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1. Introduction 

The underwater acoustic channel (UAC) is one of the most challenging environments to be 
encountered for the communication. Because of the absorption of the signal, the path loss 
depends on the signal frequency (Berkhovskikh & Lysanov, 2003; Jensen et al., 2011). 
Multipath transmission causes intersymbol interference (ISI), and it extends over tens to 
hundreds of milliseconds according to the communication distance (Stojanovic & Preisig, 
2009). Since the velocity of sound in water is about 1500m/s, any relative motion includes 
the transmitter or receiver and even surface waves will cause non-negligible Doppler effects, 
including shifting and spreading. All these phenomena dramatically limit the data rate 
achievable and the performance of the communications. The bandwidth is very limited, and 
the system is actually a broadband communication system because the center frequency of 
the signal is always at the same order of the bandwidth (Stojanovic, 1996; Stojanovic, 2007; 
Stojanovic & Preisig, 2009). 

In order to achieve high data rate, it is important to use bandwidth-efficient modulation 

methods in UAC. Multi-carrier modulation is one of the candidates that can be used. 

Orthogonal Frequency Division Multiplexing (OFDM) (Lam & Ormondroyd, 1997; Kim & 

Lu, 2000; Stojanovic, 2006; Stojanovic, 2008; Li et al., 2008), direct-sequence spread-spectrum 

(DSSS) (Freitag et al. 2001; Frassati et al. 2005), frequency-hopped spread-spectrum (FHSS) 

(Stojanovic, 1998; Freitag et al., 2001) and code-division multiple access (CDMA) 

(Charalampos et al. 2001; Stojanovic & Freitag, 2006; Tsimenidis, 2001)were used in UAC 

channels in recent years and much literature focus on the conceptual system analysis and 

computer simulations.  

In this chapter, we introduce a new multi-carrier modulation into the UAC channels which 
is called Carrier Interferometry OFDM (CI/OFDM) (Nassar et al., 1999; Wiegandt & Nassar, 
2001; Nassar et al., 2002a, 2002b). Compared with OFDM, the CI/OFDM has a low PAPR 
characteristic and inherent frequency selective combining, which makes it a very attractive 
signaling scheme in frequency selective fading channels (Wiegandt & Nassar, 2001; 
Wiegandt et al., 2001; Wiegandt & Nassar, 2003; Wiegandt et al., 2004 ).   

The chapter is organized as follows. In Section II, the characteristics of CI signal are 
analyzed. Two algorithms are proposed in Section III. Details are focused on the PAPR 
performance, and new algorithms to complete the modulation and demodulation of the 
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CI/OFDM. The configuration of the CI/OFDM underwater acoustic communication system 
is presented in Section IV. Furthermore, the key algorithms including synchronization, 
channel estimation and equalization are described. In Section V, Performance results for 
different field tests are summarized. Conclusions are drawn in Section VI.  

2. CI/OFDM signals  

2.1 The theory of the CI/OFDM  

In CI/OFDM transmitter, after serial to parallel transform, information symbols are 

modulated onto all the N parallel subcarriers and then added linearly together to get the 

output signal (Nassar et al. 2002). As shown in Fig.1 , the output of the signal is 
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where ( )ks t is the modulated signal for the kth information symbol ka . Re( ) is the real part 

of the signal and ( )kc t is the kth CI signal, which can be express by 
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It is easy to see that ( )kc t  is a multi-carrier signal with different phase offsets 

(2 )i
k N k i    . Submit (2) into (1), we get the continuous baseband transmitted signal  
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We rewrite the discrete form of (3) with the Nyquist sampling rate of sf N f   
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where 1 sf T  ( sT is one CI/OFDM symbol duration) to ensure orthogonality among 

subcarriers, and (2 )N k i  is the phase offset used for ka which ensures the orthogonality 

among the N information symbols.  

After transmitted over a frequency selective fading channel, the received signal at receiver 

side is 
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where i and i are the amplitude fade and phase offset on the ith carrier, respectively. ( )w n  

is the addictive white Gaussian noise (AWGN). 
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Fig. 1. The conceptual CI/OFDM Transmitter 

Fig.2 depicts the modulation theory of CI/OFDM in transmitter and the detection of the kth 

symbol signal at the receiver side (Nassar et al. 2002). Assume perfect synchronization, the 

received signal is first projected onto the N orthogonal carriers, multi-carrier demodulation 

and phase offsets remove are carried out after that. This leads to the decision vector 

0 1 1( , ,..., )k k k k
Nr r r r  for the information symbol ka , where k

ir is defined as 
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The first part of (6) is the desired information symbol which is randomly faded by factor i , 

and the second part is the interferences of the other N-1 information symbols which 

modulated on the same carrier.  

