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Overview of Computational Methods  
for Photonic Crystals 

Laurent Oyhenart and Valérie Vignéras 
IMS Laboratory, CNRS, University of Bordeaux 1 

France 

1. Introduction 

A photonic crystal (PC) is a periodic structure whose refraction index of the material is 
periodically modulated on the wavelength scale to affect the electromagnetic wave 
propagation by creating photonic band gaps. In 1887, Lord Rayleigh is the first to show a 
band gap in one-dimensional periodic structures i.e. a Bragg mirror. In 1987, Eli 
Yablonovitch and Sajeev John have extended the band gap concept to the two and three-
dimensional structures and for the first time, they use the term "photonic crystal" 
(Yablonovitch, 1987; John, 1987).  

Progress in computational methods for the photonic crystals is understood through an 
historical review (Oyhenart, 2005). At the beginning of research in the photonic crystals, the 
purpose was to find a structure with complete band gap by improving the computational 
methods. In 1988, John shows theoretically by the scalar method of Korringa-Kohn-Rostoker 
(KKR) that the face centered cubic lattice (FCC) has a complete band gap between the 
second and the third band. One year later, Yablonovitch builds this structure and finds a 
band gap experimentally but the W-point raises a problem. In 1990, Satpathy et al. and 
Leung et al. confirm the complete band gap by the scalar plane wave method (PWM). A few 
months later, these two teams improve their methods to obtain vectorial PWM on D and E 

fields. They find that FCC structure does not have complete band gap because W-point and 
U-point are degenerate. With these results, the editor of the journal "Nature" writes 
“Photonic Crystals bite the dust” (Maddox, 1990). Only two weeks later, Ho et al. created the 
vectorial PWM on H and they do not find the complete band gap in FCC structure but they 
show a complete band gap in the diamond lattice. In 1992, Sözuer et al. improve 
convergence of the PWM and they obtain a complete band gap for FCC lattice between 8th 
and 9th band. This structure that has caused many discussions has a complete band gap but 
not where it was expected.  

To study and understand the propagation of the electromagnetic fields in the photonic 
crystals, computational methods were improved by using their symmetries and 
periodicities. We will study the classical methods for microwave devices such as the finite 
element method and the finite difference time domain. After some modifications of these 
methods, we obtain the band structure of PC which can be calculated by the methods 
from the solid state physics. For example the plane wave method, the tight binding 
method and the multiple-scattering theory will be studied. All these computational 
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methods will be presented in this article and a PC example will be studied to compare 
these methods. 

2. Equations, symmetries and periodicities in photonic crystals 

2.1 Equations in photonic crystals 

The Maxwell equations without sources control the electromagnetic wave propagation  
in PC.  
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In these laws, the same physical behavior is observed if we change simultaneously the 

wavelength and the structure dimensions in the same proportions. Therefore, it is 

convenient to introduce a normalized wavelength ǌ0/a and a normalized frequency  

af/c= a/ǌ0, with a the lattice constant of the photonic crystal (Joannopoulos et al., 2008).  

Some methods do not solve the Maxwell equations directly but they use the Helmholtz 
equations, for example the E-wave equation or the H-wave equation: 
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Equations number to be solved depends on dimension of the photonic crystal.  In the two-

dimensional case, the problem is simplified. It is assumed that the materials are uniform 

along z-axis. It follows that the fields are uniform and the partial derivatives with respect to 

the variable z vanish. The previous equation is simplified and split-up into TE-polarization 

and TM-polarization; we have a scalar equation for each polarization: 
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The computation time decreases exponentially compared to the three-dimensional case. In 

the one-dimensional case, the problem is even more simplified. If the materials are uniform 

along x-axis and y-axis, we solve analytically one second-order equation: 
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2.2 Symmetries of photonic crystals 

Like all sets of differential equations, Maxwell's equations cannot be uniquely solved 

without a suitable set of boundary conditions. Photonic crystals have symmetries which 

define boundary conditions. Symmetries of the structure are not a sufficient condition to 

reduce the computational domain; the electromagnetic field must be also symmetrical. On 

figure 1, we study symmetries on a lattice of cylinders for different polarization of the 
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incident wave. In the first case, we apply a TM incident wave on the lattice with a horizontal 

symmetry and the tangential magnetic field vanishes on the axis of symmetry. We put 

perfect magnetic conductor (PMC) as boundary condition on the symmetry axis and we 

study only half top or bottom of the problem. In the second case, we apply a TE incident 

wave. Similarly, we reduce the problem with a perfect electric conductor condition (PEC). 

