
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



7 

Drought Stress and the Need for Drought Stress 
Sensing in a World of Global Climate Change 

Rita Linke 
Society for the Advancement of Plant Sciences 

Austria 

1. Introduction 

Water scarcity imposes huge reductions in crop yield and is one of the greatest limitations to 

crop expansion outside present-day agricultural areas. Because the scenarios for global 

environmental change suggest a future increase in aridity and in the frequency of extreme 

events in many areas of the earth (Schär, 2006), maintaining crop yields under adverse 

environmental conditions is probably the major challenge facing modern agriculture. 

Nowadays, approximately 70% of the global available water is used in agriculture and 40% 

of the world food is produced in irrigated soils (Somerville & Briscoe, 2001). During the next 

25 years, world population is expected to increase by about 2.5 billion people expecting food 

requirements in the developing world to double by 2025. An efficient use of water is 

therefore needed for the conservation of this limited resource (Somerville & Briscoe, 2001). 

2. Effects of drought stress on plant physiology 

Drought is a meteorological term which is commonly defined as a period without significant 

rainfall. Drought stress in plants generally occurs when the water available in the soil is 

reduced and atmospheric conditions further cause a continuous loss by transpiration and 

evaporation (Jaleel, 2009). Responses of plants to drought stress however are complex, 

involving adaptive changes and/or deleterious effects. Strategies to cope with drought 

stress normally involve a mixture of stress avoidance and tolerance mechanisms that vary 

with plant genotype (Chaves, 2002). Plant growth is accomplished through cell division, cell 

enlargement and differentiation, and involves genetic, physiological, ecological and 

morphological events and their complex interactions. Many yield-determining 

physiological processes in plants respond to water stress. Yield integrates several of these 

processes in a complex way. Thus, it is difficult to interpret how plants accumulate, 

combine and display the ever-changing and indefinite physiological processes over the 

entire life cycle. For water stress, severity, duration and timing of stress, as well as 

responses of plants after stress removal, and interaction between stress and other factors 

are extremely important (Plaut, 2003). 

The continuity of water columns from soil pores through the plant to leaf cells, linked to the 

evaporative flux, is known as the soil–plant–atmosphere continuum (SPAC). Maintenance of 

this hydraulic system is needed to ensure a continuous water supply to leaves. The higher 
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the capacity to provide such supply, the faster the leaf expansion (Nardini & Salleo, 2002) 

and the higher the potential for carbon gain (Sperry, 2000; Tyree, 2003), as has been 

observed for different life forms (Brodribb et al., 2005), species (Brodribb & Field, 2000; Sack 

et al., 2003), and genotypes (Sangsing et al., 2004; Maseda, 2006). Under conditions of 

drought stress, however, genetic variations in leaf area growth, leaf area duration and/or 

leaf photosynthesis might become very important (Richards, 2000). 

Abiotic stress occurring during canopy development will modify many of the canopy 
characteristics compared with a well watered crop. Leaves are often smaller creating a more 
erectophile canopy than when unstressed (Araus, 1986). In addition, there may be fewer 
tillers in grain crops, and this, together with the lower leaf area reduces the leaf area index 
(LAI), which is defined as the one sided green leaf area per unit ground area. Finally, due to 
accelerated senescence, shorter green area duration may reduce the potential for 
assimilation (Araus, 2002) and therewith crop yield, which is dependent on seed filling 
duration (Egli & Crafts-Brandner, 1996) as well as on leaf area duration (Geisler, 1983; De 
Costa, 1997). Nonetheless, there is a wide consensus that the reproductive growth stage is 
the most sensitive to water deficit. It is also recognized that drought stress at the 
reproductive stage is the most prevalent problem in rainfed drought prone agriculture, at 
least simply because in most rainfed ecosystems the crop season’s rains diminish towards 
flowering and harvest time (Blum, 2009). In summary, prevailing drought reduces plant 
growth and development, leading to hampered flower production and grain filling and 
thus smaller and fewer grains. The reduction in grain filling occurs mainly due to a 
reduction in the assimilate partitioning and activities of sucrose and starch synthesis 
enzymes (Farooq, 2009). 

On plant level, depletion of soil water reserve causes a variety of symptoms, with timescales 
ranging from a few minutes (wilting, stomatal closure), to weeks (change in leaf growth, 
senescence) or months (decrease in total biomass or yield; Tardieu, 1996). Increased 
senescence rates are regularly observed in plants subjected to water deficit in the field. They 
already occur at relatively moderate leaf water potentials, and begin in older leaves located 
in the lowest layer of the canopy (Tardieu, 1996). The shedding of older leaves also 
contributes to water saving and can be viewed as a recycling program within the plant, 
allowing the reallocation of nutrients stored in older leaves to the stem or younger leaves 
(Chaves, 2003). 

While the hydration states of different tissues are very sensitive to the magnitude of the 
hydraulic conductance, the direct physical control of transpiration itself resides almost 
entirely in environmental conditions of temperature and humidity and the stomatal 
regulation of gas-phase diffusion between leaf-air spaces and the atmosphere (van den 
Honert, 1948 in Comstock, 2002). Stomata must regulate transpiration in a way that 
sufficient carbon is gained while leaf water potential (ψw) is prevented from becoming too 
negative and the break-down of the plants hydraulic system is avoided (Tyree & Sperry, 
1988; Jones & Sutherland, 1991; Schultz & Matthews, 1997). A decrease in stomatal 
conductance can correlate with a declining ψw during soil drying, but can also occur before 
any measurable change in ψw is recorded (Gollan, Turner & Schulze, 1985; Trejo & Davies 
1991; in Schultz, 2003). However, the relationship between stomatal closure and the 
lowering of plant water potential varies between different life forms and species as well as 
between plants of the different photosynthetic types (i.e. C3 and C4 and CAM plants). 
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Depending on how narrowly plants control their ψw, homeohydric plants are further 
classified as either isohydric or anisohydric (Maseda & Fernandez, 2006). A perfectly 
isohydric plant would close stomata, reducing transpiration as needed to maintain pre-
drought leaf water status, whereas a perfectly anisohydric plant would keep stomata 
comparatively more open, reducing ψw just enough to maintain pre-drought leaf 
transpiration (Maseda & Fernandez, 2006). Maize for example, is an isohydric plant and 
therefore shows a less negative ψw during drought periods compared to wheat which is 
anisohydric (Henson et al., 1989; Tardieu, 1998). The distinction between isohydric and 
anisohydric plants, however, is often a matter of degree, and most plants operate under a 
relatively well-buffered range of ψw (Maseda & Fernandez, 2006). 

Owing to reduced leaf water potential under conditions of low soil water content, leaf 

osmotic potential is reduced due to the simple effect of solute accumulation. However, if 

during the course of cellular water loss, solutes are actively accumulated, osmotic potential 

would be reduced beyond the rate dictated by the mere effect of concentration. Such 

accumulation of solutes during the development of water deficit is termed osmotic 

adjustment or osmoregulation (Zhang, 1999 and references therein). In general, osmotic 

adjustment (OA) is achieved by absorbing ions (e.g., K+, Na+, Ca2+, Mg2+, Cl-, NO3-, SO42-, 

and HPO4-) or by accumulating organic solutes (e.g. free amino acids, sugar alcohols, 

quaternary ammonium compounds and sugars). As a consequence, the osmotic potential of 

the cell is lowered, which in turn, attracts water into the cell and, thereby, tends to maintain 

its turgor (Morgan, 1984; Serraj & Sinclair, 2002). The accumulation of such compounds can 

protect cell membranes, proteins and metabolic machinery, which helps to preserve 

subcellular structure from damage as a result of cell dehydration (Serraj & Sinclair, 2002 and 

references therein). 

Accumulation of solutes in roots leads to a lowering of the osmotic potential of the root, 

which maintains the driving force for extracting soil water under water deficit conditions 

(Wright et al., 1983). An increasing number of reports provide evidence on the association 

between high rate of osmotic adjustment and sustained yield or biomass under water-

limited conditions across different cultivars of crop plants. Since osmotic adjustment helps 

to maintain higher leaf relative water content (RWC) at low leaf water potential, it is evident 

that OA helps to sustain growth while the plant is meeting transpirational demand by 

reducing its leaf water potential (Blum, 2005). 

At the leaf level, drought stress is generally characterized by a reduction of water content, 

diminished leaf water potential and turgor loss, closure of stomata and a decrease in cell 

enlargement and growth, whereby cell enlargement is more strongly inhibited than cell 

division. Further, various physiological and biochemical processes, such as photosynthesis, 

respiration, translocation, ion uptake, carbohydrates, nutrient metabolism and growth 

promoters (Jaleel et al., 2009; for review see Farooq et al., 2009) are affected. Severe water 

stress may finally result in the arrest of photosynthesis, disturbance of metabolism and at 

last the death of the plant (Jaleel et al., 2009). 

