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1. Introduction   

More than twenty years have passed since that time when the analogy between solid-state 
physics and optics led to the concept of photonic crystals (PCs) (Yablonovitch, 1987). Fast 
progress in theory and applications of PCs has been stimulated to a large extent by their 
unique properties that allow increasing the potential of light controlling. Slabs of PC have 
mainly been studied in case of linear virtual interfaces and a noncurvilinear lattice. A rich 
variety of the fascinating physical phenomena has been demonstrated for these structures, 
which include superprism, subwavelength imaging, focusing, collimation, and negative 
refraction with and without left-handed behaviour (Inoue&Ohtaka, 2004; Luo, 2002). They 
all appear while using only conventional linear isotropic metals and dielectrics due to the 
specific dispersion of Floquet-Bloch waves in PCs, which is not obtainable for solid pieces of 
the same materials. Breaking of periodicity in PCs results in the appearance of defect modes, 
which manifest themselves in the transmission and waveguide regimes (Joannopoulos, 
1995). On the other hand, PCs with curvilinear virtual interfaces but still linear lattice have 
been investigated in the context of such applications as planoconcave lenses (Gralak, 2000; 
Vodo, 2005), mirrors (Saado, 2005), and splitters (Wu, 2005). PCs having both curvilinear 
interfaces and lattice, e.g., coaxial PCs (Schleuer&Yariv, 2004) and atoll resonators (Nojima, 
2007) are also known.   

New operation regimes can be obtained due to merging effects of dispersion and diffraction, 
e.g., in two-dimensional PCs. In the mid 2000’s, PCs with the corrugated interfaces have 
been proposed to redirect the reflected waves to the side directions (Collardey, 2005), obtain 
unusual order of the cutoff wavelengths for higher diffraction orders (Serebryannikov, 
2006), and realize a new mechanism of negative refraction due to the umklapp refracted 
beams (Lu, 2007). Later, PCs with the corrugated interfaces have been called photonic crystal 
gratings (PCGs) (Serebryannikov, 2009). Strong asymmetry in transmission has been 
demonstrated in dielectric two-dimensional PCGs theoretically (Serebryannikov, 2009) and 
in the microwave experiment (Cakmak, 2010). Recently, a similar effect has been studied in 
the two-dimensional sonic crystals (Li, 2011). The structures with a corrugated interface and 
a defect-mode waveguide, which is perpendicular to the interface, have been used for 
obtaining of the beaming, that is connected with the excitation of surface waves due to 
corrugations (Caglayan, 2008; Smigaj, 2007). A structure that is excited by a defect-mode 
waveguide located along the virtual interfaces of the corresponding noncorrugated PC has 
been suggested (Le Thomas, 2007), where the corrugations provide coupling of an otherwise 
uncoupled defect mode to an outgoing wave in air.  
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In this chapter, we focus on the transmission and reflection regimes with strong directional 
selectivity that appear in PCGs owing to the additional periodic corrugations arranged at 
the virtual interface(s) of a defect-free slab of PC with linear virtual interfaces and 
noncurvilinear lattice. First of all, additional corrugations enable downshifting of the 
frequency range where higher diffraction orders may propagate in air, so that it corresponds 
to the range of existence of lower-order Floquet-Bloch waves, which are well studied in the 
context of the above-mentioned phenomena. Theoretical background and numerical results 
will be presented with the focus on new operation regimes, which can be used in optical 
devices that require strong directional selectivity. Consideration is restricted here to the two-
dimensional square-lattice PCs composed of dielectric rods, while the virtual interfaces of 

the corresponding noncorrugated PC are assumed to be along -X direction in k space, and 
the incident plane wave is s-polarized. Figure 1 illustrates a possible evolution from the slab 
of PC with the noncorrugated interfaces (a) to the PCG with the one-side (b) and, then, to 
the PCG with the two-side asymmetric (c) corrugations.  

The first class of the considered regimes (Sec. 2) includes those related to the unidirectional, 
i.e., extremely asymmetric transmission. High transmittance from one half-space to the other 
can be obtained if a PCG is illuminated from the corrugated side, but it is vanishing if 
illumination is in the opposite direction, within a wide range of the frequency variation 
(Serebryannikov, 2009). This is probably the most interesting regime obtainable in the 
dielectric PCGs. Breaking of the spatial inversion symmetry, i.e., introducing nonsymmetry 
with respect to the midplane of the corresponding noncorrugated PC is required for 
obtaining of such a forward-backward unidirectional transmission. The necessary condition 
is that zero diffraction order is not coupled to any Floquet-Bloch wave, but at least one 
higher diffraction order may propagate in air due to the one-side corrugations. 
Transmission from the noncorrugated side towards the corrugated side is forbidden, while 
that from the corrugated side is possible owing to higher diffraction order(s). Single-beam 
unidirectional deflection and two-beam unidirectional splitting belong to the most typical 
unidirectional diode-like transmission regimes. The main attention will be paid to the PCs 
with the noncircular (non-isotropic type) isofrequency dispersion contours (IFCs), which are 
located in k space near either M or X point, and the circular (isotropic type) IFCs, which are 

located near  point and correspond to the effective index of refraction 0<|Neff|<1.  