 

Fig. 1. Both kinds of lateral symmetries 

On figure 1, the geometry has also a vertical symmetry. However, the electromagnetic field 
is not symmetrical because the incident wave comes only from the left side. A solution is to 
divide the incident wave into an even mode and an odd mode (figure 2). For the even mode, 
we have a vertical symmetry plane of the electric field. Only the left or right part is solved 
with a perfect magnetic conductor condition on the axis of symmetry. The antisymmetric 
problem is reduced in the same way with a perfect electric conductor condition. The sum of 
the symmetric and antisymmetric problem provides the solution of the total problem. The 
reflection of total problem is the sum reven + rodd and the transmission is the subtraction reven - 
rodd. Two half-problems are solved more quickly than the whole problem because the 
computation time increases exponentially with the size of the problem. 

 

Fig. 2. Transverse symmetries of the problem 

2.3 Periodicities of photonic crystals 

Photonic crystals, like the familiar crystals of atoms have discrete translational symmetry T. 

The dielectric function is periodic therefore the electric and magnetic fields can be written as 

the product of a plane wave envelope and a periodic function: 
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The result above is commonly known as Bloch's theorem in solid state physics (Kittel, 2005). 

If we apply these conditions to an infinite lattice of cylinders (figure 3a), the calculation of 
band structure is reduced to the study of a single cylinder. 

 
Fig. 3. Periodic boundary on photonic crystals 

Figure 3b is a lattice of cylinders, finite along y-axis and infinite along x-axis for studying the 
transmission of the structure. If we know the transfer matrix of one layer, it is easy to find 
the transmission of the total structure thanks to the transfer matrices method (TMM). It 
reduces the computational domain to one layer. It will be detailed in the next sections.  

By mixing TMM along y-axis and Bloch's conditions along x-axis, the structure of figure 3 
can be reduced to a single cylinder. Figure 4 summarizes these techniques in the 3D case. 

 

Fig. 4. Reduction of the calculation domain in PC 

3. Finite element method (FEM) 

The finite element method is very popular in mechanics and civil engineering. It was 
originally developed in the 40s to solve problems of mechanical structures. A few years 
later, it has been applied to electromagnetism. Since then, the finite element method 
extends to all branches of physics and engineering where there exists a partial differential 
equation (PDE) with boundary conditions. It can be formulated from the variational 
method or the weighted residual method. We will present in outline the second method 
which is simpler. 
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Let us consider a partial differential equation with   the differential operator of order n 

applied to a function φ and a source function f:  

 f   (6) 

The first step is to expand the function φ on a set of functions: 

 
 

1

N

j j

j

c 


   (7) 

j
 are the chosen expansion functions and 

j
c are constant coefficients to be determined. The 

best solution of the equation 6 is obtained when the residue r f    is weakest on all points 

of the domain . The weighted residual method requires this condition:  
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If we use the Galerkin method, the weight functions wi are the functions of previous 
interpolations and we write the problem in matrix form: 
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So now, we have to solve a linear system with cj unknowns where most of the entries of the 
matrix L are zero. Such matrices are known as sparse matrices, there are efficient solvers for 
such problems. 

The basic idea of the finite element method is to divide the computation domain into small 
subdomains, which are called finite elements, and then use simple functions, such as linear 
and quadratic functions, to approximate the unknown solution over each element. For plane 
geometries, the domain is divided into finite triangular sub-domains. For three-dimensional 
problems, the sub-domains are tetrahedra. These two- and three-dimensional finite elements 
are widely used because it is a variable mesh and adapts to curved structures.  

3.1 Transmission calculation of a photonic crystal 

The finite element method usually solves the E-wave equation for PC (equation 5): 

       2

0 r
k     E r r E r   (10) 

For most of the finite elements computer programs, the frequency is fixed and the electric 
field is the unknown (Massaro et al., 2008). We use a commercial software, Ansys HFSS 
(High Frequency Structure Simulator). This three-dimensional computer program builds an 
adaptive tetrahedral mesh to model microwave devices, for example microstrips and 
antennas. These devices have a characteristic length lower than the wavelength of study. It 
is more difficult to study PC because it has a periodicity close to the wavelength and the 
matrix of calculation is large. To simplify calculations, we will study a periodic PC 
according to two directions of space. The directions where PC is infinitely periodic require 
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to study only one period according to this direction. Several methods exist to model these 
conditions.  