Different combining strategies are employed to help restore orthogonality between 
subcarriers. In AWGN channel, the optimal combining is equal gain combining (EGC). After 

performing 
1

0

N

i
i

C r



  , interferences are close to zero. While in frequency selective channel, 

different combining strategies are used to get combining gains, for example, the maximum 
ratio combining (MRC), the minimum mean square error combining (MMSEC) (Itagkai & 
Adachi, 2004). After combining, the signals are sent to the detector. 
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As presented to date, the implementation of original CI/OFDM is complicated, and it is 

important to note that the receiver is designed for detecting only one information symbol. 

Although CI/OFDM had been proved that it could improve BER performance by exploiting 

frequency diversity and depress the PAPR simultaneously, its implementation was 

complicated and only conceptual transmitter and receiver models had been given in the 

literature. 
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Fig. 2. The CI/OFDM receiver for the kth symbol 

2.2 The characteristics of the CI signal 

The baseband CI signal (Nassar et al. 2002) is given bellow 
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where N is the number of the subcarriers and f is the interval of the subcarriers. It is 

obviously that CI signal is a periodic signal. Simulation results are shown in Fig. 3. In 

simulations, 8N  , 1f Hz  , the width of the main lobe and the side lobe are 

2 ( ) 0.125N f s 
 
and 1 ( ) 0.0625N f s  ,

 
respectively. By selecting optimal phase offsets, CI 

signals are orthogonal to each other.  

We rewrite the discrete CI signal as bellow 
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It is clearly that the discrete CI signal is the result of sampling a rectangle pulse with the 

sampling rate f in the frequency domain. It has constant amplitude (CA). 

Based on the analysis of the CI signal, two novel algorithms for CI/OFDM modulation and 
demodulation are presented in this chapter.  
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Fig. 3. Baseband CI signals 

3. Proposed algorithms 

3.1 Multi-carrier algorithm 

As in (4), the discrete kth transmitted symbol is  
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It is obviously that (9) is an inverse discrete Fourier transform (IDFT) with weighting 

efficients 

2
j ik

N
ka e
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 which change with the index k  and i . The IDFT weighting coefficient 

can be written as a matrix 
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Since i  is the index of subcarrier, the columns of the matrix are corresponding to different 

subcarriers, that is 
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(11) implies that the coefficient of the IDFT can also be corresponding to another IDFT (Xu et 

al., 2007a, 2007b). Hence, the CI/OFDM modulation model employed in this chapter 

corresponds to  

 

1

0

2 21 1

0 0

2 21 1

0 0

2

( ) ( )

( )

( )

( ) 0,1,..., 1

N

k k
k

N N j ki j ni
N N

k
k i

N N j ki j ni
N N

k
i k

k
n i

k
n i

nTs
s n a c

N

a e e

a e e

N IDFT N IDFT a

N IDFT IDFT a n N

 

 





 

 

 

 







     
      



 

   (12) 

Fig.4 shows a block diagram of the proposed system. At the transmitter side, the input data 

is first mapped into a baseband constellation. Then the data sequence is converted to 

parallel and enters the first IDFT to perform CI spreading. After that, the second IDFT is 

 

Fig. 4. The block diagram of the multi-carrier algorithm 
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used to implement orthogonal multi-carrier modulation. Parallel data is first transformed to 

serial data, then the complex base-band signal is then up-converted to the transmission 

frequency, and the real part of the signal is sent out to the channel. In the receiver, the signal 

is first down-converted to the base-band. Serial to parallel transformation followed by 

orthogonal multi-carrier demodulated which completed by the first discrete Fourier 

transform (DFT). Then CI code de-spreading is implemented by the second DFT and finally, 

the phase constellation of the data is extracted ( Xu et al. 2007). 

3.2 Single-carrier algorithm 

The CI spread code in (10) is similar to the polyphase codes (Heimiller, 1961). Polyphase 
codes were proven to have good periodic correlation properties, the sequence is 
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where (2 )j k p
k e   , 0 1k p   is a primitive Pth root of unity, the sequence has zero 

periodic correlation except for the peaks at 2 20, ,2 ,...i p p . 