The second class of the operation regimes (Sec. 3) is connected with the Fabry-Perot type 
resonances that can appear in the nonsymmetric PCGs so that zero and higher diffraction 
orders simultaneously contribute to the transmission. Classical resonances, i.e., those with a 
single (zero) order in transmission, are well known for the noncorrugated slabs of PC (Sakoda, 
2001; Serebryannikov, 2010). In the PCGs, strong asymmetry of the Fabry-Perot resonance 
transmission occurs at normal illumination. It can be obtained even if zero order is only 
coupled to a Floquet-Bloch wave, despite that the higher orders may also propagate in air due 
to the one-side corrugations. In this case, the higher orders, which appear at the corrugated 
exit side and propagate in the exit half-space, can mainly contribute to the transmission, if the 
PCG is illuminated from the noncorrugated side, but they remain evanescent in the exit half-
space, if the PCG is illuminated from the corrugated side. At the same time, a nondominant 
zero-order transmission is symmetric, i.e., it does not depend on the illumination side.  

The third class of the operation regimes (Sec. 4) is associated with total reflections that 
involve at least one higher order. They can be obtained inside a band gap of the PC, if the 
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corrugated side is illuminated. In turn, only zero order contributes to the reflection, if the 
noncorrugated side is illuminated, that leads to strong asymmetry. It will be demonstrated 
that the corrugations enable transformation of a desired part of the incident wave energy 
into that of higher reflected orders. The presented numerical results are obtained by using 
the fast coupled integral equation technique (Magath&Serebryannikov, 2005).  

2. Unidirectional transmission  

Diode is one of the main elements required in various optical and microwave circuits. 
Obtaining of unidirectional diode-like transmission is usually associated with nonreciprocity 
and, hence, with the use of anisotropic, e.g., gyromagnetic (Figotin&Vitebskiy, 2001; Yu, 2007; 
Wang, 2008), or nonlinear (Scalora, 2004; Shadrinov, 2011) materials, that allows breaking 
time reversal symmetry. Furthermore, spatial inversion symmetry should be broken, i.e., the 
resulting structure must be nonsymmetric with respect to the midplane similarly to Figs. 
1(b) and 1(c). Nonreciprocal transmission can be obtained when the symmetry of the parity-
time operator is broken (Rüter, 2010) that can be obtained, for example, in a two-channel 
structure owing to a proper choice of the real and imaginary parts of the index of refraction.  

Various manifestations of directional selectivity in the structures that are reciprocal, because 
of being made of isotropic linear materials only, but allow asymmetric transmission due to 
transformation of all or significant part of the incident wave energy into either another 
polarization or higher diffraction orders, have been a subject of the extensive study for a few 
years. For example, chiral structures are considered to be perspective for achieving isolation 
for certain polarization states (Plum, 2009; Singh, 2009). It has recently been demonstrated 
that the complete optical isolation can be achieved dynamically in a linear photonic system 
with temporal modulation of the refractive index (Yu&Fan, 2009). Nonmagnetic optical 
isolators can be obtained in the structures that contain two modulators, in which a desired 
phase shift appears for the co- and counter-propagating waves due to the temporal 
modulation of bias voltages (Ibrahim, 2004). In this context, PCGs present another big but 
yet weakly studied class of the reciprocal structures for asymmetric transmission. Contrary 
to the chiral structures, neither polarization transformation nor rotation of polarization 
plane occurs in PCGs at asymmetric transmission, provided that they are made of linear 
isotropic materials.  

(a)  (b)  (c)  

Fig. 1. Noncorrugated slab of square-lattice PC (a) and the corresponding PCGs which have 
one-side (b) and two-side (c) corrugations. 
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2.1 Physical background  

First, let us briefly consider the effect of breaking spatial inversion symmetry in the 
conventional dielectric gratings. In line with the classical theory of diffraction gratings (Petit, 
1980), transmission and reflection are characterized in terms of the nth order transmission 
and reflection efficiencies, which are given by 

2| |n nt   and 
2| |n nr   and take into account 

a part of the incident wave energy in the corresponding propagating orders. Here, n  and 

n  are the nth order transmission and reflection coefficients. In turn, transmittance T and 
reflectance R are given by a sum over all the orders propagating in air. According to the 
grating formula (Petit, 1980), the nth order diffraction angle, n , is determined from  

 sin sin 2 /n n kL    ,  (1) 

where  is angle of incidence and L is grating period, so that n  takes a real value for an 
order that propagates in air. All the diffraction angles for the transmitted beams are 
measured in the counter-clockwise direction with respect to the normal to the exit side. The 
angle of incidence is measured in the counter-clockwise direction with respect to the normal 
to the input side.  

Figure 2 presents the transmission spectra for the two nonsymmetric dielectric gratings. One 
can see that 0 0 0t t t    but n nt t   at |n|=1, while 0     , where   and   
stand for the forward (here – from the top) and backward (from the bottom) illumination, 
respectively. A partially asymmetric transmission with higher orders being responsible for 
the asymmetry, while the zero-order transmission is symmetric, can be observed in Fig. 2. 
This is one of the fundamental properties of the nonsymmetric gratings. The ratios 

0( 0) /mm t t 
   and 0( 0) /mm t t 

   may strongly depend on frequency and 
geometrical and material parameters of the grating. Replacing a dielectric with a PC enables 
a wide range where 0 0t   and 0mt   and, hence,     and    . In the other 
words, the “strength” of asymmetry can be enhanced, so that asymmetric transmission becomes 
unidirectional, i.e., 0T   and 0T  . Owing to the band gaps, unidirectional 
transmission can appear inside wide frequency and incidence angle ranges. This is 
distinguished from a solid dielectric grating, where these conditions might hypothetically be 
realized only for a pair of frequency and angle values, but not inside wide ranges. In fact, 
unidirectional transmission like that in PCGs should not appear in nonsymmetric dielectric 
gratings, where zero order is always coupled to a wave propagating in the dielectric. 
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Fig. 2. Transmittance for two nonsymmetric gratings made of dielectric with permittivity (a) 
2.1d   and  (b) 5.8d  ; solid line - 0 0 0t t t   , dotted line - 1t , and dashed line - 1t ; 

right panel - geometry of a grating period.  
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The use of gyromagnetic and nonlinear materials enables unidirectional devices with a 
single transmission channel like in conventional electronic diodes. Transmission mechanism 
in the PCGs needs at least two transmission channels, every being associated with a certain 
in-air propagating order. In the contrast with the nonreciprocal structures that contain 
anisotropic or nonlinear materials and reciprocal chiral structures, all the diffracted beams 
in PCGs show the same linear polarization. In line with the previous studies of PCGs 
(Serebryannikov, 2009), zero order being uncoupled to any Floquet-Bloch wave is required 

for obtaining of the unidirectional transmission, that in turn dictates the allowed values of  
and IFC shapes. Accordingly, at the corrugated-side illumination, the umklapp refractions 
are only possible.  