In higher plants, water loss and CO2 uptake are tightly regulated by stomata. Under 

continuously changing environmental conditions stomata optimise gas exchange between 

the interior of the leaf and the surrounding atmosphere. Stomata close in response either to 

a decline in leaf turgor and/or water potential, or to a low-humidity atmosphere (Maroco et 
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al., 1997). As a rule, stomatal responses are more closely linked to soil moisture content than 

to leaf water status suggesting that stomata are responding to chemical signals (e.g. abscisic 

acid, ABA) produced by dehydrating roots whilst leaf water status is kept constant (Gowing 

et al., 1990; Davies & Zang, 1991; Chaves, 2002; Yordanov, 2003). Under mild to moderate 

stress the reduction of leaf conductance (gL) helps to avoid excessive water loss and 

provides higher water use efficiency to the plant (e.g. Lawlor, 1995; Cornic & Massacci, 1996; 

Lawlor, 2002; Flexas & Medrano, 2002). However, stomatal conductance not only regulates 

the efflux of water vapour by the leaf but also controls the influx of CO2 into the leaf. As 

reviewed by Cornic (1994), stomatal closure is mainly responsible for the decline of net 

photosynthetic rates in C3 plants subjected to moderate drought stress. Nevertheless, under 

more severe conditions of stress internal CO2 concentration (Ci) frequently increases 

indicating the predominance of non-stomatal limitations to photosynthesis (Lawlor, 1995; 

Brodribb, 1996; Flexas & Medrano, 2002). To the non-stomatal mechanisms, under 

prolonged or severe soil drought, belong changes in chlorophyll synthesis, functional and 

structural changes in chloroplasts and also disturbances in accumulation and distribution of 

assimilation products (Medrano et al., 2002). With this respect, processes like 

photophosphorylation (Haveaux et al., 1987; Meyer & de Kouchkovsky, 1992), ribulose-1,5-

bisphosphate (RuBP) regeneration (Gimenez et al., 1992) and RubisCO activity (Castrillo & 

Calcagno, 1989; Medrano et al., 1997; Medrano, 2002) are impaired under drought. 

3. Effects of drought stress on plant physiology under conditions of elevated 
CO2 concentration and temperature 

Rising concentrations of atmospheric carbon dioxide (CO2) contribute to global warming 
and thus to changes in both precipitation and evapotranspiration (Kruijt, 2008). Climatic 
shifts in both mean and variability could threat ecosystem functions and human welfare 
(Tubiello, 2002). Current research confirms that, while crops would respond positively to 
elevated CO2 concentrations ([CO2]) in the absence of climate change, the associated impacts 
of higher temperatures, altered patterns of precipitation, and possibly increased frequency 
of extreme events, such as drought and floods, will likely combine to depress yields and 
increase production risks in many regions of the world. These will widen the gap between 
rich and poor countries further. A consensus has emerged that developing countries are 
more vulnerable to climate change than developed countries, because of the predominance 
of agriculture in their economies, the scarcity of capital for adaptation measures, their 
warmer baseline climates, and their heightened exposure to extreme events. Thus, climate 
change may have particularly serious consequences in the developing world, where about 
800 million people are currently undernourished (Tubiello & Fischer, 2007; and references 
therein). 

Except for regions where irrigation is employed or dewfall is significant, precipitation is the 
source of almost all soil moisture. Plants extract almost all their moisture from the soil (a 
small amount may be absorbed through the surface of wet plant leaves). Any change in 
timing and/or quantity of precipitation will affect soil moisture supply and crop yield. At 
times of low precipitation, soil moisture may be insufficient to meet the evaporative demand 
imposed by the atmosphere. Plant leaves will lose turgor and stomata close to prevent 
further dehydration of the plant (see section 2). The entry of CO2, in the leaf is inhibited and 
photosynthesis, crop growth and yield are reduced (Brown, 1997). 
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Despite numerous works, up to date quantitative information on the impact of changes in 
precipitation, temperature and atmospheric CO2 concentration on the soil and water 
resources is still required. Such information is needed principally at the watershed level 
where most of the processes underlying landscape functioning act and which is the scale at 
which decision making is taken (Chaplot, 2007). 

The consequences of global change on plant biomass production and water use are 
manifold. Such multi-factor interactions are difficult to predict since the different effects 
might intensify each other, nullify each other or even change the sign of the overall change.  

It is well documented that atmospheric CO2 enrichment typically enhances photosynthesis 
(Long, 1991; Loreto & Centritto, 2004) mainly due the repression of photorespiration and 
because of an increased substrate supply (Poorter & Navas, 2002). The increases will be, 
based on the Farquhar et al. (1980) model of leaf photosynthesis, larger at higher 
temperatures whereas the benefit from CO2 enrichment will be little when temperature is 
low (<15°C; Wolfe et al., 1998). Further, growth rates will increase followed by enhanced 
biomass accumulation (Saralabai, 1997; Fuhrer, 2003) in a wide range of plants. One of the 
major consequences of this phenomenon is an increased production of edible biomass (Cure 
& Acock, 1986; Kimball, 1993) as well as an increased allocation of assimilated carbon to the 
roots (Arp, 1991; Fuhrer, 2003). The relative increase in biomass and yield under elevated 
[CO2], however, is expected to be largest if all the other growth parameters remain constant 
(Amthor, 2001) which is not likely since general circulation models of the atmosphere 
predict increases in global temperature in the range of 1.5-3°C (and perhaps as much as 5°C) 
by the end of the 21st century (Lawlor & Mitchell, 1991; IPCC, 2007). 

In determinate annual species warmer temperature accelerates ontogenetic development 
resulting in a (substantial) shortening of the growth period. This in turn leads to less time 
for carbon fixation and biomass accumulation (Morison & Lawlor, 1999). However, since 
seed yield is directly related to the seed filling duration (Egli & Crafts-Brandner, 1996) as 
well as to the leaf area duration (Geisler, 1983; De Costa, 1997), a combined increase of CO2 
concentration and temperature does not necessarily translate into improved yield, especially 
when other factors like water and nutrient supply are limiting (Amthor, 2001). 

Different lines of evidence further indicate that growth in elevated [CO2] leads to a change 
in the sink-source balance of the plant. In this context, carbohydrate accumulation in the 
source leaves is expected if the rate of photosynthesis exceeds the capacity of the sinks to 
utilize the photosynthates for growth. Therefore, the repeatedly observed variability in the 
response to CO2 in different species, developmental stages or environmental conditions can 
be explained in terms of differing sink strength of the plants. Further, some of the 
morphological changes seen under elevated [CO2] can be explained by an increased supply 
of photosynthates which 'forces' the development of new sinks (Stitt, 1991; Bowes, 1993). For 
this reason, it has been supposed that plants with a smaller sink size or capacity to develop 
new or alternative sinks will acclimate to higher levels of [CO2] by decreasing their 
photosynthetic capacity to adjust the assimilate production to the demand. 

Referring to this, plant species developing N2 fixing nodules might present a special case. 
The increased availability of carbohydrates might enhance the development of nodules since 
they represent a considerable sink for carbohydrates. Higher atmospheric [CO2] could 
therefore have complex indirect effects on growth and photosynthetic rates in plants which 

www.intechopen.com



 
Irrigation Systems and Practices in Challenging Environments 

 

118 

develop nodules, because increased nodule development will increase the supply of organic 
nitrogen to the plant. This might be one explanation for the positive response of soybeans to 
elevated [CO2], and could be of considerable significance under natural conditions (Stitt, 
1991). In other plant species, however, one of the most prominent, but not always observed, 
consequences of atmospheric CO2 enrichment that has been found is decreased foliar N 
concentration. In a review of 378 observations obtained from 75 published studies Cotrufo 
(1998) found that 82% of the experiments related to this subject reported a reduction in plant 
N concentration under conditions of atmospheric CO2 enrichment, with a mean 
concentration reduction for all studies of 14% on a plant dry weight basis whereby C3 plants 
showed a mean decrease of 16% and C4 and N-fixing plants of 7%. These decreases in foliar 
leaf N concentration are, amongst other factors, due to dilution effects. Higher growth rates 
in elevated [CO2] will lead to an increased demand for mineral nutrients. The acceleration of 
growth and the increased biomass production in elevated [CO2] may further change the 
nutrient status in the plant (Stitt, 1991). In agricultural situations where man has the capacity 
to alter the growing environment in a number of different ways, it has been demonstrated 
by Rogers (1996) and Kimball (1993) that the provision of high levels of nitrogen fertilizer to 
the soil has the capacity to offset the reduced foliage nitrogen concentration caused by 
higher levels of CO2. As Rogers et al. (1996) have described it, “the widely reported 
reduction in leaf or shoot N concentration in response to elevated CO2 is highly dependent 
on nitrogen supply and virtually disappears when N is freely available to the roots”. 

Alongside with an increase of photosynthetic rates, the reduction of stomatal conductance 

and consecutively transpiration rates are commonly observed under conditions of elevated 

atmospheric CO2 concentrations. However, the response to water stress is variable, in part 

because, although high [CO2] reduces transpiration per unit leaf area, it often increases the 

total leaf area per plant (Cure & Acock, 1986; Allen, 1990). Whether elevated CO2 reduces 

evapotranspiration therefore depends on the effects of elevated [CO2] on leaf area index 

(LAI) as well as on stomatal conductance. No savings in water can be expected in canopies 

where elevated CO2 stimulates the increase in LAI relatively more than it decreases stomatal 

conductance (Drake, 1997). Particularly, in C3 species such as wheat or cotton (Kang et al., 

2002) which are more responsive to increasing [CO2] compared to C4 plants this might 

become effective (Fuhrer, 2003). Further, in canopies with high LAI, leaf boundary layer and 

aerodynamic conductance may exert a stronger control on water vapour exchange than 

stomatal conductance, so that any change in stomatal conductance induced by elevated 

[CO2] may only marginally affect transpiration and hence, plant and stand water use 

(Wullschleger, 2002). 

