving

the sets of the coupled equations 23-26, 30-33, 39-44, and 50-55. The presented results describe

above threshold operation of square and triangular lattice photonic crystal laser with TM and

TE polarization. These results include nonlinear gain, structure imperfections losses, surface

emission losses and spatial hole burning effect. In this section we discus modes which are

marked as A in Fig. 8 and 12, section 3.

(a) (b)

Fig. 16. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Square lattice photonic crystal structures with a)TM, and b)TE polarization.
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(a) (b)

Fig. 17. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Triangular lattice photonic crystal structures with a)TM, and b)TE polarization.

Fig. 16 and 17 represent normalized small signal gain coefficient α0L as a function of the

normalized coupling constant κ3L with the normalized output power level Pout/PS as a

parameter, for two values of the normalized losses in the structure, αLL = 0 (solid line) and

αLL = 0.05 (dashed line), respectively.

In case of square lattice, we set the coupling coefficients ratios constant, and they are κ2/κ3 = 2

and κ1/κ3 = 2.74 (this corresponds to the filling factor f = 0.16). Whereas, for triangular

lattice we set κ1/κ3 = 3.49 and κ2/κ3 = 1.65, which is related to the same filling factor as in

square lattice case, i.e. f = 0.16. Constant ratio of the coupling coefficients corresponds to the

situation in which the relative refractive indexes difference vary, but the filling factor remains

the same, e.g. Equations 20-22 or 45-47. In the lossless structure with an increasing coupling

strength (i.e., increasing Q-factor of the cavity), the small signal gain required to maintain

given output power monotonically decreases. This tendency changes, when we introduce

losses. In this situation (depicted by dashed lines in Fig. 16 and 17) plotted curves have

minima within the considered values of the coupling coefficient κ3L. The minima are caused

by nonlinear gain, i.e. the gain saturation effect. Their depth and curve shape depends on the

output power Pout/PS, refractive index difference, and filling factor. The minima represent

the lowest value of small signal gain for considered system parameters. Thus, for each power

level and given other structure parameters, there exists an optimal coupling strength that

results in the minimal small signal gain required to maintain that output level. The small

signal gain is related to the active medium pumping rate, thus we expect that the pumping

level of the laser structure is also minimal. Therefore, we can say that for the optimal coupling

strength the laser structure operates at the maximal power efficiency. Moreover, with an

increasing output power level, the optimal coupling strength is shifted towards lower values

(Koba & Szczepanski (2010); Koba, Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch

(2011)).

5. Perspectives

Here, we point out a interesting path for further investigation of photonic crystal lasers. In this

chapter we discussed 2-D PC lasers, but since a lot of publications on three-dimensional (3-D)
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coupled mode theory are issued e.g.(Hamam et al. (2007)) and 3-D photonic crystal lasers are

developed e.g. (Tandaechanurat et al. (2011)) it would be interesting to introduce this 3-D

theory to PC lasers. This formulation would have to face some important issues, e.g. the

estimation of the number of coupling waves, and increasing number of coupled equations,

but it would give a crucial insight into 3-D photonic cavities.

6. Conclusions

In our work we have presented the systematic studies on the threshold and above threshold

two-dimensional photonic crystal laser operation. We have shown the comprehensive

coupled mode description of photonic crystal laser threshold operation, completing the

works of Sakai et al. by presenting the threshold model for triangular lattice structure with

TM polarization. Moreover, we conducted our calculations in the wide range of coupling

coefficient for all four cases (square and triangular lattice with TM and TE polarization),

which also has not yet been done. In addition, we have presented an approximate method

of the above threshold analysis of a 2-D photonic crystal laser operation. We showed the

approximate formulas for the small signal gain coefficients as a function of system parameters.

Furthermore, we made necessary calculations to obtain above threshold characteristics, which

depicted that it is possible to attain the optimal coupling strength providing maximal power

efficiency of a given 2-D photonic laser structure. We believe that our analysis and methods

could be useful in supporting the design process of a laser structure and help understand the

principles of photonic crystal band-edge laser operation.
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