Two typical coupling scenarios are demonstrated in Fig. 3. Conservation of the wave vector 
component that is parallel to the interface, xk , requires that the IFC crosses a construction 
line, in order to couple the corresponding order to a Floquet-Bloch wave of the PC 
(Foteinopoulou&Soukoulis, 2005; Lu, 2007). Locations of the construction lines are 
determined by the following condition:  

 ( ) ( / )sin 2 /n
xk c n L    .    (2) 

Figures 3(a)-3(c) illustrate the coupling mechanism in case of the simplest, i.e., narrow 

circular IFCs around  point, for which the diffraction relevant unidirectional transmission 
may appear. They correspond to an isotropic material with the index of refraction 0<N<1, 
i.e., are narrower than the IFC in air at the same frequency. Hence, similar asymmetry in 
transmission can be observed, for example, in the nonsymmetric gratings made of a material 
with 0<N<1, e.g., a Drude metal above the plasma frequency, or a wire medium above the 
effective plasma frequency (Serebryannikov&Ozbay, 2009). Figures 3(d)-3(f) illustrate the 

coupling mechanism in case of near-square IFCs located around  point, which can be 

obtained in dielectric PCs. Construction lines are plotted for a value of , at which at least 
one higher diffraction order is coupled to a Floquet-Bloch wave due to the corrugations.  

In Figs. 3(a) and 3(d), only zero order may propagate in air regardless of whether the 
incidence is forward or backward. This case is assumed to correspond to a noncorrugated 
slab of PC, as in Fig. 1(a), or to a PCG in the frequency range where all higher orders are 
evanescent. In Figs. 3(b) and 3(e), the first order(s) may propagate in air and is allowed to 
couple to the Floquet-Bloch wave, for the corrugated-side illumination, but should remain 
evanescent in the input half-space and uncoupled to the Floquet-Bloch wave at the 
noncorrugated-side illumination. Thus, transmission is not vanishing in the former case 
only. Assuming that we initially have a noncorrugated slab of PC like that in Fig. 1(a), and 
then removing some rods from one of the interface layers, we obtain a PCG like that in Fig. 
1(b), which is nonsymmetric with respect to the midplane. The simplest corrugations can be 
obtained by removing every second rod from an interface layer, so that the lateral period of 
the PCG is L=2a, where a is PC lattice constant. In Figs. 3(b) and 3(e), it is assumed that P=2  
is the minimal integer value of P in L=Pa, which provides such a location of the construction 
lines with respect to the IFC at a given frequency that unidirectional transmission can be 
obtained. In fact, P depends on the concrete performance of PCG and, thus, may be a rather 
arbitrary integer. A PCG can still be nonsymmetric and, thus, might support asymmetric 
transmission, while having corrugations at the both sides, e.g., see Fig. 1(c). However, a 
larger difference between the periods of the two interfaces should provide a stronger 
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asymmetry in terms of the number of the orders contributing to the transmission. In order to 
obtain unidirectional transmission with rather strong forward and zero backward 
transmission, the value of a must be chosen so that higher diffraction orders may not 
propagate due to the effect of the noncorrugated interface. In Figs. 3(c) and 3(f), the same 
IFCs are presented as in Figs. 3(b) and 3(e), respectively, but now 4L a . Hence, the 

distance between the neighbouring construction lines is reduced by factor of 2. As a result, 
now more diffraction orders may propagate in air due to the corrugated interface, and more 
orders among them may be unidirectionally coupled to a Floquet-Bloch wave.  
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Fig. 3. Coupling scenarios leading to unidirectional transmission: green solid line - IFC of PC; 
blue dash-dotted circle - IFC in air; dashed lines - construction lines; ”0” , ”-1”, ”+1”, ”-2” and 
”+2” denote the order index (n); ”+” and ”-” at plot top indicate that the corresponding order 
is either coupled or not coupled to a Floquet-Bloch wave, if the corrugated side is illuminated; 
”-” and ”xx” at plot bottom indicate that the corresponding order is either uncoupled at the 
noncorrugated interface or does not propagate in the input half-space, at the noncorrugated-

side illumination; IFCs of PC are assumed to be located around (a-c)  point and (d-f) M point; 
plots (a,d): noncorrugated slab of PC, L=a; plots (b,e): PCG with the simplest one-side 
corrugations, L=2a; plots (c,f): PCG with the one-side corrugations, L=4a.  