In the first method, the source is a plane wave and we use periodic boundary conditions 

(PBC) on lateral faces and absorbing boundary conditions (ABC) on bases. We study only 

one lateral period (figure 5). If the source has an oblique incidence, the phase shift is easily 

taken into account by PBC because the E-field is a complex vector in FEM. 

 

Fig. 5. Calculation of E-field in the PC with PBC, ABC and incident wave 

The second method requires a very different source, a wave port. This source is a semi-

infinite waveguide whose cross section is drawn on bases of structure. Propagative modes 

of this fictitious guide will be the source of the structure. For a plane wave source, we apply 

to lateral faces and on the fictitious guide the conditions PEC and PMC (figure 6). The 

source is transverse and has a normal incidence. It is not possible to change the angle of 

incidence without change the boundary conditions of the lateral faces. The PC studied on 

figure 5 can be reduced to quarter-spheres thanks to the symmetry of the fields at normal 

incidence. 

 

Fig. 6. Calculation of E-field in the PC with PEC, PMC and wave ports 

3.2 Band structure calculation 

The band structure shows the states which propagate in a PC. These states are differentiated 

by their frequency and their Bloch wave vector. FEM sets the wave vector and solves the 

wave equation to find the frequencies. There is no source, only boundary conditions to set 

because it is an eigenvalue problem. In the case of a cavity resonator, the boundary 

conditions of the domain are PEC. Whereas, for PC, we choose the Bloch conditions on all 

faces of the unit cell to set the wave vector. The phase shift of the Bloch conditions is set 

easily because the fields are complex vectors. The FEM calculates the band structure of 

dielectric with or without losses, metallic, and metallodielectric PC. Any material can be 

used by this method, it is the main advantage. 

In this chapter, we choose a photonic crystal to study, a cubic lattice with several layers of 

dielectric spheres which have a permittivity equal to 5.1 and radius equal to 0.4*a (a: lattice 

Wave port2  
Source 

Wave port1  

 

Lateral boundary conditions: 

 PEC on up and down faces  

 PMC on left and right faces  

AB
ABC 

k0 

E 

PBC on lateral faces

Source: incident wave  
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constant). For the band structure, the number of layer is infinite, and for transmission 

calculation, we study four and eight layers. The structure is deliberately simple to be 

studied by all the methods. The band structure, the transmission coefficient in normal 

incidence and some modes of dielectric PC are plotted on figure 7. For normal incidence, the 

first two band gaps are found in the band structure and transmission curves. 

The first method with incident waves takes about 7 hours and 960 Mo of working memory 

on a personal computer to calculate the transmission of 8 layers i.e. 8 spheres. Whereas if we 

use the second method with the wave ports, the memory is reduced to 360 Mo and the CPU 

time is reduced to 8 min. To obtain this optimization, we reduced the geometry to four 

quarter-spheres thanks to symmetries and we use the Padé interpolation on frequencies. It is 

necessary to make optimizations if you want to use FEM. 

 

Fig. 7. Band structure and transmission coefficient of dielectric PC  

4. Finite-difference time-domain method (FDTD) 

Finite difference method is a numerical method for approximating differential equations 

using finite difference equations to approximate derivatives. This is very simple 

to implement but it has some limitations in the mesh geometries. In 1966, Yee proposed a 

finite difference scheme applied to electromagnetism. The FDTD was born (Taflove & 

Hagness, 2005). The success of this method is due to the scheme based on the Taylor series 

of second-order. For example, this method is used to model the effects of cellphones on the 

human body, antennas and printed circuits. The FDTD uses the two structural equations of 

Maxwell in a conducting, isotropic and homogeneous medium:  
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The FDTD uses an approximation of derivatives by centered finite differences. 
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Let us apply this approximation to one-dimensional case in order to understand the FDTD 
principle. The E and H-field are stepped in time and space. By replacing curls and 
derivatives, we obtain one-dimensional Yee scheme: 
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The E and H-field are staggered and updated step by step in time. E-field updates are 
conducted midway during each time-step between successive H-field updates, and 
conversely. This explicit time-stepping scheme avoids the need to solve simultaneous 
equations, and furthermore it is order N i.e. proportional to the size of the system to model. 
This scheme can be generalized for two-dimensional and three-dimensional problems. The 
Yee scheme is stable if the wave propagates from one cell to another with a speed less than 
the light (the Current-Friedrichs-Lewy condition). 