It is, however, worth to be noted that the reduced evapotranspiration could be cancelled out 

also by other changes caused by the increase in [CO2]. At the leaf level, stomatal closure 

would reduce transpirational cooling and thereby increase leaf temperature (Yoshimoto, 

2005). Indeed, increases of leaf temperature in the order of 1-2°C have been measured in 

various crops with a doubling of CO2 concentration (Idso et al., 1987). Higher leaf 

temperature will reduce the longevity and photosynthetic capacity of individual leaves 

(Kimball, 1995) but also result in larger vapour pressure deficits between the leaf and the air, 

thereby negating some of the positive effects of elevated [CO2] like decreased stomatal 

conductance (Yoshimoto, 2005). At the canopy level, the accelerated aging of leaves can 

shorten the growing season (Kimball, 1995) and therewith lead to a reduction in crop yield. 
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Finally, the decreased stomatal conductance and latent heat transfer might cause a warming 

of the order of 1-2°C over the continents in addition to warming from the CO2 greenhouse 

effect (Sellers et al., 1996). 

In summary, while elevated [CO2] alone tends to increase growth and yield of most 

agricultural plants (Kimball, 1983; Cure & Acock, 1986; Kimball et al., 2002) as well as 

increases water use efficiency, warmer temperatures and changed precipitation regimes 

may either benefit or damage agricultural systems. Water and fertilizer application regimes 

will further modify crop responses to elevated CO2 (Tubiello, 2002 and references therein). 

Consequently, the picture emerging from experiments at the whole plant level is rather 

diffuse, and this holds even more if we try to scale up CO2 -induced growth responses from 

the individual to the stand level (Poorter & Navas, 2002). However, due to the increased 

need for food supply worldwide and the prediction of the emergence of drier regions in the 

world, the development of cost effective methods for early stress detection and therewith a 

possibility to reduce yield losses is inevitable. 

4. Sensing drought stress  

Irrigation is important in raising crops and achieving considerable yields in many areas of 

the world. It is essential especially in arid environments but is also becoming increasingly 

important in semi arid to humid regions due to the increased demand for food. Owing to 

this growing demand the supply of water available is decreasing and costs are going up 

(Gonzales-Dugo, 2006). During the last decades, therefore, the effects of drought stress on 

plant physiological traits have been intensively studied (see section 2 and 3) to develop new 

methods for early detection and monitoring of drought stress. This should allow developing 

both short and long term agro-technical measures (e.g. irrigation scheduling) and thus help 

avoiding substantial yield losses and at the same time reduce water consumption. With this 

respect, special focus was put on sensing leaf/canopy reflectance, thermal radiation as well 

as fluorescence emission.  

4.1 Leaf spectral reflectance as a measure of plant drought stress 

Remote sensing techniques have evolved rapidly during the past decades. Ecological remote 

sensing now encompasses a wide range of applications including vegetation mapping, land-

cover change detection, disturbance monitoring and the estimation of biophysical and 

biochemical attributes of ecosystems (Asner et al., 1998a). A lot of effort has also been made 

towards the use of spectral reflectance of leaves and canopies for stress detection in 

agricultural environments since these techniques could offer a powerful tool not only for 

crop stress detection but also for quantifying crop development and yield (Asner, 1998b). 

Leaf reflectance is driven mainly by the chemical composition of the leaves but can vary 

independently of pigment concentrations due to differences in internal structure, surface 

characteristics (e.g. hairs, waxes) and moisture content (Blackburn, 2007). The reflectance 

pattern of a canopy is even more complex since it is influenced not only by the reflectance of 

single leaves but also by its geometry - the leaf area index, inclination and clumping of the 

leaves - as well as the percentage of canopy ground coverage and presence of non-leaf 

elements (Gao, 2000; Blackburn, 2007). 
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Agricultural monitoring is a process by which crop development is tracked and treatments are 
applied with the aim of increasing income while minimizing expenditure (Beeri, 2006). To 
accomplish this numerous spectral reflectance indices were developed, most of them based on 
simple mathematical formulas, such as ratios or differences between the reflectance at given 
wavelengths (Araus et al., 2001; Babar, 2006). Most of the indices based on the reflectance of 
single leaves aim to trace plant physiological status, i.e. plant water status or nutritional status. 
However, indices developed for canopy spectra can not only be used for the assessment of 
plant water and nitrogen status but also for the estimation of plant productivity (measurement 
and interpretation of absorbed photosynthetically active radiation; Ferri, 2004).  

Largely as a result of interests in remote sensing, leaf reflectance has been studied 
intensively. Pioneering efforts in this field have been reviewed elsewhere (Myers et al., 1983; 
Jackson, 1986; Carter, 2001). The shape of leaf reflectance spectra is determined by the 
absorption of leaf pigments, mainly chlorophyll. Reflectance spectra of green leaves are 
characterized by a low signal in the blue region between 400 and 500nm and a high signal in 
the near-infrared between 750 and 800nm (Figure 1). With increasing leaf chlorophyll 
content the reflectance signal around 680nm decreases (Buschmann, 1993). Typical leaf 
reflectance spectra (500 - 2500nm) can be separated in three parts: 

1. Wavelength spectrum between 500-750nm, the visible light absorbance region which is 
dominated by pigments (chlorophyll a and b, carotene, and xanthophyll pigments); 

2. Wavelength spectrum between 750-1350nm, the near-infrared region which is affected 
by internal leaf structure; and 

3. Wavelength spectrum between 1350-2500nm, a region influenced to some amount by 
leaf structure, however significantly affected by water concentration in the tissue. 
Strong water absorption bands occurring between 1450 and 1950nm (Myers, 1983; in 
Tanriverdi, 2006). 
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Fig. 1. Reflectance spectra of leaves from irrigated and rainfed grown Triticum asetivum L.  
Abbreviations: Chl: chlorophyll content, RWC: relative water content. 

Concerning the occurrence of stress (e.g drought stress, nutrient deficiency, diseases), leaf 
reflectance is altered more consistently at visible wavelengths (400–720nm) than in the 
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remainder of the incident solar spectrum (730–2500nm). These changes were found to be 
spectrally similar among many common stressors and vascular plant species. Increased 
reflectance in the far-red 690–720nm spectrum is a particularly generic response, providing 
an earlier or more consistent indication of stress than reflectance in other regions of the 
incident solar spectrum (Carter, 2001 and references therein). 

Under conditions of drought stress, absorption of radiation by the leaf tends to decrease due 

to lower leaf water content. Although water absorbs most strongly in the wavelengths of the 

infrared region of the spectrum from approximately 1300 to 2500nm (Curcio & Petty, 1951), 

some absorption also occurs at lower wavelengths. As water is lost from a leaf reflectance 

increases and absorption decreases, primarily as a result of water’s radiative properties 

(Bowman, 1981; Hunt & Rock, 1989). Even after accounting for the radiative characteristics 

of water, secondary effects occur. These include the influence of water content on absorption 

by other substances in the leaves, such as pigments. Also included as secondary are the 

effects of water content on wavelength-independent processes, particularly multiple 

reflections inside the leaf (Carter, 1991). 

Moreover, drought stress not only causes leaf water content to decline but also affects 

physiological processes such as, for example, leaf conductance and photosynthetic rates (see 

section 2). Changes in pigment and nitrogen concentration of plant tissue will follow. For 

example, chlorophyll and RubisCO contents decline as the leaf remobilizes resources under 

stress conditions (Parry, et al., 2002). Chlorophyll and accessory pigments absorb strongly in 

the visible range (Knipling, 1970). Carter & Knapp (2001) described a consistent stress 

induced alteration of leaf reflectance at visible wavelengths (~400–720nm) since chlorophyll 

is the major absorber in the leaf and the metabolic disturbance brought about by stress alters 

leaf chlorophyll concentrations (Knipling, 1970). Plant responses to water deficit therefore 

include both biochemical and morphological changes that primarily lead to acclimation and 

later to functional damage and the loss of plant parts (Chaves, et al., 2002). However, it is 

worth pointing out that leaf reflectance in the visible range of plants experiencing nutrient 

deficiency was also found to increase since nitrogen (and magnesium) is essential in the 

formation of chlorophyll. As leaves become more chlorotic, reflectance increases and the 

reflectance peak, normally centred at about 550nm, broadens towards the red as absorption 

of incident light by chlorophyll decreases (Ayala-Silva, 2005). Therefore, identifying the 

release of a stress situation by leaf reflectance spectra alone might be difficult to a certain 

extent. 

Concerning the detection of plant water status and nutrient deficiency numerous spectral 

indices have been developed. Table 1 summarizes some of the most often used indices 

without attempting to give an exhaustive overview of all indices appearing in literature. 

Further, several indices were later on modified to better fit different plant species and/or 

conditions in different geographical regions. 