From this consideration, it is clearly seen why at least the first negative order for positive 

nonzero  and the first positive and first negative orders for zero  must propagate in air 

and be coupled to a Floquet-Bloch wave. The scenario shown in Fig. 3(b) corresponds to the 

regime of single-beam unidirectional deflection. The angle between the directions of the 

incident and single transmitted beams is given by 1    . At a larger number of the 

orders propagating in air, as in Fig. 3(c), there may be multiple open transmission channels, 

every being connected with a certain order, so that splitting occurs in the unidirectional 
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deflection regime. In the general case, we have n mt t  and n m  , n m ,  for all the 

propagating orders. In the situation shown in Fig. 3(e) for =0, two beams are allowed to 

propagate in air, 1 1 0t t    and 1 1    . The number of the transmitted beams at 

normal incidence is always even, since they propagate symmetrically with respect to the 

normal, n nt t   and n n    . Thus, two-beam unidirectional splitting appears in this case, 

while deflection of the beams with n=m and n=-m is symmetric regarding the normal. It is 

noteworthy that the IFC shapes, which can be obtained in two-dimensional PCs but are 

distinguished from those in Fig. 3, can also be consistent with the requirements to the 

diffraction relevant mechanism of unidirectional transmission (Serebryannikov, 2009). 

Furthermore, this remains true for IFCs that are typical for one-dimensional PCs (Kang, 

2010) and anticutoff (indefinite) media (Schurig&Smith, 2003). Hence, this mechanism is 

quite flexible regarding the choice of materials/structures that might be utilized to create a 

nonsymmetric grating.  

Since the structures we consider are assumed to be composed of isotropic linear materials 

only, transmission remains reciprocal in sense of the Lorentz Lemma (Kong, 2005). This 

results in the equal transmittances while replacing source and observation point with each 

other, i.e., (i) when the PCG is illuminated from the corrugated side at    and (ii) when 

the PCG is illuminated from the noncorrugated side but at n     , where n
  is the 

diffraction angle for the nth order transmitted beam at the corrugated-side illumination. For 

example, if the beam of the order n=-1 is the only higher-order propagating beam, as can 

appear at nonzero , and 1 TtT 
    at   , then 1 TtT 

    at 1  
 . This does 

not contradict with the fact that the transmission is unidirectional for the two opposite 

directions of incidence. 

2.2 Asymmetry in threshold location 

In the conventional dielectric gratings, each higher order (|n|>0) has a cutoff wavelength 
and, hence, a threshold frequency, i.e., it propagates if  

 0| 2 / |k n L  , (3) 

where 0 sink   , k=/c (Petit, 1980). In the gratings made of Drude metals or composites, 

the actual thresholds have different locations as compared to the classical case that is 

associated with dielectric gratings (Serebryannikov & Ozbay, 2009). In the PCGs with either 

dielectric or metallic rods, the actual thresholds can also be affected by location of the stop 

bands of the PC (Serebryannikov, 2006; Serebryannikov, 2009). 

Let denote the k thresholds which correspond to the boundary between the propagation and 
evanescent regimes for the nth diffraction order in a dielectric grating by  

 ±n 2 /[L(1 sin )]  k n , (4) 

where 0n   and 0  . In the vicinity of nk k , rapid variations in nt  and nr  often appear, 

which are assigned to the Rayleigh-Wood anomalies (Hessel&Oliner,1965). In turn, the 

actual thresholds for a PCG with one-side corrugations at the exit interface are denoted by 
( )S
nk . The actual thresholds for a PCG with one-side corrugations at the input interface are 
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denoted by ( )ˆ S
nk . Here, S=T for transmission and S=R for reflection. Finally, ( )uk  and ( )lk  

denote k values that correspond to the upper and lower boundaries of the first stop band. 

Figure 4 schematically shows the stop and pass bands, the idealized transmission spectrum 

of PC, the threshold values of k, and the ranges of propagation of the lowest higher order(s) 

in transmission, for the both PCG and dielectric grating with one-side corrugations. 

According to Fig. 4(a),  

 ( )( ) ( ) Tl u
m mk k k k    , (5) 

where m=-1 if 0   and 1m    if 0  . In this case, location of the actual cutoff is 

determined by the upper boundary of the stop band. The mth order(s) propagate in the exit 
half-space due to the corrugated interface, starting from this boundary. In Fig. 4(b), 

 ( )( ) ( ) ˆ Tl u
m mk k k k   . (6) 

Hence,  

 ( )( ) ˆ TT
m mk k ,         (7) 

that is distinguished from the classical grating theory, which gives 

 ( )( ) ˆ TT
m mk k .         (8) 

The situation in Fig. 4 is realized if zero order is only coupled to the second lowest Floquet-
Bloch wave of the PC, i.e., at ( )( ) ˆ Tu

mkk k  , leading to that 0 0t t   and 0tT    while 

0tT   . In fact, ( )ˆ T
mk  is determined in Fig. 4(b) by the lower boundary of the third lowest 

passband, for which the mth order(s) are assumed to be coupled to the Floquet-Bloch wave.  

(a)

passband 1
pass-

band 2
pass-

band 3

stop

band 1

T

k

 (b)

passband 1
pass-

band 2
pass-

band 3

stop

band 1

T

k

 

Fig. 4. Example of composition of pass and stop bands of PC that affects k-domain threshold of  
higher order(s) in case when ( )u

mk k ; circles – the actual thresholds in transmission for the 
dielectric grating (top) and PCG (bottom); the adjacent rectangles show the k ranges where the 
mth order(s) may propagate; gray line – the idealized transmission spectrum; plot (a) – 
noncorrugated-side illumination, plot (b) – corrugated-side illumination.  