4.1 Calculation of transmission coefficient  

FDTD is used to study PC. Calculation domain of finite PC is surrounded by absorbing 
boundary conditions (ABC). The periodic infinite PC uses periodic boundary conditions 
(PBC) on the lateral faces (Figure 8). The source is Gaussian with a spectrum which extends 
on the frequency range to study. The fields are calculated on the time domain and we use 
the Fourier transform to convert them on frequency domain. 

 

Fig. 8. Source, probe and boundary conditions for infinite PC 

For the non-normal incidence, a simple periodic boundary condition cannot be applied but 
many methods exist to solve this problem. One method is to calculate the computing 
problem twice, with the sources cos(t) and sin(t). The addition of two calculations is the 
solution of the source exp(-it). Thanks to this source, we can apply the Bloch conditions on 
complex vector fields. This method is simplified for the study of band structure.  

Figure 9 plot the transmission coefficient for the previous dielectric PC. The transmission 
calculation of 8 layers is calculated in 32 minutes with 58 Mo of working memory. FDTD is 
faster than FEM but less accurate. 

PBC Probe PC 

Plane wave 

ABC ABC 
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Fig. 9. Transmission coefficient of the dielectric PC 

4.2 Calculation of band structure 

The band structure is calculated from the eigenmodes but FDTD is not an eigenvalue 

problem. We use the unit cell of PC with boundary conditions of Bloch and several 

Gaussian functions for the source. We only need one calculation to apply the Bloch 

conditions. After 100000 time-steps of calculation, propagative waves are amplified and 

evanescent waves vanished. If the number of time steps is too small, the transmission 

peaks are widened, therefore imprecise. To reduce the number of time-steps without 

affecting the accuracy, we can use the Padé approximation or ADI-FDTD formulation 

(Taflove & Hagness, 2005). On Figure 10, we plot the electric field amplitude of the unit 

cell of PC. 

 

Fig. 10. Electric field amplitude of dielectric PC at the R-point of the Brillouin zone 

This curve is similar to the diffraction pattern in solid state physics. It is plotted for all 
points of the first Brillouin zone to view the band structure. If we compare the curve of 
figure 10 with the band structure calculated by the FEM, the mode 0.57 is much 
attenuated and the following mode does not exist on figure 10. In fact, the source was not 
correctly selected to excite these modes, and so we must ensure that the source excites all 
available modes. 
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5. Finite-difference frequency-domain method (FDFD) 

We will study a finite difference method combined with transfer matrix method and the 

Fourier transform. The finite difference method substitutes the derivatives in PDE to obtain 

finite difference schemes. In electromagnetism, FDFD uses the structural equations of 

Maxwell on space (k, ) and applies approximations on the wave vector: 
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a,b,c are lattice constants along x, y and z-axis. We obtain discrete equations which are 

applied to one layer of the structure on a cubic lattice. In 1992, Pendry and MacKinnon 

(Pendry & MacKinnon, 1992) used this method with transfer matrix method (TMM) which 

extended the solution of one layer to the total structure. To apply TMM, the discrete 

equations must be written on real space. We obtain a set of equations where z-component of 

the E and H-fields can be removed. The six equations are reduced to four equations which 

are written in a matrix form: 

                 T
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5.1 Calculation of band structure 

The band structure is calculated from unit cell of structure by setting frequency and 

calculating wave vectors propagating in the unit cell. Bloch's theorem applies to vector F: 
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and' ,  '   'a a b b c c     are the mesh size along x, y and z-axis. The transfer matrix of 

the unit cell is written from the unit mesh: 

          1

1

withˆ ˆ ˆ,0  ,0 ,  
N

j j

r j

c c c 
 

      F r T F r T T r r   (17) 

If the above equations are joined together, we have an eigenvalue problem: 

      ˆ ,0 zik c

r

c e




  T F r F r   (18) 

We set the wave number k and the wavelength k0 to solve the eigenvalue problem. The 

eigenvalues kz having an imaginary part are eliminated because they are not propagating 

waves. The remaining eigenvalues gives us the band structure kz(k0).  
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5.2 Calculation of transmission coefficient 

The reflection and transmission calculation is performed using the transfer matrices. It is 
more interesting to calculate the elements of transmission matrix than the transmitted field 
in some points. The incident, reflected and transmitted waves are expanded on a plane-
wave basis sets thanks to the transfer matrices.  

