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1. Introduction 

In his essay, The New Organon, Bacon (1561-1626) wrote “So must we likewise from experience of 
every kind first endeavor to discover true causes and axioms; and seek for experiments of Light, not for 
experiments of Fruit. For axioms rightly discovered and established supply practice with its 
instruments, not one by one, but in clusters, and draw after them trains and troops of works.” (Donner 
et al., 1968). While Bacon’s use of English is a bit opaque by today’s writing styles, his 
statements are still very relevant and hold true for any significant area of inquiry when a key 
discovery or application is uncovered. Therefore, this chapter endeavors to indicate how laser 
scanning data streams, a ‘light’ based technology, enable the art, practice, and implementation 
of diverse investigations of agricultural systems, gaining insight into the various ecological 
processes involved. Our goal is to provide insight for others to similarly develop their ‘trains 
and troops of works’ according to their interests, which will, in turn, enrich all investigators of 
agricultural systems through the spread of shared knowledge and techniques.  

Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil 
electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation 
of maps that allow useful applications in agricultural systems. These combinations of 
georeferenced information provide an opportunity to include several types of statistical 
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analyses, permitting the best interpretation of the information conveyed by such maps, and 
provide the capability of building new, detailed, and more informative maps. Such maps 
have enabled a past, present, and, probably, future explosion ‘of works’ leading to 
remarkably innovative methods for solving the problems of agricultural systems. 

Several illustrations are presented to demonstrate a few of the numerous kinds of 
applications enabled by laser scanning data streams in agriculture. These illustrations focus 
on a Mississippi cotton field and a Nebraska corn field. Topics considered include (1) 
describing an approach to statistically evaluate impacts upon production by site-specific 
management practices (such as seeding rate, nitrogen and potassium applications, 
irrigation, and other farming operations), including the assessment of interactions among 
these practices and the topographical characteristics of crop fields, (2) assessing the accuracy 
of laser scanning data products, (3) evaluating the spatial distribution of the abundance, 
dispersion and other characteristics of agricultural variables as abstractions of agro-
ecological populations of interest, and (4) a partial topographical analysis of yield involving 
two topographical attributes: laser scanning elevation data and the shallow apparent soil 
electrical conductivity (ECa) measured by the Veris® cart (Veris Technologies, Salina, KS, 
USA), which is a proximal sensor system.  

Global Positioning System (GPS) equipped hand-held loggers are another technology useful 
for obtaining geo-referenced scouting information such as crop phenology, soil fertility, and 
pests. These ‘on the ground’ measurements have extremely sparse sample sizes in 
comparison to the very dense pixel counts and small ground spatial distances (GSD) 
provided by laser scanning, proximal, or remote sensing sensors (Willers & Riggins, 2010). 
At the end of the production season, harvest yield monitors geo-spatially measure crop 
yield. Collectively, all of these kinds of information can be superimposed by a geographic 
information system (GIS) on a digital elevation surface built from a laser scanning mission 
of the agricultural field. Once assembled into a geo-database by additional geographic 
information system and remote sensing processing (de Smith et al., 2007; Jensen, 2000; 
Lillesand et al., 2008; Pouncey et al., 1999; Richards & Jia, 1999; Theobald, 2003; Willers et al., 
2004), these data sets can be analyzed by advanced statistical methods (such as count model 
regression (Long, 1997; Willers et al., 2009b), general linear mixed analysis of covariance 
models (Gotway et al., 1997; Gotway & Hartford, 1996; Gotway & Stroup, 1997; Littell et al., 
2006; Milliken & Johnson, 2002; Milliken et al., 2010; Willers et al., 2008b) or other 
geostatistical approaches (Oliver, 2010; Piepho et al., 2011; Schabenberger & Pierce, 2002). 
Such efforts by geographically supported experiments bring ‘light’ — illuminating novel 
solutions to agricultural challenges and tasks. Laser scanning information is the key advance 
in such spatial experiments involving agricultural production systems. 