Figure 5 schematically shows the stop and pass bands of the PC and reflection spectrum 
together with the thresholds and ranges of contribution of the lowest higher order(s) in 
reflection for the both PCG and dielectric grating with one-side corrugations. In Fig. 5(a), we 
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have ( ) ( )u R
m mk k k    where m is the same as in Fig. 4. Thus, location of the actual threshold is 

determined here by the lower edge of the third lowest passband, i.e., ( )( ) ˆ TR
m mk k . In turn, 

( ) ( )T R
m mk k  . In Fig. 5(b), ( )ˆ R

mm kk  , as in the dielectric grating case. Then, ( ) ( )ˆ R R
mm kk   , 

( ) ( )ˆ ˆT R
m mk k , and ( )( ) ˆ RT

m mk k . Hence, in the contrast with nonsymmetric dielectric gratings, 
asymmetry in threshold location may appear owing to peculiar types of PC dispersion. In 
fact, the difference in location of the ranges of 0mt   and 0mt  , on the one hand, and 

0mr   and 0mr  , on the other hand, is a key feature that is connected with the expected 
asymmetry in transmission and reflection at least for lower-order stop and pass bands. For 
higher-order bands, it can be explained in terms of the generalized cutoffs/thresholds.  
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Fig. 5. Same as Fig. 4 but for reflection.  
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Fig. 6. Same as Fig. 4 but in case when ( )u
mk k . 

Figures 6 and 7 are analogous to Figs. 4 and 5, respectively, but now ( )u
mk k . In the 

contrast with Figs. 4 and 5, we have simultaneously ( ) ( )ˆ T R
mmm kkk    and ( )( ) ˆ RT

mm m kk k  . In 
turn, ( )( ) ˆ TT

m mk k  and ( )( ) ˆ RR
m mk k . Hence, the different combinations of locations of ( )S

mk  and 
( )ˆ S
mk  with respect to each other and to mk  can be obtained by adjusting the corrugation and 

PC lattice parameters.  

2.3 Forward vs backward transmission 

Let us consider the effect of variation in L on the appearance of higher orders in the 
transmission, in both cases of the corrugated-side and the noncorrugated-side illumination, 
at normal incidence. An example is shown in Fig. 8 for typical values of the rod-diameter-to-
lattice-constant ratio, d/a, relative permittivity of the rod material, r , and an intermediate 
number of the rod layers, Q. Figures 8(a) and 8(b) partially correspond to the case of the k 
thresholds location, as in Figs. 5(a) and 5(b).  
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Fig. 7. Same as Fig. 5 but in case when ( )u
mk k . 

Indeed, 0tT   but 0 1 1t t tT  
     at 6<kL<8.4. At the same time, 1 1t tT  

    and 
0T   at 8.4<kL<10.5, where 1   is varied from 48  to 37  degrees. In fact, the difference 

between these two cases originates from the different locations and shapes of IFCs. For the 
first of them, which corresponds to the second lowest Floquet-Bloch mode, the IFCs are 
located around  point, but narrower than in air. Thus, the orders with 1n    may 
propagate in air due to the corrugated interface, but are not coupled. For the second of them, 
which corresponds to the third lowest Floquet-Bloch mode, the IFCs are located around M 
point, so that the orders with 1n    may propagate in air due to the corrugations and are 
coupled at the corrugated-side illumination. In turn, zero order is not coupled.  

In the first range, we observe one-way transmission with the both symmetric ( 0t ) and 
asymmetric ( nt , |n|>0) components being nonzero. This case is similar to that 
demonstrated for the nonsymmetric microwave metallic gratings, where different periods at 
the two sides are created by a proper branching of the thin slit waveguides (Lockyear, 2006), 
and in the nonsymmetric gratings that contain the Drude material layers, while the periods 
are different owing to the one-side corrugations (Serebryannikov&Ozbay, 2009). In all the 
figures, the most representative ranges with 0tT   and 0tT   are denoted by “One-
Way”. In the second range, unidirectional transmission takes place in the form of 
unidirectional splitting, i.e., 1 1t t 

  , 1 1t tT  
   , while 0T  . In Figs. 8(a) and 8(b), one 

more range of unidirectional splitting is seen at 11.2<kL<12.4, where 1  is varied from 34  
to 30  degrees. It is connected with the fifth lowest Floquet-Bloch mode. Here, we again 
have 0T   and 0T  , while even a higher transmittance is achieved than at 
8.4<kL<10.5. Furthermore, 1T   at the lower edge of the passband, so that exactly the 
diode regime is realized. In the figures, the most representative ranges of unidirectional 
transmission ( 0T   and 0T  ) are denoted by “UD”. 

Increasing the number of the rod columns per grating period might lead to that the actual 
thresholds are shifted towards smaller ka and, hence, lower passbands. An example is 
shown in Figs. 8(c) and 8(d) at P=3. Contrary to the case of P=2, n nt t   at | | 0n  . 
Unidirectional transmission with 1 1t tT  

    and 0T   appears already for the lowest 
Floquet-Bloch mode, i.e., at the edge of the lowest passband for 7<kL<7.9, where 1   is 
varied from 63.8 to 52.7  degrees. The IFCs are located now around M point, so that zero 
order is uncoupled. In turn, at smaller kL, the IFCs are located around  point that enables 
coupling of zero order. For the third lowest Floquet-Bloch mode, we obtain unidirectional 
transmission with 1 1 2 2t t t tT    

        and 0T   at 13.2<kL<15.8.  
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Fig. 8. Transmittance for PCGs with (a,b) L=2a, (c,d) L=3a, (e,f) L=4a, for the corrugated-side 
(a,c,e) and noncorrugated-side (b,d,f) illumination; d/a=0.31, 5.8r  , Q=12, =0; blue solid 
line - 0t ; red dashed line - 1t  (a, e), 1t  (b, f), 1t  (c), and 1t  (d); green dotted line - 2t  (e), 

2t  (f), 2t  (c), and 2t  (d); cyan dotted line - T  (a,c,e) and T  (b,d,f); right panels – 
geometry of PCG within a period.  