ˆ
0

T is the transfer matrix of a vacuum layer. The eigenvectors of ˆ
0

T  define a plane-wave 

basis set: 
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ˆ
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r e r

l e l
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0

0

T

T
  (19) 

The right and left eigenvectors are different because ˆ
0

T  operator is not self-adjoint. They are 

expanded on the reciprocal space kx and ky and translate on the direct space with the Fourier 

transform because the transfer matrix is known in direct space. kz is found easily because we 

are in a vacuum layer. The transfer matrix T̂  is not compatible with the new plane-wave 

basis set, we convert this matrix:  

 ˆ
j i j i i j jil r l T r T l r T   

 

  T      (20) 

To calculate the transmission coefficient, this matrix is arranged to group the eigenvectors 
with the same propagation direction. This matrix is divided into four blocks: 
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TMM calculates the transmission coefficient of several layers from one layer (see  
1D-MST). A great number of layers can be calculated without increasing the computing 
power. 

Figure 11 plot the band structure and the transmission coefficient calculated by FDFD, for 
the previous dielectric PC. If we compares with figure 7, the first bands are correct but 
inaccuracies on the higher band after 0.6-frequency are due to the weak mesh (7x7x7 cells). 
If we increase the number of cells, accuracy increases. Calculation is more difficult for high 
frequencies because the E- and H-field are functions that oscillate more. The transmission 
calculation of 8 layers is calculated in 22 seconds with 3.3 Mo of working memory for 7x7x7 
cells. The computing time is low because only one sphere is actually calculated thanks 
TMM. 

6. Finite Integration Technique (FIT) 

In 1977, Weiland proposes a spatial discretization scheme to solve the integral equations of 
Maxwell (Weiland, 1977). This scheme called Finite Integration Technique (FIT) can be 
applied to many electromagnetism problems, in time and frequency domain, from static up 
to high frequency. The basic idea of this approach is to apply the Maxwell equations in 
integral form to a set of staggered grids like FDTD (figure 12).  
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Fig. 11. Band structure and transmission coefficient of dielectric PC 

 

Fig. 12. Tension and flux component on the mesh 

The spatial discretization process is applied to the integral form of the Faraday's law: 
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
      



 E r l B r S

   
  (22) 

This last equation is an exact form without approximation. This process is applied to the 

other Maxwell equations in integral form. CST Microwave Studio is the software based on 

the FIT. Unlike FDTD, we use the local integral form and we can apply the technique of 

Perfect Boundary Approximation (PBA) which decreases the meshes on the boundaries.  

7. The tight binding method (TB) 

The tight binding method (Lidorikis et al., 1998) is less used than the PWM although this 
method is fast for the calculation of defect states in a PC. By analogy with the TB model in 
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solid-state physics, H-field is expanded on localized wave functions. They are calculated 
from the Wannier functions an(R,r) for a PC without defect: 

  
 

1
2

3
2

, ( , )
2

i
n n

BZ

e d


 
  k R

a R r H k r k   (23) 

The Wannier functions are a complete set of orthogonal functions which is defined for  
each band and each unit cell. The Wannier functions only depend on the quantity (r-R),  
r is the space position and R is any lattice vector. The reverse relation is written as  
follows: 

 
 

 
1

2

3
2

( , ) ,
2

i
n n e




  k R

G

H k r a R r   (24) 

Hn(k,r) functions are the eigenvectors of H-wave equation. PWM solve this equation to get 
the Hn(k,r) functions for the PC without defect. To study a defect in PC, the H-field is 
expanded on the previous Wannier functions: 

    ( ) ,n n

n

c
R

H r R a R r   (25) 

Green's functions method solve the H-wave equation for the photonic crystal with defect. 

8. Plane Wave Method (PWM) 

Plane wave method is used to study the band structure of PC. It comes from the solid 
state physics where the electronic wave functions are scalar whereas the electromagnetic 
fields are vectors. A scalar approximation of fields is not enough to describe band 
structure. This method is modified to take the vectorial nature of the fields into account. 
Three computational methods of vectorial PWM were created quasi-simultaneously:  
the E-field method (Leung & Liu, 1990), the D-field method (Zhang & Satpathy, 1990) and 
the H-field method (Ho et al., 1990). The D and H-field are continuous in PC unlike the  
E-field. Moreover, only the differential operators of the wave equation on E-field and  
H-field are self-adjoint. We present the H-field method because of these properties.  
PWM expands the field and permittivity on plane-wave basis set. The permittivity is a 
periodic function with translational symmetry T, so Bloch's theorem can be applied to the 
H-field:  

 with
.