1.1 Historical context  

More than 15 years of on-farm research by the authors’ on site-specific insect pest management 
from a precision agriculture (PA) perspective are beginning to lead toward ways of 
geographically evaluating whole-field and site-specific management practice combinations in 
commercial cotton fields (Burris et al., 2010; Milliken et al., 2010; Willers et al., 2004, 2008b). 
These different forms of geographically-based experimental designs are extensions of 
numerous concepts found in traditional experimental designs (e.g., completely random design 
(CRD), randomized complete block (RCB), Split-Plot, Lattices, etc.), yet they differ from 
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traditional designs in several ways since they (1) can utilize the entire field or only certain 
parts of the field on demand, (2) are not restricted to the use of symmetrical, similarly sized 
small plots (or strips of plots), (3) excellently partition sources of variability due to both the 
planned treatment structure and the unplanned treatment structure (which includes one or 
more sources of field topography) and (4) exploit the geographical content of the site-specific 
experiment, especially the characteristics and travel paths of the farm equipment which apply 
site-specific applications. The inclusion of laser scanning data streams is one fundamental 
technology enabling this advance in statistical evaluation of PA practices. 

Laser scanning maps field elevation at sufficient spectral, spatial and temporal resolutions 
which are typically smaller than the areal extent of a single swath (or harvest) element 
logged by the yield monitor. Since this scale of spatial resolution is possible, laser scanning 
information can resolve issues related to the modifiable areal unit problem (MAUP). This 
problem is comprised of two aspects (Gotway & Young, 2002). In the first instance, many 
statisticians have learned that different inferences are obtained when the same set of data is 
grouped into increasingly larger areal units. In the second instance, they have also found 
that variability in analysis results arise simply due to alternative specifications of areal units 
which create differences in their shapes at the same or similar scales.  

Whenever the ground spatial distance of the pixels describing field topography are smaller 
than the swath element, then geographically-based methods of statistical analysis exploit the 
following characteristics of the variable-rate equipped machinery and the differential Global 
Positioning System equipped harvest yield monitors: (1) The travel path of the variable-rate 
sprayer (or largest implement) occurs in long strips (polygons) whose paths are polylines 
following either topographical contours or property boundaries, (2) Precision agricultural 
prescriptions are formulated to be applied to the polygon or polygons of interest coincident 
with the travel path of the applying machinery and can be spatially varied along that path, 
and (3) Demographic characteristics of these polygons of land are available at the level of a 
“plot”, defined as areas which are geographically describable in interspersion, size, shape, 
and continuity. It follows that yields and other responses can be measured along harvest 
paths parallel to application paths. The precision agricultural practices are evaluated using 
analysis of covariance models to obtain regression effects describing the site-specific plot 
and control plot demographics with respect to a dependent variable such as yield. The 
process takes advantage of the fact that commercial fields are heterogeneous with respect to 
soil types, elevation, drainage patterns, and other characteristics. Digital topography maps 
describing these uncontrollable sources at sufficient spatial and temporal resolution are 
covariates to improve the statistical assessment of planned treatment effects on yield, or 
other crop responses. An illustration of this kind of analysis follows. 

1.2 Illustration of laser scanning contribution to site-specific analyses 

It is conceptually possible to establish a system of plots where standard management practices 
are applied and to insert within them smaller plots where an alternative management practice 
is applied (Figure 1). These plots assigned non-standard management treatments are referred 
to as “floating plots” and are also imbedded within the variable-rate application equipment 
paths and centered on the mid-line of the harvest equipment paths. The defining information 
of these floating plots can be collected from the prescription files created and used by the 
variable-rate controllers that treated them. The minimal size is defined by the variable-rate 
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controller’s reaction time to change discharge rates per georeferenced instructions, as well as 
other mechanical behaviors of the application equipment and additional preset experimental 
actions. This geographical overlapping process provides the necessary control data to perform 
a statistical evaluation of the efficacy of site-specific management decisions. All of the 
information is co-registered to a common geographical coordinate location which is the 
centroid of each harvest swath element (Willers et al., 2004).  

 

Fig. 1. Simulated treatment mean responses for a new management practice that is 2 times 
larger than the standard management practice (e.g., 1 unit) at several spatially selected 
locations in a simulated field. 

While the actual ‘plot layout’ of any particular site-specific experiment can be quite diverse, 
a simplistic layout is proposed as illustrated in Figure 1, where the simulated ‘field’ is 
apportioned into a 100x100 grid of sub-plots in the ‘x’ (i.e., Longitude or Easting) and ‘y’ 
(i.e., Latitude or Northing) directions. Six floating plots were embedded to represent where 
a new treatment (or management practice) of two units will be spatially applied, while the 
rest of the field receives the standard (or traditional) management practice of one unit. 
Simulated response surfaces of two field topography characteristics that affect the yield 
(such as fertility levels (e1) and laser scanning elevation (e2)) are shown in Figs. 2A and 2B at 
the same spatial scale as the ‘field’ plots. 