Some of the most common indices are, for example, the photochemical reflectance index 
(PRI), indices to determine leaf chlorophyll content, nitrogen content or indices for the 
estimation of leaf water content. The PRI is widely used for the estimation of photosynthetic 
radiation use efficiency. It was proposed based on the finding that the interconversion of 
xanthophyll cycle pigments in intact leaves can be detected as subtle changes in absorbance 
at 505-510nm (Bilger et al., 1989) or the reflectance at 531nm (Gamon et al., 1990). The  
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Index Related to Reference 
NPQI (R415-R435)/( R415+R435) chl, stress Barnes et al., 1992  
SR R800/R680 chl Birth & McVey, 1968  
REIP chl, stress Collins, 1978 
PRI (R531-R570) x (R570+R531) chl Filella, 2004 
SIPI (R800-R445)/(R800-R680) chl Penuelas et al., 1995 
PSSRa R800/R680 chl a Blackburn, 1998  
PSSRb R800/R635 chl b Blackburn, 1998  
PSSRc R800/R500  chl Blackburn, 1998  
PSNDa (R800-R680)/( R800+R680) chl a Blackburn, 1998 
PSNDb (R800-R650)/( R800+R650) chl b Blackburn, 1998  
PSNDc (R800-R500)/( R800+R500) chl Blackburn, 1998  
(R675/R700) chl a Chapelle, 1992  
R675 /(R700 x R650) chl b Chapelle, 1992  
(R800–R700)/(R800+R700) chl Gitelson & Merzlyak, 1994 
(R750–R800)/(R695–R740) - 1 chl Gitelson, 2003 
R860/(R708 x R550) chl a, chl tot Datt, 1998  
R675/R700 chl Datt, 1998  
R675/(R650 x R700) chl Datt, 1998  
R760/R500 chl Datt, 1998  
R750/R700 chl Datt, 1998  
R750/R550 chl Datt, 1998  
R672/(R550 x R708) chl a, chl tot Datt, 1998  
R672/R708 chl Datt, 1998  
R800-R550 chl Buschmann & Nagel, 1993  
R800/R550 chl Buschmann & Nagel, 1993  

PSR R430/R680 
total pigments, 
chl, stress 

Penuelas et al., 1994  

NPCI (R680-R430)/(R680+R430) 
total pigments, 
chl, stress 

Penuelas et al., 1994  

(Chl)RIgreen [(R750-800-R430-470)/(R520-580-R440-480)]-1 chl Gitelson, 2004 
(Chl)RIred edge [(R750-800-R430-470)/(R695-740-R440-480)]-1 chl Gitelson, 2004 
CRIgreen [(R510)-1 - (R550-R570)-1] x (R750-R800) carotenoids Gitelson, 2004 
CRIred edge [(R510)-1 - (R700-R710)-1] x (R750-R800) carotenoids Gitelson, 2004 
ARI (R550)-1 - (R700)-1 or 
ARI [(R550-570)-1 - (R700-710)-1] x R750-800 

car, anthocyanin 
Gitelson, 2001 
Gitelson, 2004 

R1483/R1650 LWC Yu et al., 2000 
R1100/R1430 LWC Yu et al., 2000 
R1121/R1430 LWC Yu et al., 2000 
R1430/R1650 RWC Yu et al., 2000 
R1430/R1850 RWC Yu et al., 2000 
R1483/R1650 RWC Yu et al., 2000 
R2200/R1430 RMP Yu et al., 2000 
R1430/R1650 RMP Yu et al., 2000 
R1483/R1430 RMP Yu et al., 2000 
R695/R420 stress Carter, 1994  
R695/R760 stress Carter, 1994  
R605/R760 stress Carter, 1994 
R710/R760 stress Carter, 1994  
R695/R670 stress Carter, 1994  

Table 1. Compilation of frequently used spectral indices to detect stress situations (e.g. drought 
stress, nutrient deficiency, etc.) in plants at the leaf level. Abbreviations: chl: chlorophyll, car: 
carotenoids, ARI: Anthocyan Reflectance Index, CRI: Carotenoids Reflectance Index, LWC: 
Leaf Water Content; NPCI: Normalized Difference Pigment Index, PSR: Pigment Simple Ratio, 
REIP: Red Edge Inflection Point, RMP: Relative Leaf Moisture Percentage on Fresh Weight 
Basis, SIPI: Structure Independent Pigment Index, SR: Simple Ratio. 
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photochemical reflectance index (PRI), incorporating reflectance at 531nm (xanthophyll 

cycle signal), was then defined as [(R570-R531)/(R570+R531)] to establish a reflectance-based 

photosynthetic index (Gamon et al., 1997). Concerning the attempt to trace the relative and 

actual leaf water content (RWC and AWC) with spectral indices, a lot of effort has been 

made and a number of different indices have been developed for numerous crop species, 

amongst many others the water index (WI; R900/R970; Penuelas & Filella, 1998), the water 

band index (WBI; R905/R980; Davenport et al., 2000), RWC (R1483/R1650) or AWC (R1121/R1430). 

Although much hyperspectral reflectance work to date has been done at the leaf scale, in 

situ measurements made above the canopy are becoming more widely used, driven by the 

need to simulate the scales involved in airborne or satellite measurements (i.e. remotely 

sensed imagery at the canopy scale; Strachan, 2002). Table 2 summarizes some of the indices 

frequently used in remote sensing. 

The most known and often used index in remote sensing of green phytomass is the NDVI 

(normalized difference vegetation index). The NDVI is a broad-band vegetation index which 

has largely been employed to determine quantitative parameters of green phytomass, using 

wide spectral bands in the red and near infrared, generally acquired by multispectral 

sensors in satellites (Ferri, 2004). It was proposed by Rouse et al. (1973) and is based on the 

contrast between the maximum absorption in the red due to chlorophyll and the maximum 

reflection in the infrared caused by leaf cellular structure (Haboudane, 2004). However, 

despite its intensive use in remote sensing applications the NDVI has the disadvantage to 

saturate in cases of dense and multi-layered canopies and further shows a non linear 

relationship to biophysical parameters such as the leaf area index (LAI; Haboudane, 2004). 

Several studies reveal a saturation level of NDVI at LAI values between 2 and 3 implying 

that a further increase in standing biomass does not yield a further increase in NDVI (e.g. 

Gilabert et al. 1996; Haboudane, 2004). 

However, as much as the saturation of vegetation indices at high LAI values is a problem, 

the influence of soil background is one at very low LAI values. To account for changes in 

soil optical properties, soil adjusted indices minimizing the effect of soil background were 

developed (Haboudane, 2004). The leading index with this respect is the Soil-Adjusted 

Vegetation Index (SAVI) which is less sensitive to soil reflectance at low LAI than NDVI 

(Huete, 1988). It is based on the linear relationship between near-infrared and visible 

reflectance for bare soil and therefore reduces the influence of the soil on canopy reflectance. 

The SAVI index was modified further several times to optimize the removal of soil 

background influences (Dorigo, 2007 and references therein). For a good overview of all the 

modified SAVI indices see e.g. Broge & Leblanc (2000). 

Tracing changes in plant water status can, for example, be done by the setup of simple ratios 

between two wavelengths, one of which characterized by strong water absorption and a 

second one outside the absorption band. One of these indices is the NDWI which is given by 

(R860 - R1240)/(R860 + R1240) and is sensitive to changes in liquid water content of vegetation 

canopies (Gao, 2000; Serrano, 2000). Another index commonly used to trace plant water 

deficits is the water index (WI;), which was developed by Penuelas et al. (1997) and is 

calculated as the ratio between reflectance at 900nm and 970nm (R900/R970). Further indices 

used for the estimation of plant water status from remotely sensed data would be for 
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example the moisture stress index (MSI) which is given by the ratio of R1600/R817 (Hunt & 

Rock, 1989) or the maximum difference water index (MDWI, Eitel et al., 2006). 

To assess leaf chlorophyll (and leaf N) status from remotely sensed observations, spectral 
indices are needed that are sensitive to leaf chlorophyll concentration and minimize 
variations in canopy reflectance associated with background reflectance and LAI (Daughtry, 
2000).  Most hyperspectral ratios used for estimating leaf chlorophyll content make use of 
the three discrete bands describing the typical reflectance pattern of green vegetation: the 
reflectance peak in the green and NIR and the region of maximum absorption in the red 
(Dorigo, 2007). Amongst many other indices, some of the most widely used ones to measure 
chlorophyll (and leaf N) are the CARI (Chlorophyll Absorption Ratio Index), the MCARI 
(Modified Chlorophyll Absorption Ratio Index), the TVI (Triangular Vegetation Index) and 
the REIP (red edge inflexion point). 

The Chlorophyll Absorption Ratio Index (CARI), which measures the depth of chlorophyll 
absorption at 670nm relative to the green reflectance peak at 550nm and the reflectance at 
700nm, was developed by Kim et al. (1994) for minimizing the effects of non-photosynthetic 
materials on spectral estimates of absorbed photosynthetically active radiation (PAR; 
Daughtry; 2000, Haboudane, 2004). Subsequently, different alterations of this index were 
proposed (see e.g.: Daughtry et al., 2000; Haboudane et al., 2002) to make it more sensitive to 
chlorophyll. The MCARI was simplified from the CARI by Daughtry et al. (2000) and is 
given by [(R700-R670)-0.2(R700-R550)]*(R700-R670) (Haboudane, 2004). The TVI (Triangular 
Vegetation Index), however, follows a different concept. It was introduced by Broge et al. 
(2000) and is based on the fact that the total area of the triangle (green, red, infrared) will 
increase as a result of chlorophyll absorption (decrease of red reflectance) and leaf tissue 
abundance (increase of near-infrared reflectance; Broge & Leblanc, 2000; Haboudane, 2004).  