 ( ) ( )     ( ) ( )ie  K r
H r h r h r h r T   (26) 

All periodic functions can be expanded on reciprocal space with Fourier series: 
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  (27) 

The H-field is written: 
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As the H-field is transverse, each plane wave is perpendicular to the propagation vector 

K+G. The transverse plane of the propagation vector is described by the unit vectors 1ˆ
 K G

e  

and 2ˆ
 K G

e . The set of vectors  1 2ˆ ˆ, ,    
K G K G

e e K G  represents an orthonormal basis. We only 

need to storage two vectors instead of three, consequently data storage is reduced. The 

Fourier series expansion is replaced in the H-wave equation: 
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  (29) 

Some algebraic calculations simplify this equation and we get for every vector G, the central 
equation of the photonic crystals: 
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ˆ ˆ h k h
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This equation is an eigenvalue problem which is solved with classical methods. The Bloch 
vector K is set and we try to find the eigenvalues k0. The calculation convergence depends 
on the N number of reciprocal lattice vectors G. A minimum number of vectors G is 
necessary to describe correctly the permittivity of the PC. The convergence of the problem is 
rather slow. As the H-field is transverse, the number of equations is decreased from 3N to 
2N. The PWM is difficult to apply to the materials whose permittivity depends on the 
frequency like metals. On figure 13, we plot the band structure of the dielectric PC. It is 
calculated in 12 seconds with 10 Mo of working memory for 343 plane-waves. Calculation is 
fast because the structure is simple. If we compares with figure 7, we obtain the same result. 

 

Fig. 13. Band structure of the previous dielectric PC 
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8.1 One and two-dimensional photonic crystals 

If we study one or two-dimensional PC, the central equation is written in another form and 
will be simplified: 

 
2 2 2 1

2
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In the two-dimensional case, we choose the constant permittivity along z-axis. The vectors K 
and G are in the xy plane. The vectors of the central equation are indicated on figure 14. 

 

Fig. 14. Vectors definition of the central equation 

In the central equation, the matrix of the scalar products is simplified: 
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  (32) 

The 2N equations split into two parts, the TE-polarization and the TM-polarization. On the 
TM-polarization, the H-field vanishes on the xy-plane and the central equation is written: 
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On the TE-polarization, the H-field is parallel to x-axis and the equation is written: 
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  (34) 

In the one-dimensional case, the equations for TE and TM-polarization become similar. We 
solve N equations. 

9. One-dimensional multiple-scattering theory (1D-MST) 

The multiple-scattering studies the interaction between objects using the analytical solution 
for each object taken individually. In the next section, we will apply the MST to the 
cylinders and the spheres. Before, we will establish the analytical solution of one-
dimensional PC i.e. multilayer structures. 

x

z 
2ˆ ẑ  

K G
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e  y 
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9.1 Transfer-matrix method (TMM) 

Transfer-matrix method is known since many years (Born & Wolf, 1999). It is essential for 
the study of PC. TMM reduces the computational domain. In this section, transfer matrix 
will be applied to one-dimensional PC. For oblique incidences, we solve the E-wave 
equation for TE-polarization and the H-wave equation for TM-polarization. Two 
polarizations are separated and we use the same steps of calculation for two polarizations. 
We will study only the E-wave equation: 

      2 2
0 0rk   E r r E r   (35) 

Let us suppose that the layers of 1D-PC are stacked up along ez. The PC is uniform 
according to e┴ and e║ (figure 15). Because of these symmetries, the E-field and E-wave 
equation are simplified: 
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  (36) 

We use the boundary conditions of each layer to solve the previous equation. The electric 
field En for a layer n is written with a forward wave and a backward wave (figure 15): 

   , ,z n z nik z ik z
n n nE z a e b e

      (37) 

 

 

Fig. 15. Field expansion on backward wave and forward wave 

We calculate the transfer matrix between layer 1 and 2. The phase shift between the 
beginning and the end of layer 1 can be written in a transfer matrix form: 
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Boundary conditions at the interface of layer 1 and layer 2 provide the following expression:  
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The product of previous matrices provides the transfer matrix from layer 1 to layer 2: 

 
2 1 11 12 2

1 1
2 1 21 22

with    .
a a T T

b b T T
  

     
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T T Λ Φ   (40) 

The transmission of the layer is calculated from inversion of transfer matrix. The inverse  
will be calculated directly from phase shift matrices and interface matrix to avoid 
inaccuracies: 
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The following equation converts the transfer matrix to scattering matrix: 
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 (42) 

Reflection and transmission coefficients are equal respectively to: 

 
1

21
11 211 1

11 11

1
      

T
S S
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

 
   (43) 

Several layers are calculated similarly.  