In this simulation, each sub-plot in the field grid was also modeled to contain a 6x6 lattice of 
points representing yield from harvest swath elements as measured by a yield monitor 
(Milliken et al., 2010; Willers et al., 2004, 2008b). Each yield point included a random error 
effect and the simulated yield for the experiment is shown in Figure 2C. The effects of both 
the conventional and new management practices were further modeled to interact with the 
topography characteristics (e1 and e2), that were also simulated to have effects on the yield 
response. 
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A regression model was applied to these simulated data to estimate the yield response 
surface (Figure 2D) as a function of the levels (i.e., amounts, rates, elevation values, 
brightness values, etc.) of (1) the two environmental factors, (2) the conventional 
management practice applied to the standard plots, and (3) the new management practice 
applied to the floating plots. The simulated analysis shows that for some combinations of 
these two topography covariates, the new management tactic was not very effective at some 
locations (as indicated by troughs or absence of peaks in the yield response), while it was 
effective at other locations (as shown by the small peaks rising above the yield response). 

 

 

Fig. 2. Simulated response surfaces of A) first environmental factor (e1), B) second 
environmental factor (e2), C) mean yield estimates from a yield monitor obtained for each grid 
cell in both the x and y directions, and D) modeled yield response surface as a combination of 
the two environmental factors, the old management practice, and the new management 
practice which was spatially applied at different locations in the x and y directions. 

There are several general forms of regression models useable in analyzing site-specific 
experiments. Investigating the best choice of statistical model for a particular geo-spatial 
combination of conventional and site-specific treatments and choice of applicator and 
harvester equipment configurations and which choice of topography covariate to use, is a 
large frontier for research. A key lesson learned in our research to date is that there are several 
constraints. The difficulty of defining optimal units of replication (Mead, 1988) includes (1) a 
priori definition of an adequate group of floating plots to serve as controls and where to place 
them, (2) the effects of uncontrollable spatial-temporal variability that is known but remains 
unmapped, and (3) effects of management practices that may differ for adjacent fields owned 

B 

C D 

A 
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by different producers, especially with respect to insect and weed control (Anonymous, 2000; 
Dupont et. al., 2000). Another constraint is effectively projecting all of the data into the same 
coordinate system, such as the Universal Transverse Mercator grid (Bugayevskiy & Snyder, 
1995). Different variable-rate or harvest equipment and sensor systems log their coordinate 
information in different formats as unprojected or projected values. A considerable amount of 
time is involved with co-registration of all data to a common coordinate system. As the 
number of farm fields increases, the process of resolving numerous data layers into a standard 
coordinate format becomes too excessive (Willers et al., 2009a). 

 

Fig. 3. Real-world data layers are shown to provide contrast to the hypothetical layers 
presented in Figures 1 and 2 (see Willers et al., 2004, 2008b). 

In actual practice, as shown in Figure 3, the variable-rate controllers, yield monitors, and other 
types of sensors mounted on farm equipment or airborne platforms generate spatial 
information about agrichemical application rates, yields or other crop or soil attributes useful 
in analysis (Birrell et al., 1996; de Smith et al., 2007; Jensen, 2000; Kennedy, 1996; Pouncey et al., 
1999; Richards & Jia, 1999; Sadler et al., 1998). The lowest layer of this figure is the laser 
scanned, digital elevation model. The layer above it is the multispectral bare-ground image 
(January 2002) and the next layer is the image of the crop development (June 2003), followed 
by the yield map. The topmost layer is the variable rate prescription map of three rates of plant 
growth regulator (PGR) (applied July 2003). This top layer also shows the embedded control 
strips (white bands) where no PGR was applied. As indicated in Figure 3, the digital elevation 
model from a laser scanning system is a foundational layer for the statistical analyses of 
precision agriculture management methods (Milliken et al., 2010; Willers et al., 2004, 2008b). 
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2. Solving questions of interest aided by laser scanning information 

Questions of interest involved with applications of site-specific experimental designs can 
be classed into at least three types — does the question relate to (1) the evaluation of a 
single management tactic at a specific time or (2) a comparison between two or more 
management tactics at a specific time or (3) the evaluation of differences between two or 
more management tactics at different specific times of the season and/or different 
locations in a field. Methods of analyses for the latter two types of questions are not well 
developed; however, these kinds of questions are likely to be the most important to a 
commercial farm.  