Polyphase code were proven to be a constant amplitude , zero autocorrelation (CAZAC) 

sequence (Heimiller, 1961). According to the characteristics of the CAZAC sequence, if iu
 
is 

a CAZAC sequence, then iu , where u  denotes complex conjugation, is also a CAZAC 

sequence (Milewski, 1983). Note that the orthogonality, periodicity, constant amplitude and 

zero autocorrelation are not changed, it suggests a new way of thinking about constructing 

new CI signals.  

In this chapter, the new CI signals are complex conjugations of primary CI signals (Nassar et 
al. 2002), which can be written as  
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(14) 

Then, the CI/OFDM signal is mathematically characterized by the following equation 

Fig.5 shows the proposed system using the single-carrier algorithm. In the transmitter, the 

input data is mapping into a baseband constellation. Then the data sequence is converted to 

parallel and enters the first DFT to perform CI spreading. After that, the IDFT is used to 

implement orthogonal multi-carrier modulation. The complex baseband signal is then up-

converted to the transmission frequency. 
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In the receiver, the signal is down-converted to the baseband.  After serial to parallel 

transformation, the signal is first demodulated by DFT, Then CI de-spreading is 

implemented by the IDFT and the phase constellation of the data is extracted. 

 

Fig. 5. The block diagram of the single-carrier algorithm 

3.3 The comparisons between the conceptual CI/OFDM and the proposed algorithms 

In the conceptual model of CI/OFDM, the computational complexity increases with the 

number of parallel information symbols dramatically, which make it unpractical to the 

engineering. In the conceptual model of CI/OFDM, the CI spreading needs N N complex 

multiplications ( 1)N N  complex additions. While in multi-carrier algorithm or single-

carrier algorithm, only 22logN N complex multiplications and 2logN N complex additions 

are needed. For example, when 1024N  , we need 1048576 complex multiplications and 

1046529 complex additions in conceptual CI/OFDM, while only 5120 complex 

multiplications and 10240 complex additions are needed in our algorithms. 

Of course, the two algorithms have their own problems. As in the multi-carrier method, the 
physical concept is not very clear, since there are two cascaded IDFT in the transmitter 
which may cause confusion about the transformation between the frequency domain and 
time domain. On the other hand, in the single-carrier method, filter should be well designed 
to compress the bandwidth of the output signal. 

As shown in fig.6, the performance of CI/OFDM system is verified under AWGN channel. 
We replace the IDFT by the inverse fast Fourier transform (IFFT) due to the efficiency of the 
algorithm. It is obviously that there is no difference between the conceptual CI/OFDM and 
the two algorithms proposed in this chapter. 
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Since lower PAPR is the most important characteristic of CI/OFDM, and the algorithms 

presented here are somewhat different from the theoretical realization of the CI/OFDM, it is 

reasonable for us to verify the PAPR performance based on these two algorithms. Fig. 7 

shows the simulation result. A conclusion can be drawn that the two algorithms presented 

in this chapter have the same PAPR and BER performance as the conceptual CI/OFDM, and 

lower complexity which make it applicable to engineering. 
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4. Configuration of the CI/OFDM underwater acoustic communication system  

Based on the aforementioned algorithms, two CI/OFDM underwater acoustic communication 

systems are proposed. Simplified block diagrams of the proposed systems are shown in Fig.8 

and Fig.9. We also replace the IDFT by the IFFT due to the efficiency of the algorithm. 
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As shown in Fig.8, based on the multi-carrier algorithm, the input data is first coded by Low 

Density Parity Check Codes (LDPC). After baseband mapping, the data sequence is 

converted to parallel and enters the first IFFT to perform CI spreading. Pilot signals are 

inserted before the second IFFT. The second IFFT is used to implement orthogonal multi-

carrier modulation. A cyclic prefix and postfix are also appended to the data sequence as 

guard intervals in order to combat the ISI induced by the multi-path delay spread in the 

UWA channel. The complex base-band signal is then up-converted to the transmission 

frequency and the real part of the signal is sent out to the UWA channel by the transducer. 

In the receiver, the signal is first down-converted to the base-band. Then the signal is 

demodulated by the first FFT. Channel estimation is performed to track the channel 

response and compensations of the signal are performed. Then CI code de-spreading is 

implemented by the second FFT, and finally, the phase constellation of the data is extracted. 