9.2 Kronig-Penney model 

The Kronig-Penney model evaluates the electronic levels of a crystal structure in a one-
dimensional periodic potential (Kittel, 2005). This model has been modified to be used in PC 
and takes into account the oblique incidences (Mishra & Satpathy, 2003). We use TMM and 
the field expansion on backward and forward wave. The structure is periodic according to z-
axis (figure 16).  

 

 

Fig. 16. Refraction index of one dimensional PC 
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The field E(z) of the previous section is a Bloch function on z. The continuity of tangential 
fields and the Bloch theorem give the two following relations: 
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dE dE
e
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



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 (44) 

K is the wave vector of Bloch. In the unit cell, the permittivity is not uniform according to z-
axis. It is splitted into sub-cells with a constant permittivity. We calculate the transfer matrix 
of the unit cell from the expressions of the previous section:  

 2 11 12 1

2 21 22 1

a T T a

b T T b


    
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We expand equation 44 on forward and backward waves: 
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Equation 46 is replaced in equation 45: 

 11 12 1 1

21 22 1 1
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e
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 (47) 

The Bloch factor eiKa and the complex conjugate value e-iKa are the two eigenvalues of the 
transfer matrix because the determinant of this matrix is equal to one. The trace of the 
transfer matrix is equal to the sum of the eigenvalues: 

 11 22
iKa iKa

T T e e
    (48) 

If the materials of the photonic crystal do not absorb, we have *
11 22T T . Similarly to the 

Kronig-Penney model, the above relation is written from the transmission coefficient: 
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After simplification, the transcendent equation is written: 

 
 

 21

21

cos
cos

S
Ka

S


  (50) 

We get an equation similar to electronic case. The transmission coefficient is different in the 
TE and TM-polarization. To plot band structure f( k║,K, k0) = 0, we set the wave numbers k0 
and k║ and calculate the Bloch number K. 
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10. Two-dimensional multiple-scattering theory (2D-MST) 

The multiple-scattering is an analytical theory which calculates the scattering of N objects 
from the scattering of each object independently (Felbacq et al., 1994). In the two-
dimensional case, objects are cylinders and the theory uses the scalar wave equation: 

        2 2 2 1 rE k E k E      r r r r  (51) 

Outside the cylinders, the wave equation can be split into two equations, one for the 
incident field E0 and the other one for the scattered field Es: 
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 (52) 

Using Green's theorem, the scattered field outside the cylinder can be written as follows: 
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The function H is a Hankel function. The surface integral can be restricted to the Cj 
cylinders. The scattered field is written as a sum: 
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The cylinders interact to give the scattered field by the structure. To better understand the 
process of multiple-scattering between the cylinders, we will study a simple example of 
cylinders with circular section aligned along x-axis and excited by an incident field 
propagating along x-axis (figure 17). 

 

Fig. 17. Incident field on n cylinders aligned 

The incident field is expanded into Bessel functions: 
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We define the total incident field around the cylinder i which takes into account other 
cylinders: 
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    i
i il l

l

E a J krr  (56) 

In the case of the cylinders with circular section, the integral 54 is calculated analytically: 

    (1)j
s jl l

l

E b H krr  with jl jl jlb S a  (57) 

Sjl is the scattering coefficients (Bohren & Huffman, 1998). The field  j
sE r  scattered by a 

cylinder j is shifting on another cylinder i to become an incident field Gjil.bjl on this cylinder 

with Gjil the translation coefficients (Felbacq et al., 1994). If we shift all the scattered fields 

on the cylinder i, and if we add the initial incident field to it, we get the total incident field 

on the cylinder i: 

 0il jil jl l
j i

a G b a


   (58) 

By using the equation 57, we get the multiple-scattering equation: 

 0il jil jl jl l
j i

a G S a a


   (59) 

Gjil and Sjl are the translation and scattering matrix coefficients. To get the total incident field 
and the field scattered by the structure, it is necessary to calculate Gjil and Sjl coefficients and 
to solve the multiple-scattering equation. This method is suitable for the study of defects in 
PC because it does not impose any condition on the position and the material of cylinders. 
On figure 18, we study a 2D-PC with 80 cylinders doped by a microcavity. 