In site-specific experiments, it is likely that unplanned questions (that is, questions not 
specified a priori at the start of the production season) will arise, such as with the occurrence 
of dramatic, unexpected conditions during the crop production season. Farming operations 
can also be causes. Some possible operational causes are herbicide drift, mechanical injury to 
the crop during cultivation operations, or ruts caused by harvest equipment during wet soil 
conditions (which can cause effects lasting several seasons). If the effects of these unplanned 
causes can be mapped, then they can be included as effects in a statistical analysis. 

Controlling the experiment-wise error rate (Milliken & Johnson, 2009) for planned or 
unplanned questions is another topic requiring deeper examination. It is likely that these 
error rate probabilities are going to be affected by the spatial, temporal, and spectral 
resolutions of the sensor systems involved. The major point with respect to these error rates 
is that laser scanning digital elevation models excellently support (Figure 3) on-farm 
experiments as well as other kinds of proximal and remote sensing data products. 
Utilization of such data streams shine ‘light’ into the darkness of reality; otherwise, even if 
variable-rate controllers and harvest monitors are utilized, the results are only the ‘fruit’ of 
the experimental exercise and, as a consequence, will have a small inferential space. 

2.1 Sources of error and standards for laser scanning data streams 

To function in the developing world of laser scanning data streams, the agricultural 
ecologist needs to have a working knowledge of how laser scanning systems acquire data, 
and how such data are processed and prepared for delivery to clients. There are many 
references (i.e., Lillesand et al., 2008) to provide such background. Nevertheless, it is 
necessary to briefly discuss sources of error and standards for laser scanning data to provide 
a common starting point. This discussion is anchored to a specific agricultural landscape 
(Figure 4), where more than 22 years of research on site-specific crop and site-specific insect 
pest management involving laser scanning, proximal and remote sensing systems, and crop 
yield monitors has been accomplished (Anonymous, 2000; Campenella, 2000; Dupont et al., 
2000; Frigden et al., 2002; McKinion et al., 2009, 2010ab; Milliken et al., 2010; Willers et al., 
1990, 1992, 1999, 2004, 2000, 2005, 2008ab, 2009ab; Willers & Riggins, 2010). 

2.1.1 Lidar (laser scanning) background 

Over the past decade, laser scanning (or light detection and ranging (lidar)), has become a 
primary method for collecting very dense and accurate elevation values. For data collected 
by a laser scanning system, the reflected pulses create a point cloud of elevation returns 
from the bare earth, vegetation, buildings, or any other features above the ground. Modern 
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laser scanning systems are capable of recording multiple returns for each emitted lidar pulse 
reflected from a surface feature. In areas absent of any vegetation, only one pulse return 
would be recorded. Point clouds are comprised of lidar reflected returns which are 
processed and classified based upon whether the points represent ground or non-ground 
reflected returns. Non-ground returns may be further classified into feature categories such 
as grasses, shrubs, trees or woodlands, urban, withheld, noise, blunders, or any number of 
categories useful to a particular application. 

Laser scanning has significant advantages over other methods of elevation data collection, 

including higher spatial resolution, vertical accuracies measured in centimeters, and 

penetration through forested and other vegetated areas. Laser scanning missions are 

typically acquired from aircraft which collect data in strips or swaths which comprise 

pulses rapidly collected at a rate that exceeds 150,000 pulses per second across large 

collection areas. Data acquisition may also be conducted by laser scanners mounted on 

mobile terrestrial platforms. However, in most applications, laser scanning data are 

processed to calibrate the data, classify ground and non-ground returns, and ultimately to 

produce high resolution, high accuracy digital elevation models. For agriculture 

applications, acquisition from aerial platforms provide data of sufficient pulse spacing 

and density for adequate terrain characterization providing multiple pulse returns per 

square meter of ground.  

2.1.2 The LAS standard 

The American Society of Photogrammetry and Remote Sensing (ASPRS) maintains data 

standards for remote sensing data through committees of subject matter experts from 

industry, government agencies, and academia. The lidar standard is copyrighted, 

maintained, and evolved by the ASPRS committees. The current standard for lidar data sets 

is the ASPRS Lidar Data Exchange Format Standard (or LAS) (ASPRS, 2004). Each LAS data 

file is a binary file that includes encoded information subdivided into three parts including 

the public header block, variable length records, and point data records. The LAS file format 

was developed to standardize the interchange, use, and implementation of 3-dimensional 

point cloud data between data producers and among users. The LAS standard was 

developed primarily for exchange of lidar point cloud data; however, the LAS data type 

supports the exchange of any 3-D collection of x,y,z data. 