The red-edge, finally, describes the abrupt increase in leaf reflectance at wavelengths 
between 680nm and 740nm which is caused by the combined effects of strong chlorophyll 
absorption and leaf internal scattering (Dawson, 1998). Increases in the amount of 
chlorophyll visible to the sensor, either through an increase in leaf chlorophyll content or 
Leaf Area Index, result in a broadening of a major chlorophyll absorption feature centred 
around 680nm. The effect is to cause a movement of the point of maximum slope, termed 
the red edge position (REP; Dawson, 1998). Several studies have subsequently illustrated the 
use of the red edge in the estimation of foliar chlorophyll content (e.g. Lamb, 2002 and 
references therein). To date various techniques have been developed for parameterizing the 
shape of the red-edge and determining the position of the red edge inflection point (REIP), 
including inverted Gaussian models (Miller et al., 1990), fitted high-order polynomials, 
linear interpolation (Guyot et al., 1988; Clevers et al., 2002) and Langrangian interpolation 
(Dawson & Curran, 1998b; in Dorigo, 2007). The structure of the chlorophyll red-edge might 
be best observed by plotting dR/d┣, the first derivative, with respect to wavelengths. A 
common approach for locating the red-edge wavelength is to manually or computationally 
locate the highest peak in the derivative spectra (Lamb, 2002 and references therein). The 
use of derivative spectrometry is commonly employed to resolve or enhance absorption 
features that might be masked by interfering background absorption (Curran et al., 1990; 
Filella & Penuelas, 1994). Spectral derivatives also aid in suppressing the continuum caused 
by other leaf biochemicals (such as lignin and secondary pigments) and canopy background 
effects (Elvidge 1990; Curran et al. 1991). 
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Index Related to Reference 

SR R800/R680 chl Birth & McVey, 1968  
CARI  chl Kim et al., 1994  
MCARI [(R700 -R670)-0.2(R700-R550)](R700-R670) chl, LAI Daughtry et al., 2000  
TCARI  3[(R700 -R670) - 0.2(R700-
R550)(R700/R670)] 

  

NDVI (R800 - R680) / (R800 + R680) chl, LAI, Yield Rouse et al., 1973 
Green NDVI (R780-R550)/(R780+R550) chl Gitelson et al., 1996  
DVI R800-R680 chl Jordan, 1969  
RDVI (R800-R670)/sqrt(R800+R670) chl, LAI Roujean, 1995  
MSR (R880/R670-1)/sqrt(R880/R670+1) chl, LAI Jordan, 1969 
SAVI (1+L)(R801-R670)/(R801+R670+L) chl, LAI Huete, 1988  
OSAVI (1+0.16)(R801-R670)/(R801+R670+0.16) chl, LAI Rondeaux, 1996 
TVI 0.5[120(R750-R550)-200(R670-R550)] chl Broge & Lelanc, 2000 
REIP chl, LAI, stress  Collins, 1978 
PRI (R531-R570)(R570+R531) chl Filella, 2004 
CCCI chl, N Fitzgerald, 2010 
CNI chl, N Fitzgerald, 2010 
NDRE N Fitzgerald, 2010 
WI  R900/R970 water Penuelas et al., 1997  
NDWI (R860 - R1240) / (R860 + R1240) water Gao, 1996 
MDWI (Rmax1500-1750 - Rmin1500-1750) / (Rmax1500-

1750 + Rmin1500-1750) 
water Eitel et al., 2006 

Table 2. Compilation of frequently used spectral indices to detect stress situations  
(e.g. drought stress, nutrient deficiency, etc.) in plants at the canopy level. Abbreviations: 
CARI: Chlorophyll Absorption Ratio Index, CCCI: Canopy Chlorophyll Content Index, CNI: 
Canopy Nitrogen Index, MCARI: Modified Chlorophyll Absorption in Reflectance Index; 
MDWI: Maximum Difference Water Index; NDRE: Normalized Difference Red Edge, 
NDWI: Normal Difference Water Index, NDVI: Normalized Difference Vegetation Index; 
PRI: Photochemical Reflectance Index, REIP: Red Edge Inflection Point; SAVI: Soil Adjusted 
Vegetation Index, SR: Simple Ratio, TCARI: Transferred Chlorophyll Absorption in 
Reflectance Index, TVI:  Triangular Vegetation Index, WI: Water Index. 

As can be seen from the many indices which were developed, intensive research has been 
made towards sensing the response of leaf optical characteristics to different stressors, such 
as for example, drought stress and nutrient deficiency, exposure to heavy metals, exposure 
to gaseous pollutants, UV-B radiation, ozone or increased temperature and CO2 (Baltzer & 
Thomas, 2005 and references therein). However, it should be stated that most of the 
vegetation indices have temporal effects, which are not necessarily correlated to the 
temporal effects of the spectral indices. Care has to be taken to apply the right indices at the 
right time in the growing season. Also, it should be mentioned that these vegetation indices 
are inter-related (e.g. most of them influence the total yield; Zwiggelaar, 1998). 

4.1.1 Case study 1 – An attempt to sense reoccurring drought stress events remotely 

This study aimed to evaluate the impact of drought stress on plant physiological traits and 
leaf reflectance of wheat (Triticum aestivum L.) occurring at different phenological stages 
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(flowering and/or grain filling). Further, the consequences of two consecutive drought 
events and recovery of plants after drought were investigated. The analysis of the effect of 
consecutive stress periods and recovery on changes in leaf reflectance has rarely been 
performed until now but might gain in importance considering the predicted increased 
frequency of drought events whereby plants could be exposed to drought repeatedly (Schär 
et al., 2004; Seneviratne et al., 2006; Vidale et al., 2007; IPCC, 2007). 

4.1.1.1 Material and methods 

Plants (Triticum aestivum L. cv. Xenos) were grown in 8 litre plastic pots. Simulation of 

seasons in the growth chamber was based upon long-time observation of temperature and 

relative air humidity (meteorological station: 16°29’ eastern longitude and 48°15’ northern 

latitude). For a detailed description of growing conditions and measurement techniques see 

Linke et al. (2008). 

Four different treatments were set up - one control treatment and three treatments exposed 

to drought at different times during phenology:  AC: control plants; AF: plants exposed to 

drought stress at flowering, recovery after anthesis; AG: plants exposed to drought stress at 

grain filling and AFG: plants exposed to drought stress at flowering and grain filling. 

Soil moisture content of control plants was consistently held at 20-23 vol% (AC; TDR Trime, 

Imko Micromodultechnik GmbH, Germany). Drought stress at flowering was imposed by 

halving water supply 10 days before the beginning of pollen shedding resulting in a soil 

moisture content of ~10 vol% at flowering (AF). After flowering, plants receiving a second 

stress at grain filling were allowed to recover for 8 days (water supply similar to control 

plants) before the second stress was imposed by halving water supply again (soil moisture 

content during measuring period ~10 vol%; AFG). Plants receiving drought stress only at 

grain filling (AG) were treated similar to control plants until after flowering. Drought stress 

was imposed at the same time as in plants of the treatment stressed twice. 

All physiological and spectral measurements were made in the mid region of the youngest 

fully expanded leaves at three developmental stages: vegetative growth, flowering and 

grain filling. Light saturated photosynthetic rates (Asat) refer to measurements at growth 

conditions under saturating light intensities (CO2: 350-370 µmol.mol-1; light: 1000 µmol.m-2.s-

1; CIRAS-I, PP-Systems, U.K), actual leaf conductance (gL) was measured with a steady state 

porometer (PMR-4, PP-Systems; U.K.) and total chlorophyll content (Chltot) of leaves was 

determined with a SPAD-502 hand held chlorophyll meter (Minolta, Japan). Relative water 

content was calculated as RWC = ((fresh weight - dry weight)/(saturated weight - dry 

weight)) * 100 [%] and actual leaf water content was calculated as AWC = ((fresh weight - 

dry weight) / (fresh weight)) * 100 [%]. 

Leaf spectral reflectance was measured with a FieldSpec Pro FR in connection with a  
plant reflectance probe from Analytical Spectral Devices Inc., Boulder, CO. Relative 
difference of reflectance spectra between stress and control treatments (ΔR/R) was 
calculated as ((Rstress-Rcontrol)/Rcontrol)*100 [%]. 

4.1.1.2 Results and discussion 

Drought stress significantly influenced plant physiological traits independently of the time 
of its application in phenology (Table 3). A lowering of the actual leaf conductance (gL), as 
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observed during all stress periods, is one of the first processes occurring under decreased 
soil water availability providing a higher water use efficiency to the plant (Cornic & 
Massacci, 1996; Lawlor & Cornic, 2002; Flexas & Medrano, 2002). Moreover, as reviewed by 
Cornic (1994), stomatal closure is mainly responsible for the decline in net photosynthetic 
rate of C3 leaves subjected to moderate drought stress. However, at a certain stage of stress, 
internal CO2 concentration (Ci) frequently increases, indicating the predominance of non-
stomatal limitations to photosynthesis (Lawlor, 1995; Brodribb, 1996; Medrano et al., 2002). 
Reductions of light saturated photosynthetic rates (Asat) in the present experiment were 
mainly due to stomata limitation since a significantly lower Ci was found (data not shown). 
Leaf reflectance (R) increased over the entire spectrum due to drought stress, a response also 
found elsewhere (e.g. Wooley, 1971; Penuelas & Inoue, 1999; Yu et al., 2000). However, five 
regions with relatively high differences were observed: 520–530nm, 570-590nm, 690-710nm, 
1410–1470nm and 1880–1940nm.  