 

Fig. 18. Transmission coefficient of triangular 2D-PC with a defect 
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11. Three-dimensional multiple-scattering theory (3D-MST) 

The three-dimensional multiple-scattering theory use same principles as the two-
dimensional case but three-dimensional case is more complex because the Helmholtz 
equation is vectorial. The 3D-MST is separated into two parts, the calculation for one sphere 
and the generalization to N spheres (Oyhenart & Vignéras, 2007). The first part calculates 
the scattered wave by one sphere with Mie theory. The base of spherical harmonics is 
written as follows:  
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 (60) 

Zl are the Hankel and Bessel spherical functions and  ,
lm

Y   are scalar spherical wave 

functions. The incident field and the scattered field are expanded on spherical wave 

functions: 
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The elements of S-matrix are Mie's coefficients (Bohren & Huffman, 1998). Figure 19 
presents an example of the incident and scattered fields by a sphere. 

 

Fig. 19. Pictures of incident and scattered fields by a metallic sphere 

The second part of the method is an iterative algorithm to calculate scattered field for N 
spheres from one sphere (figure 20). For the first order, we calculate the scattering of the 
incident field for each sphere. For the second order, the scattered field of first order for one 
sphere becomes the incident field for the N-1 other spheres. With this new incident field, the 
scattered field is calculated as at first order and so on, for higher orders. This iterative 
process stops when it is converged. The total scattered field is the contribution of all spheres 
and all orders. The material and the size of these N spheres can be different. Moreover, 
spheres may be put in a random way, without symmetry conditions on spheres positions. 

E 

k 
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These two last remarks show all the interest of this method in calculation of PC with defects 
and random structures. 

 

Fig. 20. Block diagram of multiple-scattering method, the total scattered field is the sum of 
the scattered fields for all orders. 

For periodic structures, calculation is simplified. Figure 21 plot the transmission coefficient 
for the previous infinite dielectric PC. The transmission calculation of 8 layers is calculated 
in 11 minutes with 63 Mo of working memory. By using the principle of KKR-method of 

solid state physics, MST can also calculate the band structure (Wang and Al, 1993). MST 

is the fastest method for the finite structures and random structures. 

 

Fig. 21. Transmission coefficient of the infinite periodic dielectric PC  
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12. Conclusion: Comparison of computational method 

The computational methods are studied and compared on table 1. The first four methods are 

three-dimensional numerical methods coming from electromagnetism. The FEM gives very 

precise results but it requires many resources systems. Another method, the FDTD is very 

used and converges without an excessive mesh thanks to its formulation. If you want more 

precise results, the mesh becomes heavy and you need to use FEM. The FDFD studies 

photonic crystals with a high number of layers by modeling only one layer. The FIT is a 

method which studies numerically PC with a high number of objects, without holding 

excessive resources system but the result is approximate. These methods calculate dielectric 

and metallic PC to obtain reflection and transmission coefficients and the band structure.  

Then, we have others methods resulting from the solid state physics which require a very 

small computing time. They were adapted from the scalar methods of the solid state 

physics. The PWM calculate only the band structure. The tight binding method is less used 

than the PWM although this method is fast for the calculation of defect states in a PC. The 

multiple-scattering theory which is also used in optics studies analytically large finite PC 

and it easily takes the defects into account in the PC. For three-dimensional PC, there is 

no simple method, fast and accurate. We must remove a feature. For example, the 3D-

MST is fast and accurate but the computer program is complex to write. 

 

 FEM FDTD FDFD FIT TB PWM 1D-MST 2D-MST 3D-MST 

Origin E.M. E.M. E.M. E.M. Q.M. Q.M. Q.M. E.M. both 

Maxwell's equations Freq. Time Freq. Time Freq. Freq. Freq. Freq. Freq. 

Calculation Num. Num. Num. Num. Num. Num. Analyt. Analyt. Analyt. 

Geometries 3D 3D 3D 3D 2D/3D 3D 1D Cyl. Sphere 

Discrete equations X X X X      

Expansion, series X    X X X X X 

Free space, finite PC X X  X   X X X 

Infinite periodic PC X X X X  X X X X 

Band structure X X X X  X X X X 

Transmission/reflection X X X X   X X X 

Metallic PC X X  X    X X 

Single defect in finite-PC X X  X   X X X 

Periodic defect X X X X X X X X X 

computing speed slow med. fast fast fast med. fast fast fast 

data storage large low low low low low low low low 

commercial software X X    X    

Free software X X X   X  X X 

Popular method in PC  X  X  X    
 

Abbreviations: 
Q.M. : quantum mechanics and solid state physics 
E.M. : electromagnetism 
Freq. : frequency domain 
Time : time domain 

 
Analyt. : analytical method 
Num. : numerical method 
Med. : medium 
Cyl. : cylinder 

Table 1. Specifications of the computational methods 
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