 

Fig. 8. The block diagram of the system based on multi-carrier algorithm 

Fig.9 shows a simplified block diagram of the proposed system based on single-carrier 

algorithm. In the transmitter, the input data is first encoded by LDPC and then mapping 

into a baseband constellation. The data sequence is converted to parallel and enters the first 

FFT to perform CI spreading. After that, the IFFT is used to implement orthogonal multi-

carrier modulation. A cyclic prefix is also appended as a guard interval to the data sequence 

in order to combat the inter ISI induced by multipath delay spread in the selective fading 

channel. In addition, a pilot signal is appended for the purposes of channel estimation in the 

receiver. The complex baseband signal is then up-converted to the transmission frequency. 

In the receiver, the signal is down-converted to baseband. The signal is first demodulated by 

FFT, and diversity combining scheme is employed as frequency-domain equalization where 

the combining weights are estimated by the pilot signal. Then de-spreading is implemented 

by the IFFT and the phase constellation of the data is extracted. Finally, the data is mapped 

back to the binary form, and a soft LDPC decoding is performed. 

We here focus on the multi-carrier algorithm and explain the key technologies used in the 

underwater acoustic communication system. 
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4.1 Synchronization 

We use Linear Frequency Modulation (LFM) (Rihaczek, 1969; Shaw & Srivastava, 2007) 
signal to get coarse synchronization and CI complex spreading sequence to get accurate 
synchronization and fractional frequency offset estimation. 

 

Fig. 9. The block diagram of the system based on single-carrier algorithm 

4.1.1 Coarse synchronization 

The expression for LFM signal is given as 
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   
    (16) 

where A is the amplitude of the signal, T is the width of the signal, 0f is the carrier 

frequency, u is the gradient of the instantaneous frequency which is called chirp rate, 

2u B T . ( )rect 
 
is a rectangle function, defined as  
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Since the ambiguity function of LFM signals is wide in Doppler axis (Rihaczek, 1969), it is 
highly tolerant of the Doppler shift which makes it useful in mobile wireless communication 
systems.  

4.1.2 Fine synchronization and fractional frequency shift estimation 

Two identical CI complex sequences are used as fine synchronization signals and sliding 
correlator is applied at the receiver side to obtain the correlation peak. CI complex 
sequences is given by 
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 2 2 2 3 3 3 1 1 1
1 2 3 1 1 2 1 1 2 1 1 2 11,1,...,1,1, , , ,...., ,1, , ,..., ,1, , ,..., ,1, , ,...,N N N

N N N N              
     (18) 

where (2 )j k N
k e   , 0 1k N   . Suppose the two received sequences are 1( )r m and 2( )r m  

(Hlaing et al. 2003; Ren, 2005), the cross-correlation function of the two sequences is 

 
1

*
1 2

0

( ) ( ( ) ( ))
L

m

R n r m r m n



   (19) 

where the L is the length of the sequence. Since the sequences are identical at the 
transmitter, the impact of the channel is assumed to be same to the two sequences, (18) can 
be written as 

    
1 1

* *
1 2 1 1

0 0

( ) ( ) ( ) ( ) ( )
L L

m m

R n r m r m n r m r m L n
 

 

       (20) 

The cross-correlation of two sequences can be changed into auto-correlation of one 
sequence, that is  

    
1 1

* *
1 2 1 1

0 0

(0) ( ) ( ) ( ) ( )
L L

m m

R r m r m r m r m L
 

 

     (21) 

The time offset can be estimated from 

  2ˆ arg max ( )
n

n R n  (22) 

Assuming that the frame synchronization is accurate, the difference between two CI 
complex sequences can be approximately regarded as the result of the frequency shift 

 ˆ( ( ))angle R n   (23) 

 (2 2) ( )f T T       (24) 

where f  is the fractional frequency shift,   is the phase offset caused by frequency shift, 

T is the period of the synchronization signal which is equals to the CI/OFDM signal. 

Fig. 10 shows the sliding correlation peaks of LFM signal and CI complex sequence at the 
receiver side in AWGN channel. 