At P=4, unidirectional splitting takes place for the first (now at 9.6<kL<10.4) and third 

lowest Floquet-Bloch waves. - See Figs. 8(e) and 8(f). The main difference as compared to the 

case of P=3 is probably that the regime with 2 2t tT  
    can be realized at the band edge 

for the third lowest Floquet-Bloch wave (at kL>16.9). It is noteworthy that one-way 

transmission with 0tT   and 0tT   can appear also at P>2, e.g., at 9.2<kL<10.5 in Figs. 

8(c) and 8(d) and at 15.6<kL<16.9 in Figs. 8(e) and 8(f). A proper choice of the PC lattice 

parameters is important from the point of view of obtaining of the switching between 
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different regimes. For example, in Fig. 8(a), the ranges of  0tT   and 1 1t tT  
    are 

adjacent but do not superimpose near kL=8.4. 
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Fig. 9. Transmittance for PCGs with (a) d/a=0.4, 5.8r  , Q=12, and (b) d/a=0.31, 9.61r  , 
Q=12, at L=2a and =0, for corrugated-side illumination; blue solid line - 0t , red dashed line 
- 1t , and blue dotted line - T . 
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Fig. 10. Same as Fig. 9 but at L=3a, green dotted line – 2t  , cyan dotted line - T . 

Two more cases are shown in Figs. 9(a) and 9(b). In Fig. 9(a), the one-way and unidirectional 

transmission ranges superimpose at 7.7<kL<8.1. In Fig. 9(b), there is a gap between them at 

7.3<kL<7.9. Hence, the PCG in Fig. 8(a) is optimal for the switching realizable by varying 

frequency. In Fig. 8, it has been shown that unidirectional transmission can be observed at 

rather small kL. Figure 10 demonstrates, in addition, that the ranges of 0tT   and 

1 1t tT  
    can do not superimpose at the edge of the lowest passband. Here, the 

corrugations are obtained by removing one rod from every two of three columns in the 

interface layer in Fig. 9(a) and from every third column in the interface layer in Fig. 9(b). 

Now, n nt t   due to the used corrugation shape. Comparison of Figs. 8-10 shows that the 

maximal transmittance achievable in the unidirectional transmission regime for a certain 

higher-order Floquet-Bloch mode is strongly dependent on the PC lattice and corrugation 

parameters, as well as the contribution of individual higher orders.  

For a PCG with fixed parameters, variation in  gives an efficient tool for tuning. Strong 
modification of the transmission spectrum can be achieved even at a rather weak variation. 
An example is presented in Fig. 11 for the PCG illuminated from the corrugated side, for 
which transmittance at =0 is shown in Fig. 8(a). At =10 degrees (Fig. 11(a)), transmittance 
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is two-way, i.e., 1 0t  , 1 0t  , 0tT  , and 0tT  , for the most part of the one-way 
transmission range of Fig. 8(a) that belongs to the second lowest passband (here at 
6.2<kL<8.2). At the same time, transmission remains unidirectional for the third lowest 
passband, but now 1 1t t 

   and a stop band appears between the second and third 
passbands. Appearance of a narrow unidirectional transmission band in the vicinity of 
kL=5.4, where 1tT 

  and 0T  , is probably the most interesting feature seen in Fig. 
11(a). The lower boundary of this band is determined by 1k k  (kL=5.35), according to (4), 
so that the rapid increase of 1tT 

  is connected with the Rayleigh-Wood anomaly. The 
upper boundary is due to the narrowing and further disappearance (near kL=5.47) of the 
IFCs at increasing kL. The transmitted beams in this case are strongly deflected. For 
example, 1 82    degrees at kL=5.4.  
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Fig. 11. Same as Fig. 8(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); 
blue solid line - 0t , red dashed line - 1t , and green dotted line - 2t . 

Increase of  up to 20 degrees leads to that this band becomes wider, and the switching 
between the regimes of 0tT T    (two-way, symmetric) and 1tT 

  (unidirectional) 
occurs at 4.7kL   – See Fig. 11(b). To compare, (4) gives 1 4.68Lk  , i.e., the rapid increase 
of 1t  is again due to the Rayleigh-Wood anomaly. At the same time, the unidirectional 
transmission range observed in Fig. 11(a) in the vicinity of kL=9 disappears. The obtained 
results show that a rather wide range of 1tT 

  can appear at the edge of the lowest 
passband in the both unidirectional splitting (=0) and unidirectional deflection ( 0  ) 
regimes. Further increase of  can result in the appearance of the high-T unidirectional 
deflection range, as occurs for the second lowest Floquet-Bloch mode at kL=7.6 and =30 
degrees, where 1 0.6max maxT t 

  . – See Fig.  11(c). However, in this case, switching of 
such a kind as in Fig. 11(b) at the edge of the lowest passband cannot be obtained. Instead, 
there are three consequent ranges at 4<kL<5, which are similar to those in Fig. 8(c):  0tT   
(two-way, symmetric), 0 1t tT 

   (one-way, asymmetric), and 1tT 
  (unidirectional). 

Besides, two new ranges of one-way transmission appear at 8.7<kL<10.1 and 11.3<kL<12.4, 
where 0 2t tT 

   and 0 1 2t t tT  
    .  

Figure 12 presents the transmission spectra at the three values of , for the same PCG as in 
Fig. 9(a). The defect-mode-like unidirectional peak in Fig. 12(b) and switching between the 
regimes of 0tT   and 1tT 

  in Fig. 12(c), both being connected with the first lowest 
Floquet-Bloch mode, are obtained now at larger  than in Fig. 11. Here, the rapid increase of 

1t  has the same nature as in Fig. 11. Other features observed are similar, too. Hence, 
various operation regimes can co-exist in the adjacent frequency ranges, at a proper choice 
of the PC lattice and corrugation parameters and a value of  
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Fig. 12. Same as Fig. 9(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); blue 
solid line - 0t , red dashed line - 1t , orange dash-dotted line - 1t , and green dotted line - 2t . 