Rewatering plants after the stress period at flowering allowed them to restore their 
physiological traits until grain filling (15 days rewatered). Relative water content (RWC) of 
recovered plants even exceeded that of control (+7%). Therewith, Asat also recovered. Only 
gL remained somewhat lower than that of control plants (Table 3). However, the results 
from leaf reflectance (R) did not follow this trend. The relative difference ΔR/R within the 
range of 1410–1470nm and 1880–1940nm remained nearly as high as during the stress 
period at flowering despite the 7% higher RWC of recovered plants. Within the visible range 
of leaf spectra ΔR/R even increased during recovery compared to the actual stress period. 
These results indicate that quantifying the extent of change for either leaf water content or 
Chltot and leaf [N] from changes in leaf R might be problematic. Especially recovery from 
drought could not be traced using leaf R since the differences between formerly stressed 
plants and control plants remained rather high despite the complete recovery of 
physiological traits. 

The reason for the enduring differences in leaf R between fully recovered plants and control 
plants remains rather unclear and information on leaf R during recovery of plants after a 
stress period is rare in literature. However, it is assumed that secondary effects following 
drought stress might be involved. Drought can affect the cell structure and biochemistry 
(e.g.: Yordanov et al., 2000; Larcher, 2003; Read & Stokes, 2006) and is further known to 
influence the morphology of the leaf surface by means of changes in the content and/or 
composition of epicuticular waxes (Jordan et al., 1983; Johnson et al., 1983; Deng, 2005; 
Sehperd, 2006) or the occurrence of hairs (Foyer, 1994). Moreover, drought has the potential 
to accelerate ontogenetic development (Foyer, 1994; Kimball, 1995). Such alterations of leaf 
morphology and/or biochemical composition could not only have influenced leaf R after 
recovery but also have attributed to (or might be the reason for) the unexpectedly great 
differences in leaf R observed in plants subjected to a second stress period at grain filling. 
The less pronounced reaction of physiological traits to a second drought period is attributed 
to the preconditioning of plants already exposed to drought at flowering and/or the higher 
amount of green biomass (transpiring surface) of plants from the treatment stressed solely at 
grain filling. Plants of the treatment stressed twice were watered optimally for eight days 
after the drought stress event at flowering before water supply was halved again. Leaf 
osmotic potential remained below (more negative) that of control plants during these days 
providing a better initial situation concerning osmotic adjustment (data not shown) for 
plants already experiencing a first drought period at flowering.  
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  Triticum aestivum L. 

  AC AF AG AFG 

Asat Vegetative 21.2    
 Flowering 16.9 10.7***   
 grain filling 13.8 12.2 n.s. 4.4*** 6.9*** 

gL LS Vegetative 84.0    
 Flowering 164.1 18.4***   
 grain filling 171.8 116.3** 15.3*** 20.3*** 

RWC Vegetative 86.7    
 Flowering 83.8 74.0**   
 grain filling 76.3 81.9* 57.1*** 64.0*** 

AWC Vegetative 81.2    
 Flowering 72.2 68.8**   
 grain filling 74.1 74.8 n.s. 68.3 n.s. 71.1** 

Chltot Vegetative 46.8    
 Flowering 55.0 59.2***   
 grain filling 48.3 50.3** 61.7*** 55.6*** 

Leaf [N] Vegetative 4.3    
 Flowering 4.4 4.2**   
 grain filling 2.4 2.3 n.s. 1.9** 2.0** 

Table 3. Summary of physiological traits of T. aestivum. Significance levels refer to the 
differences between control and stress treatments. n=5-30; n.s.: not significant, *: p ≤ 0,05; **: 
p ≤ 0,01; ***: p ≤ 0,001. Abbreviations: AC: control; AF: drought stress at flowering, plants 
were recovered at grain filling; AG: drought stress at grain filling; AFG: drought stress at 
flowering and grain filling. Asat [µmol.m-2.s-1], gL: [mmol.m-2.s-1], RWC: [%], AWC: [%], 
Chltot: [µg.cm-2]; Leaf [N]: leaf nitrogen content in % dry matter; LS: lower leaf surface. Bold 
values highlight performance of recovered plants (measured at grain filling). 

The differences observed in ΔR/R during recovery show that no general prediction can be 

made concerning the potential to trace recovery from a stress situation with leaf reflectance. 

Apparently, different species and even cultivars respond inconsistently to drought stress 

with respect to their spectral signature (compare Linke et al., 2008).  

In contrast to changes in leaf R within the range of 1410-1470nm and 1880-1940nm, which 
can be attributed mainly to differences in leaf water content, the changes within the visible 
range are not well defined with respect to a certain stressor. As already described by Carter 
(1994) an increased reflectance at visible wavelengths (400-700nm) is the most consistent 
response to stress within the 400-2500nm range. The often made assumption that the 
chlorophyll content of leaves was proportional to moisture content (e.g. Tucker, 1977) may 
be correct for some species but cannot be generalized to different plant species and ecotypes. 
Variations in chlorophyll content can be caused by water stress but also by phenological 
status of the plant, atmospheric pollution, nutrient deficiency, toxicity, plant disease and 
radiation stress (Ceccato, 2001; Larcher, 2003). These findings are supported by the results 
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from the present study where different trends for RWC, Chltot and leaf [N] were found. Due 
to these adverse effects of leaf [N] (decrease) and Chltot (increase) an interpretation of the 
increased leaf R is difficult. At least the specific cause of these differences remains uncertain. 
However, the increased Chltot content found might result from leaf shrinkage leading to 
seemingly higher chlorophyll content per unit leaf area (µg.cm-2). 

Finally, three spectral indices (RWCi, AWCi and PRI) were tested towards their ability in 
estimating biophysical parameters (RWC, AWC and Asat). Concerning the estimation of 
leaf water content a better correlation was found for AWC. Unfortunately, the AWC is the 
less meaningful parameter since it only gives the water content as percentage of fresh 
weight which might vary greatly between species, phenology and environmental 
conditions (Larcher, 2003). The RWC, however, represents the actual leaf water content 
with respect to a standard measure (leaves under conditions of water saturation; Larcher, 
2003) and is therefore the more appropriate indicator of plant water status. Moreover, 
following changes in biophysical parameters using these indices was not possible due to 
the different extent of changes in leaf R compared to physiological traits under drought 
stress at different phenological stages. From these results it is concluded that a good 
relationship between spectral indices and biophysical parameters does not necessarily 
lead to an appropriate estimation of biophysical parameters at a given phenological state 
and/or physiological status. 
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Fig. 2. Comparison of the phenological course of measured and estimated RWC and AWC of 
T. aestivum. a)-b) Measured and calculated relative water content; c)-d) Measured and 
calculated actual leaf water content. Legend: AC: control, AF: drought at flowering, 
recovered at grain filling, AG: drought at grain filling, AFG: drought at flowering and grain 
filling. n=6 for measured RWC and AWC, n=20-30 for estimated RWC (RWCi) and AWC 
(AWCi). Errors represent standard error. 

In the here presented study, estimating leaf water content (RWC and AWC) as well as Chltot 
and leaf [N] from reflectance measurements gave good correlations. For tracing changes in 
physiological parameters during phenology and stress periods, however, the use of these 
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indices was not promising due to false estimation of stress situations and recovery (Figure 2 
and 3). An appropriate estimation appeared possible only in unstressed control plants. A 
good correlation between spectral indices and physiological parameters alone is therefore 
not necessarily sufficient for estimating physiological parameters from leaf spectra 
appropriately. 

b)

vegetative flowering grain filling

P
R

I 
[r

e
l.
 u

n
it
s
]

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055
a)

vegetative flowering grain filling

A
s
a
t [

µ
m

o
l.
m

-2
.s

-1
]

0

5

10

15

20

25

AC

AF

AG

AFG

 

Fig. 3. Comparison of the phenological course of a) light saturated photosynthetic rates (Asat) 
and b) photochemical reflectance index (PRI). AC: control, AF: drought at flowering, 
recovered at grain filling, AG: drought at grain filling, AFG: drought at flowering and grain 
filling. n=12 for Asat and n=20-30 for PRI. Errors represent standard error. 

To summarize, drought stress occurring at different phenological stages increased leaf R 
throughout the whole spectrum. Unfortunately, the degree to which plant physiological 
traits and water relations changed could not be quantified by the extent of change in leaf R, 
at least when drought occurred at different phenological stages. The main concern of this 
study, however, was to test the ability of leaf reflectance to follow recovery of physiological 
traits after a stress period which may be of essential importance when considering the 
occurrence of repeated drought events. Distinguishing between a currently occurring stress 
situation and an already passed one could become crucial in context with the application of 
spectral measurements in the field to trace stress situations and to make recommendations 
on fertilization or irrigation. Unfortunately, recovery from drought stress could not be 
traced by leaf R since the differences between formerly stressed plants and control plants 
remained high despite the complete recovery of physiological traits. Further investigations 
using different species with different leaf morphology and anatomy would be needed. 