4.2 Channel estimation and equalization 

When the pilot is a CAZAC sequence, it was proven that in the presence of noise, the mean 
square error of the channel response estimation is minus (Milewski, 1983). The mean square 
error equals to the variance of the noise in the channel, that is 

 
2 22 2ˆ( )i i i

i i

E r r L v      (25) 

where iv V , 1V U , U is the Fourier transform of the pilot sequence. 
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Two kinds of pilot sequences which are both CAZAC sequences are chosen to estimate the 

underwater acoustic channel response. 
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Fig. 10. Sliding correlation peak under AWGN channel. (a) Peak of LFM signal (b) Peak of 
CI spreading sequence  

4.2.1 Pilot 

1. CI complex sequence 

CI complex sequence was given in equation (18). It is easy to prove the CAZAC feature of 

the CI complex sequence. Fig. 11 gives simulation results of the CI complex sequence. 
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Fig. 11. The CAZAC feature of the CI complex sequence. (a) constant amplitude (b) zero 
autocorrelation 
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2. CHU sequence 

CHU sequence is a polyphase code with a periodic autocorrelation function (CHU, 1972). It 

was proven that the CHU sequence can be constructed for any code length. When N is even, 

CHU sequence is defined as 
2

exp( )k

M k
a i

N


 . When N is odd, it is 

( 1)
exp( )k

M k k
a i

N

 
 , 

where M is an integer relatively prime to N. Fig. 12 shows the amplitude-frequency and 

autocorrelation results of CHU sequence. Fig. 13 and Fig.14 show the channel impulse 

respond estimated by CI complex sequence and CHU sequence under AWGN and 4-path 

Rayleigh channel. 
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Fig. 12. The CAZAC feature of the CHU sequence (a) constant amplitude (b) zero 
autocorrelation 

 

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

 
(a) (b) 

Fig. 13. Channel impulse respond estimated by CI complex sequence (a) AWGN channel (b) 
4-path Rayleigh channel 
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4.2.2 Frequency domain equalization 

In the conceptual model of CI/OFDM, the information symbols are simultaneously 
modulated on multi-subcarrier which makes CI/OFDM inherently having the frequency 
diversity. At the receiver side, frequency combining may be used to improve the 
performance of the system. 

We still focus on the multi-carrier algorithm which makes use of the properties of 

IDFT/DFT, such as the linearity and the circular shift.  Since every parallel input signal of 

the second IDFT is the summation of information signals, which are spread by CI signal, the 

frequency diversity combining should be at the end of the first DFT module at the receiver 

side.At the receiver, after orthogonal multi-carrier demodulation, the output of the first  

FFT is 

 

21

0

N j i k
N

i i k i
k

r H a e n

  



    (26) 

where [1, ]i N  is the number of the subcarrier, iH  is the transition function of the sub-

channel and ka  is the information symbol, [1, ]k N . 

According to Fig. 15, the input signals at the second FFT module which can be expressed as 
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where iw  is the gain of the ith subcarrier determined by different combining strategies. 

Since iR  includes all information about transmitted symbols, the second FFT not only is 

applied for decomposing the CI spreading into the subcarrier components, but also is used 

to complete the frequency combining.  
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Fig. 14. Channel impulse respond estimated by CHU sequence (a) AWGN channel (b) 4-path 
Rayleigh channel 
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Several frequency combining strategies such as EGC, the MRC, orthogonal restoration 

combining (ORC) and MMSEC are considered in frequency selective channel (Itagkai & 

Adachi, 2004). Computer simulation results are shown in Fig. 16. In CI/OFDM system, 

though both combing strategies are sensitive to the inter-carrier interference (ICI), the MRC 

performance is worse than EGC. It is because that in MRC, the phase changes of the signals 

are lost, which is very important to CI/OFDM. Since ORC equalization perfectly restores 

frequency non-selective channel but produces the noise enhancement, its performance is 

better than MRC and EGC but worse than MMSEC. As SNR increases, the BER performance 

of ORC gets better, but MMSEC equalization provides the best performance. AS we know, 

the MMSEC not only restores frequency non-selective channel but also minimizes the noise. 
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Fig. 15. Frequency combining in multi-carrier algorithm 
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Fig. 16. Performance comparisons of ORC, MMSEC, EGC and MRC 
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5. Field test results 

5.1 Experiment I 

5.1.1 Experimental pool 

The experimental pool in Xiamen University is an un-censored pool which size is 

430(L)x320(W)x200(H)cm. 

Channel estimation was carried out, 13kHz single carrier signal is sent at the 30ms intervals. 