There are several problems to be solved in order to design such PCGs that are consistent 
with the requirements and limitations regarding the realistic nanofabrication process and 
illumination characteristics. For example, the requirement to the frequency range of 
unidirectional transmission to be wide, which is connected with possible fabrication 
inaccuracies, should be fulfilled simultaneously with the requirement to this range to show 
high transmittance within a wide range of  variation, which is important for the incident 
beams with a wide plane-wave angular spectrum. Figure 13 presents the transmission 
spectra for a PCG with the selected parameters, which is expected to better fulfil the above-
mentioned requirements. The wide unidirectional transmission range with 1 0.8tT 

   
and 0T   is located near kL=5.6. Obtaining of -independent unidirectional ranges with 

1T   should be the next step towards practical diode-type devices.  
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Fig. 13. Transmittance at the corrugated-side illumination for PCGs with L=2a, d/a=0.5, 
9.61r  , Q=12, =40 degrees (a),  =50 degrees (b), and  =60 degrees (c); blue solid line - 

0t , red dashed line - 1t , cyan dotted line - T . 

3. Fabry-Perot type transmission 

The alternating total-transmission maxima and zero-transmission minima, which can be 
interpreted in terms of the Fabry-Perot resonances, belong to the main features of the 
transmission spectra of the lossless dielectric slabs. Transmittance is given in this case by the 
well-known formula (Born&Wolf, 1970)  

 
2

2 2

(1 )

(1 ) 4 sin ( ' cos ')

R
T

R R N kD 



 


         (9) 
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where ’ is angle of refraction, D is thickness of the slab, N’ is index of refraction of the slab 
material, and R  is reflectance of a dielectric-air interface. The peaks of T=1 appear at 

' cos 'N kD m  , 1,2,3,...m  . Fabry-Perot resonances can also appear in the noncorrugated 
slabs of PCs (Sakoda, 2001; Serebryannikov, 2010). In the contrast with the dielectric slabs, in 
PCs we have g phv v , where gv  and phv  are group and phase velocity, respectively. Location 
of the minima and maxima of T depends, in fact, on gv . On the other hand, the equivalent group 
index can be estimated at =0 from the locations of the peaks of T (Sakoda, 2001): 

 ' /( )g c DN    ,          (10) 

where  is spectral distance between the neighbouring peaks. Clearly, characterization of 
the finite-thickness slabs of PCs in terms of '

gN  is ambiguous, at least because of the 
unavoidable uncertainty in location of the virtual interfaces. Besides, it is assumed that 

' 0gN  , that is not always the case. Nevertheless, this approach usually gives the estimates 
of '

gN  that are qualitatively correct within sign, for thick slabs. Obtaining of accurate 
(intrinsic) values of the group index needs post-processing of the dispersion results. The 
corresponding formulas can be found in the literature (Foteinopoulou & Soukoulis, 2005).  

In the PCGs, Fabry-Perot resonances can appear while higher orders contribute to the 
transmission. Since this contribution is asymmetric, i.e., dependent on the illumination side, 
there may be asymmetry in the appearance of the resonances, which manifests itself in a 
high contrast between the backward and forward transmittances. From the point of view of 
demonstration of such asymmetry, the regimes with nonzero transmittance in the both 
directions are most interesting.  In particular, this is related to the one-way transmission 
regime with 0tT   and 0tT  .  

Figure 14 presents an example of strong asymmetry, which is observed in the one-way 
transmission regime for the fourth lowest Floquet-Bloch mode in the PCG from Fig. 9(b). 
Asymmetry appears here owing to that the contribution of 1t  to T is more significant 
than that of 0t , while 1 0t  . A high contrast can be achieved, e.g., / 11T T    at 

9.78kL  . Furthermore, the peaks of 1T   are observed, like in the case of a 
noncorrugated PC, or a dielectric slab. The values of '

gN  obtained from (10) are given in 
Table 1. lLk  and sLk mean the larger and smaller values of kL for each pair of the 
neighbouring peaks. The smaller the distance between the peaks, the larger the value of '

gN  is.  
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Fig. 14. Fragment of the transmission spectrum for the PCG with L=2a, d/a=0.31, 9.61r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), cyan dotted line - T  (a) and T  (b). 
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 1 2 3 4 5 

sLk  9.44 9.504 9.587 9.684 9.79 

lLk  9.504 9.587 9.684 9.79 9.88 

'
gN  8.18 6.30 5.40 4.94 5.82 

Table 1. Equivalent group index for the transmission peaks in Fig. 14(b). 

Figure 15 illustrates the case when the same diffraction orders contribute to T  and T , 
but the contributions of individual orders strongly depend on the illumination direction. 
Here, two-way transmission occurs at 14<kL<15.8, while unidirectionality with 

1 1t tT  
     takes place in the adjacent range, i.e., at 12<kL<14. For example, the order 

with 1n    is the main contributor at 14.1<kL<14.4 at the noncorrugated-side illumination, 
but its effect tends to vanish in the vicinity of kL=14.4 at the corrugated-side illumination.  
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Fig. 15. Fragment of the transmission spectrum for the PCG with L=3a, d/a=0.4, 5.8r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), green dash-dotted line - 2t  (a) and 2t  (b), cyan 
dotted line - T  (a) and T  (b); corrugations are the same as in Figs. 8(c) and 8(d); note 
that n nt t 

   and n nt t 
  , |n|>0 . 