4.2 Drought stress detection by thermal infrared 

Quantifying drought stress by measuring leaf/canopy temperature has become subject of 
intensive research within the last decades (Tanner, 1963; Wiegand, 1966). In the 1960ies 
researchers first used crude infrared thermometers to remotely monitor leaf temperature 
(Fuchs & Tanner, 1966). With the commercial availability of handheld instruments the focus 
moved from single leaf measurements toward the assessment of canopy temperatures. 

The scientific basis for this method relies on the fact that evaporating surfaces are cooled as 
soon as liquid water is converted to water vapour. Therefore, the less water is available to 
the plant stomata will close reducing transpiration rates, lowering evaporation and 
therewith evaporative cooling. The result is an increase in leaf temperature. As the stress 
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situation becomes more severe, leaf temperature (Tc) will reach the temperature of the 
surrounding air (Ta) and finally exceed it. Based on this, several indices have been proposed 
to measure the onset of plant water stress, such as the Critical Temperature Variability 
(CTV) (Blad et al., 1981; Clawson & Blad 1982), Temperature Stress Day (TSD) (Gardner et 
al., 1981), Stress Degree Day (SDD) (Idso et al., 1977; Jackson et al., 1977), or Crop Water 
Stress Index (CWSI) (Jackson et al., 1981; Jackson 1982). 

The concept of stress degree days (SDD) relies on a daily value of the difference between Tc 
and Ta at the time of maximum surface temperature (approximately 1-2 hours after solar 
noon; Idso, 1977; Idso 1981). However, from basic considerations concerning energy balance 
it becomes evident that the stress degree day parameter is additionally influenced by other 
environmental factors like the vapour pressure deficit of the air, net radiation or wind speed 
(Idso, 1981). Ben-Asher (1992) further cautioned that the sensitivity of IR sensors would be 
insufficient to sense very small differences in temperature and it would be unable to assess 
short term fluctuations of transpiration. Moreover, errors might result from stomatal closure 
during periods of peak solar radiation (midday depression), high ambient CO2 
concentrations, or because of disease (Ehret, 2001). 

All together, these findings led to the development of the crop water stress index (CWSI) an 
index that essentially normalizes the stress degree parameter for environmental variability 
(Idso, 1981). The crop water stress index (CWSI), which is derived from canopy-air 
temperature differences (Tc -Ta) versus the vapour pressure deficit of the air (VPD), was 
found to be a promising tool for quantifying crop water stress (Jackson et al., 1981; Idso & 
Reginato, 1982; Jackson, 1982). The calculation of CWSI relies on the establishment of two 
baselines: the non water stressed baseline (lower limit), which represents a fully watered 
crop, and the maximum stressed baseline (upper limit), which corresponds to a non-
transpiring crop (stomata fully closed; Yuan et al., 2004; Erdem, 2005). The resultant values 
of the CWSI normally cover a range from 0 (no stress) to 1 (severe stress). The critical value 
signifying a reduction in transpiration of plants can be found between 0.25–0.35 (Roth et al., 
2004) but the boundary threshold of CWSI indicating irrigation requirements is crop 
specific, depending, amongst others, on yield response to water stress. 

During the last decades many researchers have used the CWSI method for irrigation 
management (e.g. Pinter & Reginato, 1982; Wanjura et al., 1990; Irmak et al., 2000). Due to the 
dependency on species, location and climate zones, quite different slope and intercept 
values have been established in the different studies. Beside theses factors the heterogeneity 
of different plant canopies has to be considered to assure that the fraction of soil background 
sensed plays only a minor role. This might become a challenging factor especially during 
early growth stages until complete canopy closure or in crop species where complete soil 
cover is generally not reached, since spots of soil between the plants induce higher 
heterogeneity and thus lead to erroneous plant temperature measures. 

Another factor strongly influencing the applicability of CWSI for irrigation scheduling is the 
local climatic situation. The majority of studies which have successfully applied the CWSI 
concept were carried out in arid or semi arid regions where cloud cover plays a minor role. 
In contrast, under more humid conditions the validity of CWSI should be seen critical due to 
low vapour pressure deficit (VPD) values (with a small range) and the frequent occurrence 
of clouds (Roth et al., 2004). Faraj et al. (2001) emphasized that because of the strong impact 
of changing environmental conditions (such as VPD, net radiation and wind speed) on the 
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performance of the lower baseline and variable canopy resistance the usefulness of CWSI for 
irrigation scheduling is rather limited. Moreover, Yuan et al. (2004) compared different 
CWSI approaches and concluded that, due to its large fluctuations and variations, the 
empirical CWSI is of little practical value for detecting crop water stress in winter wheat in 
China. When using the empirical approach, CWSI may even range outside of 0 – 1, leading 
for example to negative values as it was observed by Faraj et al. (2001).  

Wanjura et al. (1995; Wanjura & Upchurch, 1996) introduced an alternative method to 
determine the non-water stressed baseline. They based their method on the Penman-
Montheith equation and considered the surface temperature as a wet bulb temperature which 
can be determined when further parameters like net radiation (Rn) and the aerodynamic 
resistance (ra) to heat flow between the surface and a reference level are known. The baseline, 
when established by the method of Idso et al. (1981), has to be determined experimentally 
which bears considerable constraints: it precludes its transfer to other regions since baselines 
will be site specific. They might also not be transferred to different years (or other times of the 
day) and they will be valid only for the same clear sky conditions (Alves, 2000). Alves & 
Pereira (2000), however, concluded from their studies that the infrared surface temperature of 
fully transpiring crops can indeed be regarded as a wet bulb temperature that can be used to 
calculate the surface temperatue (Ts) for non-water-stressed conditions when net radiation 
(Rn), aerodynamic resistance (ra) and air temperature are known. This method has the 
advantage over the experimentally determined non-water stressed baseline that 
measurements can be made at any time of the day from sunrise to sunset, that they can be 
made independently of climatic conditions including cloudy conditions and finally, previous 
observations, to derive or to validate a baseline, are not necessary (Alves & Pereira, 2000). For a 
detailed derivation of the equation see Alves & Pereira (2000). 

To summarize, several studies have successfully applied the CWSI concept to their regions but 
all these studies have in common that they were carried out in arid or semi arid regions of the 
world where cloud cover plays a minor role. In these climatic regions the concept provides a 
solid and cost effective method to schedule irrigation and reduce water consumption. It has, 
however, to be kept in mind that the CWSI is only an indicator of the onset of a drought event 
but does not give any further information about the amount of water needed to retain 
maximum possible yields. But this should not be a detriment to use this technique for 
irrigation scheduling since in many cases the irrigation amounts are limited by other factors 
like the irrigation system application rate, soil water intake rate or the amount of water 
available for irrigating crops. In such situations the knowledge about the theoretically needed 
amount of water is of little use due to the other restrictions (Nielson & Gardener, 1987). 

4.2.1 Case study 2 – Use of CIR sensors for drought stress detection in  
Pannonian climate 

4.2.1.1 Materials and methods 

This study was carried out at Versuchsgarten Augarten, Vienna (48°13'35'' N, 16°22'30'' E, 
164 m a.s.l.), and aimed at the short term drought stress detection by the use of thermal 
infrared measurements. Two areas in the size of 5 x 6 m were available for crop growing: a 
reference plot, where plants were irrigated (“irrigated”) and a second plot where plants 
were only irrigated until the first leaves were fully developed and then exposed to 
precipitation only (“rainfed”). 
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Triticum aestivum L. cv. Xenos was sown on 5 April 2006 at a rate of 600 seeds m-2. The soil, a 
chernozem, was fertilized with a total amount of 120 kg N/ha (70 kg N from Nitramoncal 
and 50kg from KNO3) with the application split in three bits according to local agricultural 
practice: before sowing, at tillering and at heading. Application of KNO3 further supplied 
plants with a total of amount 60 kg K/ha. 

For the measurement of plant canopy temperature cloud infrared (CIR) sensors were used. 
CIR-Sensors are ground-based instruments which were originally designed to infer day and 
night cloud cover. They operate in a 9 to 14 µm spectral range with a 12-degree FOV. In the 
here presented study two such sensors of which each generated two distinct output signals, 
the temperature of the sensor’s shell and the infrared temperature of the measured body, 
were used. From these data and under implementation of meteorological parameters such 
as air temperature (Ta), vapor pressure deficit (VPD), net radiation (Rn) and aerodynamic 
resistance (ra) the canopy temperature of the plant stand was calculated. 

In addition, basic plant physiological parameters were determined: instantaneous leaf 
conductance (gL) was measured with a steady state porometer (PMR-4, PP-Systems; U.K.), 

leaf water potential (w) was determined predawn (02:30-04:00) and at noon (12:30-14:00) 
using a pressure Bomb (Scholander et al., 1965) and leaf temperature of single leaves within 
the plots was measured with a handheld infrared thermometer (Raytek). Relative water 
content was calculated as RWC = ((fresh weight - dry weight)/(saturated weight - dry 
weight)) * 100 [%]. All measurements were performed on the youngest fully expanded leaf 
at three developmental stages (vegetative growth, flowering and grain filling). The 
determination of plant physiological parameters served as a reference to indicate the 
occurrence of drought stress in rainfed plants. 