The sample rate of A/D is 160kHz. The transmitted and received signals are shown in Fig. 

17. We can see that key features of the channel are multi-path transmission with low noise 

because of the stationary water in the pool. The maximum delay is about 19 ms which 

magnitude is under 3% of the maximum one. 
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Fig. 17. The transmitted and received signal (13kHz) 

5.1.2 Results of experimental pool  

In this experiment, LFM signal was used to get coarse synchronization of the frame and CI 

complex sequence was applied to achieve accurate synchronization and fractional frequency 

shift estimation (Xu et al., 2008). SNR estimation algorithm is borrowed from the work (Ren, 

2005) with synthesis of CI complex sequence. CI complex sequence is used as pilot to 

estimate the impulse response of the channel. Frequency-domain equalization ORC is used 

at the receiver to improve the performance of the system. Table 1 shows the parameters of 

the CI/OFDM system. 

The results are shown in Table 2. Since the water in pool is stationary, the SNR is high and 

the average SNR is about 12dB. BER performance is good and the average fractional 

frequency shift is about 0.07Hz, which is very small compared with the subcarrier interval 

6000 /1024 5.86f Hz   . 
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Baseband mapping  QPSK 

Subcarrier mapping Localized 

Synchronization signal LFM/CI complex spreading sequence 

Pilot CI complex sequence 

Pilot pattern Block  

Equalization ORC 

Bandwidth 6kHz 

Carrier frequency 13kHz 

Sampling rate 156kHz 

Number of the parallel signal 1024 

System rate 4.97kbps 

Table 1. System parameters 

 

SNR (dB) Fractional frequency shift (Hz) BER  

12.33659 0.068643 3.48771e-06 

Table 2. BER performance 

5.2 Experiment II 

5.2.1 Shallow water in Wuyuan Bay of Xiamen  

A CI/OFDM underwater acoustic communication experiment was conducted on Dec. 12, 
2008 in Wuyuan Bay of Xiamen, China. The distance between the transmitter and the 
receiver was 1000m, and they were deployed at 3 m and 2 m below the sea-surface, 
respectively. The average depth of the water is 4. 5m which was changed with the tide. 
The channel probing signals include two kinds. One is a single carrier signal which was 
transmitted at the 100ms intervals repeatedly. The other is a sweeping signal which 
frequency is from 9kHz to 21kHz. It was also be transmitted once every 100ms. 
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Fig. 18. Transmitted and received signal (14kHz)  
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As shown in Fig. 18, multi-path signals is visible during the 100ms intervals though the 
amplitude of the multi-path signal is about 2% of the maximum one. The amplitude of the 
14KHz signal was changed after 100ms. Fig. 19 denotes the different amplitudes of the 
sweeping signals which reveal the time-varying and frequency-varying features of the 
acoustic underwater channel.  

0 0.5 1 1.5 2
x 105

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Transmitted signal

Sample

Am
pli

tud
e

0 0.5 1 1.5 2 2.5
x 105

-5

-4

-3

-2

-1

0

1

2

3

4

5
Received signal

Sample

Am
pli

tud
e

 

Fig. 19. Transmitted and received sweeping signal (9kHz to 21kHz) 

5.2.2 Results of experiment II 

Table 3 is the parameters of CI/OFDM underwater acoustic communication system. Table 4 
is the BER performance of the system without and with frequency selective combining. The 
BER performance was significantly improved due to the frequency diversity combining by 
the cost of decrease of the data rate.  

 

Baseband mapping  QPSK 

Subcarrier mapping Localized 

Synchronization signal LFM  

Pilot CI/OFDM signal 

Pilot pattern Block 

Equalization MMSEC  

Bandwidth 5kHz 

Carrier frequency 15kHz 

Sampling rate 60kHz 

Number of the parallel signal 1024 

Data rate 4.97kbps/1.24kbps in 4-fold frequency diversity 

Table 3. System parameters 

BER (without frequency diversity) BER (with 4-fold frequency diversity) 

0.014257 0.0058714 

Table 4. BER performance 
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5.3 Experiment III 

5.3.1 Shallow water in Baicheng water 

Two CI/OFDM underwater acoustic communication experiments were conducted on Dec. 

17, 2009 and Dec. 31, 2009 in Baicheng water of Xiamen, China, respectively. The transmitter 

was deployed at 2.5m above the sea-floor in 5.5m deep water and the receiver was deployed 

at 9m below the sea-surface in 16m deep water. The horizontal distance between the 

transmitter and receiver were 2000m and 5000m, respectively.   