4. Reflection regime  

Band gaps and relevant total reflections belong to the main effects known in PCs. 
Corrugations may lead to that the higher diffraction orders contribute to reflection starting 
from the frequency and kL values, which correspond to the lowest stop band of the PC. 
Furthermore, if corrugations are placed at one side only, reflections can be asymmetric, so 
that the different diffraction orders play the different roles, depending on the illumination 
direction, although 1R R   . Figure 16 presents the reflection spectra for the same PCG 
as in Figs. 8(a) and 8(b), at =0. Now, 1 0r   at kL>2  and 1 0r   at kL>4. It is 
noteworthy that, in the contrast with transmission, the reciprocity principle requires that 

0 0r r   only at 2kL  . Hence, zero-order reflection is itself asymmetric, provided that 
higher order(s) are allowed to propagate in air. In fact, the possibility of contribution of 
higher orders to R  and R  mainly depends on the period of the illuminated interface, 
i.e., 1 2aL   and 2 aL  , for the corrugated and noncorrugated interfaces, respectively. 
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Fig. 16. Reflectance for the PCG with L=2a, d/a=0.31, 5.8r  , Q=12, at =0, for (a) 
corrugated-side and (b) nocorrugated-side illumination; blue solid line - 0r , violet dashed 
line - 1 1r r 

   (a) and 1 1r r 
   (b), cyan dotted line - R  (a) and R (b). 

At P>2, some new features can be observed in the reflection spectrum as compared to Fig. 
16. Figure 17 presents an example for a PCG with P=4, while the PC lattice parameters are 
the same as in Figs. 9(b), 10(b), and 14. Corrugations are obtained here by removing two 
rods from every second column, and four rods from every fourth column, so that they are 
similar to but not so deep as those in Figs. 8(e) and 8(f). If the corrugated side is illuminated, 
the orders with 1n    contribute to R  also in the total-reflection regime at 8.5<kL<11.7. In 
particular, splitting with 0 1 1r r r  

    and 1R   takes place at kL=9.29, 9.68, 10.54, 11.33, 
and 11.55. If the noncorrugated side is illuminated, zero order is the main contributor to 

R  within the entire kL-range considered. Comparing to Fig. 16(b), the orders with 1n    
now do not vanish but slightly contribute to R  in the vicinity of kL=7 and kL=14. In these 
ranges, 1 0t   due to the effect of the exit (here – corrugated) interface, since higher orders 
may appear in R  due to the input (here – noncorrugated) interface starting from kL=8 only. 
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Fig. 17. Same as Fig. 16 but for L=4a and 9.61r  ; blue solid line - 0r , red dashed line - 

1 1r r 
   (a) and 1 1r r 

   (b), green line - 2 2r r 
   (a) and 2 2r r 

    (b), and cyan dotted 
line - R  (a) and R (b). 

Tilting leads to that the higher orders can strongly contribute to the ranges of 1R   at 
smaller P than at =0. For example, splitting with 0 1r r 

  and the relatively small values of 
/ ( )|| n d kLdr  can be obtained in the first stop band at P=2. Besides, the order with 1n    can 

dominate in R  at a stop band edge, where 1    , i.e., reflection is nearly backward.   
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Two examples are shown in Fig. 18. Here, 0 1r r 
  at kL=5.57 in Fig. 18(a), and at kL=5.66 

and kL=8.29 in Fig. 18(b). Tilting can be an efficient tool of tuning in the reflection regime. 
Varying , one can change 1k  and, hence, obtain 1 0r   for the entire, or a desired part of 
the lowest stop band. 
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Fig. 18. Reflectance (a) for the same PCG as in Fig. 9(a) at =45 degrees, and (b) for the same 
PCG as in Fig. 9(b) at =20 degrees; corrugated-side illumination; blue solid line - 0r , violet 
dashed line - 1r , dark green line - 2r , and cyan dotted line - R . 

5. Conclusion  

Multiple examples can be given to demonstrate that a combination of different physical 

phenomena can create a possibility of substantial extension of the variety of the obtainable 

regimes and new ideas for low-cost and/or compact designs. Thus, hybridization is a 

rather general approach in modern optics and physics. In this chapter, it has been shown 

how the effects, which are well known for the gratings, on the one hand, and those for the 

PCs, on the other hand, can be combined in the nonsymmetric PCGs composed of 

dielectric rods in such a way that new operation regimes can be obtained, which are not 

realizable in dielectric gratings or noncorrugated PCs. The most interesting transmission 

and reflection regimes of PCGs originate from the nonsymmetry, i.e., from the broken 

spatial inversion symmetry. The studied mechanism is characterized by absence of 

polarization conversion, while the extreme redistribution of the incident wave energy into 

that of of higher orders plays a key role. In particular, PCGs promise new solutions for 

unidirectional diode-like devices, splitters, deflectors, mirrors, and nano- and microwave 

antennas. From the point of view of the theory of PCs, introduction of corrugations while 

dispersion is known enables new coupling scenarios owing to diffractions. From the point 

of view of the grating theory, using a PC with the alternating pass and stop bands and 

substantially different properties of various Floquet-Bloch modes, instead of a 

homogeneous linear material, enables new diffraction scenarios as compared to those 

typical for dielectric gratings. Finally, from the point of view of the asymmetric and 

unidirectional transmission, PCGs demonstrate a high potential in obtaining of strong 

directional selectivity without breaking time reversal symmetry and, hence, without using 

anisotropic or nonlinear materials. A new direction in the studies of PCGs concerns 

asymmetric transmission for defect modes that might appear in chains of the cavity defects 

or/and line defects, which are parallel to the interfaces.  
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