4.2.1.2 Results and discussion 

Regarding the climate, the study region belongs to the northeastern part of Austria, a semi-
arid area characterized by deep groundwater level and low precipitation levels. The mean 
annual precipitation is 577mm and the mean annual temperature is 9.9°C (Eitzinger et al., 
2003). The climate is therefore more humid than in other regions where CWSI is applied for 
irrigation management. It is further known from other studies that the calculation of CWSI 
is ideally performed during cloudless skies (e.g. Idso et al., 1981). Since such conditions are 
not frequently available in the study area, the present study aimed at testing the 
uncertainties of the CIR-Sensor measurements and to calculate CWSI for non-ideal 
conditions such as cloudy sky, fetch effects and suboptimal orientation of the sensors. 

An early response of plants to a lowering of soil water availability is the reduction of leaf 
conductance (gL) thus avoiding excess water loss and providing higher water use efficiency 
to the plant (Cornic & Massacci, 1996; Lawlor, 2002; Flexas & Medrano, 2002; compare also 
section 2). At all observation dates, gL of rainfed plants was lower than that of irrigated ones 
(Table 4) indicating poorer water supply. This further resulted in lower transpiration rates 
and reduced transpirational cooling. Therewith, slightly increased leaf temperatures were 
observed in plants of the rainfed plot throughout the whole growing season (Table 4). The 
differences between leaf temperature of plants from the rainfed and the irrigated plot were 
highest around noon, where the surface received maximum net radiation. The smallest 
mean differences were observed between 0:00 and 3:00 MEZ. Therefore, values of the 12:00 
to 15:00 MEZ time period were used for the calculation of crop water stress index (CWSI). 
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time 
growth 
stage 

w RWC gL US gL LS Tleaf 

  ir rf ir rf ir rf ir rf ir rf 

pre-d. veget. -1.8 -1.9 93.2 94.8       
 flow. -2.4 -4.6*** 94.4 89.4       
 grain f. -6.8 -11.3*** 82.8 83.8       

noon veget. -6.8 -7.8 94.4 92.2 541.4 364.2** 601.1 177.0*** 18.7 22.4 
 flow. -17.2 -20.1* 77.5 82.1 632.7 523.2** 568.7 361.1** 27.7 28.6* 
 grain f. -18.3 -19.9 79.3 81.5 721.0 537.4** 609.1 328.5*** 25.0 30.2*** 

Table 4. Summary of the results from physiological measurements. Abbreviations: pre-d.: pre 
dawn measurement; noon: noon measurement; veget.: vegetative growth, flow.: flowering; 

grain f.: grain filling; ir: irrigated; rf: rainfed;w: leaf water potential [bar]; RWC: relative 
water content [%]; gL: leaf conductance [mmol.m-2.s-1]; US: upper leaf surface; LS: lower leaf 
surface, Tleaf: leaf temperature. Significance levels refer to the differences between rainfed 
and irrigated plants. ***: p ≤ 0.001; **: p ≤ 0.01; *: p ≤ 0.05; n=5-30. 

In addition to the measurement of stomatal conductance and leaf temperature, leaf water 
potential was determined. A decrease of soil water content resulted in a lowering of leaf 
water potential (Ψw, more negative values; Chaves, 1991; Cornic, 1994; Lawlor, 1995). 
Predawn leaf water potential (Ψw,pd), which gives a pretty good estimation of soil water 
content (Richter, 1997; Taiz & Zeiger, 2000; Lösch, 2003), did not differ greatly at vegetative 
growth (+8%, Table 4) between plants of the two plots. At flowering and grain filling, 
rainfed plants exhibited significantly lower Ψw,pd (more negative; +94% and +65%, 
respectively) compared to irrigated plants.  

For wheat, the most critical period concerning the occurrence of drought stress is the period 
which brackets anthesis. Irrigation recommendations are therefore given for drier periods 
during vegetative growth until shortly after flowering (Geisler, 1983). Thus, for testing the 
energy balance method to determine a non-water stressed baseline, data from June 
(flowering period) were used. Concerning the results obtained from infrared thermometry it 
could be shown that the effect of wind was rather small and, both the orientation of the CIR 
sensors as well as fetch effects were not very prominent in this environment during noon 
time (results not shown). The simulated leaf temperature for the irrigated plot was 
calculated by applying both the classical method after Idso (Idso et al., 1981) and the energy 
balance based method (Alves & Pereira, 2000) for all sky conditions. The resultant coefficient 
of determination (r²) between simulated and measured leaf temperature was higher for the 
latter method (r²=0.8), for which reason the set up of a non water stressed baseline by the 
method based on the energy balance is to be advantaged under such climatic conditions. 
Figure 4 indicates a satisfying relationship between measured and calculated leaf 
temperature both for a single week (11.6-17.06.2006) and for almost one month (8.6.-4.7.2006) 
during the experiment (Table 5 gives a summary of leaf temperatures measured with a 
handheld IR thermometer). However, when comparing the simulated (energy balance 
method) and measured CWSI calculated from data recorded at noon time (12.00-15.00) 
throughout the whole experimental period, the result is not at all satisfying (r²=0.3366). 

From this study it can be concluded that one of the most detrimental factors for establishing 
a non water stressed baseline seems to be cloudiness, a result which was also obtained by 
Da Silva & Rao (2005). However, the results further suggest that influences other than 
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cloudiness might be responsible for the poor relationship between measured and simulated 
CWSI. Idso (1982), for example, defined non-water-stressed baselines for 26 different species 
for clear sky conditions and found that these baselines were different for various 
phenological stages in certain crops. He further suggested that, for example, for winter 
wheat different baselines should be developed for pre and post head stages. Gardner et al. 
(1992) also urged that care has to be taken concerning the use of an inappropriate base line 
since small errors in its determination can lead to large errors in the calculation of CWSI.   

  

Fig. 4. Simulated (energy balance method) and measured leaf temperature for plants of the 
irrigated plot during a) one month (8.6.-4.7.2006) and b) one week (11.6-17.06.2006, 
beginning of flowering) of the experimental period.  

 

date treatment time of the 
day 

gL (Std error) Tleaf (Std error) Tair 

19/06/2006 rainfed morning 531.8 (31.2) 26.8 (1.5) 26.2 
  noon 582.6 (57.1) 31.0 (0.9) 29.1 
  afternoon 325.4 (39.2) 26.6 (0.4) 29.2 
      
 irrigated morning 746.7 (88.9) 29.0 (1.1) 26.8 
  noon 558.1 (41.7) 28.5 (0.5) 29.7 
  afternoon 520.5 (54.3) 26.3 (0.4) 28.5 
      
21/06/2006 rainfed morning 606.8 (33.3) 27.1 (0.7) 28.0 
  noon 538.6 (65.4) 26.1 (0.2) 28.0 
  afternoon 513.8 (74.5) 28.5 (0.3) 29.7 
      
 irrigated morning 651.2 (22.1) 24.0 (0.3) 27.2 
  noon 696.6 (72.7) 27.0 (0.4) 28.3 
  afternoon 628.6 (61.1) 25.4 (0.4) 29.9 

Table 5. Daytime course of leaf temperatures measured with a handheld IR thermometer 
(Tleaf), air temperature (Tair) and stomatal conductance (gL) in T. aestivum for the 19.06.2006 
and the 21.06.2006 (flowering period). 

5. Conclusions 

Water scarcity is an increasingly important issue in many parts of the world. Within the next 
centuries global climate change is expected to result in a long-term trend towards higher 
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temperatures, greater evapotranspiration, and an increased incidence of drought in specific 
regions. Concurrently, the increased need for food supply worldwide and the prediction of 
the emergence of drier regions, demand the development of cost effective methods for early 
stress detection to reduce yield losses.  

The first study presented herein aimed at the evaluation of drought stress, applied at 
different phenological stages (flowering and/or grain filling), on plant physiological traits 
and leaf reflectance and their subsequent recovery. An increase of leaf reflectance (R) as 
observed in the range from 500-600nm is mainly attributed to a lower chlorophyll or 
nitrogen content. However, in this study, a lower relative water content (RWC) also 
increased R in this range of the spectrum. A higher R would normally be attributed to a 
decreased chlorophyll content or nitrogen deficiency but would not be primarily addressed 
to a lower RWC. Results further showed that rehydrating plants recovers physiological 
traits but the recovery could not be traced by reflectance measurements since R remained 
above that of control plants. A distinction between a current stress situation and an already 
passed one was not possible. Fertilization commendations based on such results would be 
ineffective since the uptake of nitrogen by plants is strongly restricted under drought. 

From the second study presented herein it can be concluded that sensing drought stress by 
thermal IR works well under clear sky conditions at larger scales without fetch effects and 
when sensor orientation is optimal. Non-ideal conditions such as small study sites and 
frequently changing environmental conditions (e.g. cloudiness), however, may introduce 
uncertainties which might be larger than the drought stress signal itself. As a result, the 
calculation of CWSI for this study site, characterized by changing environmental factors (e.g. 
cloudiness), seems not accurate enough to be used for irrigation scheduling. 
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