The channel probing signals used in these two experiments were same sweeping signals, 

with frequency from 8KHz to 16KHz. The time interval between different frequencies was 

30 ms. 

Fig.20 is the received probing signal at the short range (2000m). The sea condition was calm 

but vessels passed through the water frequently. The Frequency-varying feature is different 

from the feature in Wuyuan Bay. In this experiment, the amplitudes of the lower and higher 

frequency were faded significantly. The ambient noise was much higher in this underwater 

channel. From the enlarged map of received signal of 14KHz and 14. 5KHz, it is easy to see 

that the amplitudes of the strongest arrival changed with time and frequencies. The high 

level of noise made it difficult to distinguish multi-path signals from the ambient noise. 

Note that there is no apparent impulse interference and the amplitudes of multi-path signals 

are much smaller than that of the main path. 
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Fig. 20. Received signals. (a) received sweeping signals ( 8kHz to 16kHz) (b) received single  
carrier signal (14kHz and 14.5kHz)  

Fig. 21. is the transmitted and received probing signal at the long range (5000m). It was a 

windy day, and the sea condition was not calm. Many vessels passed through the water. 
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The Frequency-varying feature is different from the feature in short range at the same 

water domain. In this experiment, the ambient noise was much higher than that in the 

short range. 
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Fig. 21. Received signals. (a) received sweeping signals ( 8kHz to 16kHz) (b) received single  
carrier signal (14kHz and 14.5kHz) 

5.3.2 Results of experiment III 

Based on the channel probing results, we concluded that the channel in Baicheng water was 

worse than that in Wuyuan Bay. In experiments, 4-fold frequency diversity and (2,1) LDPC 

were applied in CI/OFDM systems (Bai et al., 2009) in order to guarantee the BER 

performance of the system.  

System parameters are same in Table 3 except that the comb pilot pattern is used instead of 

the block pilot. The results of using (2,1) LDPC is the performance improvement and the 

decrease of the data rate. 

 
 

Date BER (before LDPC decoding ) BER (after LDPC decoding ) 

Dec. 17, 2009 0.0393 0

Dec. 31, 2009 0.06598 0
 

Table 5. BER performance 

Fig. 22 is the received CI/OFDM signals in short range (2000m) experiment. The amplitude 

of the received signal changed dramatically, and the level of ambient noise was high. There 
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was deeply frequency fading in the bandwidth of the signal. It might explain the reason of 

BER performance degradation even though the 4-fold frequency diversities were used. 
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Fig. 22. The received signal (a) the received profile (b) the power spectral density of the 
received signal 

6. Conclusion 

In this chapter, we first proposed two algorithms which simplify the modulation and 

demodulation of the conceptual CI/OFDM. Secondly, based on these algorithms and jointed 

with synchronization, channel estimation and equalization, we constructed CI/OFDM 

underwater acoustic communication systems. In the end, a number of experiments were 

carried out in the experimental pool and shallow waters in Xiamen of China to verify the 

performance of the system.  Field results are as followed: 

The BER of the uncoded CI/OFDM underwater acoustic communication system at the 

data rate 4.97kbps is lower than 64 10  in the experimental pool (experiment I) and 
21.5 10  in Wuyuan Bay in Xiamen (experiment II). When 4-fold frequency diversity is 

applied, the data rate is 1.24kbps and the BER performance of the system is lower than 
36 10 in experiment II. 

The BER of the uncoded 4-fold frequency diversity CI/OFDM acoustic communication 

system at the data rate 1.24kbps is lower than 24 10 and 27 10 in experiment III at 

Baicheng water in Xiamen. The BER of the coded frequency diversity CI/OFDM acoustic 

communication system at the data rate 620bps is almost zero in the short range and the 

long range. 
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A few problems exist in the system. The most important one is that the inherent frequency 

diversity of CI/OFDM did not play its due role in the system. According to our analysis, 

the orthogonality between the different symbols modulated on the same subcarrier will be 

destroyed if the phases were changed when signals transmitted in the channel. It means 

that the intersymbol interference cancels out the diversity combining gain. Future 

researches should focus on the optimization of the algorithms in order to take advantage 

of the inherent frequency diversity and other realizations based on the conceptual 

CI/OFDM.  
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