The public standard LAS binary file format is an interoperable file format well suited to 

encoding lidar data and has many advantages over proprietary data types that preclude 

interoperability, or over generic ASCII files which are characterized by large file sizes, 

inefficient implementation, non-standard structures, and slow processing. With the recent 

explosion in lidar technology and use, ASPRS has created a Lidar Division to keep abreast of 

data standards and implement new versions of the standards needed to support new 

hardware, sensor, and data technologies. The latest version of the LAS standard is version 

1.4 which is pending final approval after public review. The updating of standards and 

creating new versions of the standard to accommodate the advance of technology is 

published on the ASPRS web site for the LAS working group at the following link: 

http://www.asprs.org/Division-General/LAS-Working-Group.html 
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2.1.3 Laser scanning accuracy, guidelines, and base specifications 

Three publications, NDEP (2004), ASPRS (2004) and FGDC (1998), provide guidance and 
formulas for determining elevation data accuracy. The Federal Emergency Management 
Agency (FEMA, 2003) has an early document that describes accuracy and quality assurance 
guidelines for laser scanning data. More recently, the United States Geological Survey (USGS, 
2010) produced a document that has been circulated throughout the industry and is rapidly 
becoming the standard by which data are being evaluated whether for local, county, state, or 
national purposes. This document, commonly called the “version 13 specification”, embodies 
an unprecedented emphasis on analyzing and understanding the lidar point cloud, including 
quantifying the sources of error in lidar data from initial acquisition to final delivery.  

Prior to the version 13 specification, standards typically emphasized testing the final digital 
elevation model for accuracy; whereas, the version 13 specification addresses a sweeping 
range of aspects of error and uncertainty in the lidar data set. Considerations range from the 
initial coverage, to flight line overlap, and calculating and minimizing the relative error 
between adjacent laser scanning strips in their areas of overlap (Aguilar et al., 2010; Maas, 
2002; Willers et al., 2008a). It is this relative error discrepancy (or step error) between 
adjacent strips that precludes or makes problematic the generation of a highly accurate 
continuous elevation surface for large agricultural landscapes. 

Some of the common terms (NOAA, 2008) employed to describe lidar data as well as the 
errors that are encountered include the following:  

 RMSE Z– abbreviation for root mean square error; a measure of the accuracy of the data 
similar to the measure of standard deviation if there is no bias in the data. 

 Accuracy Z, Fundamental Vertical Accuracy (FVA) – a measure of the accuracy of the 
data in open areas at a high level of confidence (95%), calculated from the RMSE using 
the formula RMSE Z x 1.96 = FVA. 

 Classification – data that have been processed to define the type of object that reflected 
the pulses; such can be as simple as unclassified (i.e., point not defined) to buildings 
and high vegetation. The most common is to classify the data set for points that are 
considered “bare earth” versus those that are not (i.e., unclassified). 

 Return Number (First/Last Returns) – many lidar systems are capable of capturing the 
first, second, third, and ultimately the “last” return from a single laser pulse. The return 
number can be used to help determine what the reflected pulse is from (e.g., ground, 
tree, or understory). 

 Point Spacing – how close the laser points are to each other, analogous to the pixel size 
of an aerial image; also called “posting density”. 

 Pulse Rate – the number of discrete laser “shots” per second that the lidar instrument is 
firing. Common systems used in 2008 are capable of 100,000 to 150,000 pulses per 
second. More commonly, the data are captured at approximately 50,000 to 70,000 pulses 
per second. 

 Intensity Data – when the laser return is recorded, the strength of the return is also 
recorded. The values represent how well the object reflected the wavelength of light (for 
example, 1,064 nanometers) used by the laser system. These data resemble a black and 
white photo but cannot be interpreted in exactly the same manner. 

 Real Time Kinematic Global Positioning System (RTK GPS) – satellite navigation that 
uses the carrier phase (a waveform) that transmits (carries) the Global Positioning 
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System signal instead of the Global Positioning System signal itself. The actual Global 
Positioning System signal has a frequency of about 1 megahertz, whereas the carrier 
wave has a frequency of 1500 megahertz, so a difference in signal arrival time is more 
precise. The carrier phase is more difficult to use (i.e., the equipment is more costly); 
however, once it has been resolved, it produces a more accurate position reading. 

 Digital Elevation Model (DEM) – a surface created from elevation point data to 
represent the topography. Often a digital elevation model is more easily used in a 
geographic information system than the raw point data it is constructed from. 

Building the DEM from the laser scanned point cloud can employ techniques that are quite 
diverse and are limited only by the creativity of the developers of any particular application. 
For example, Wang et al. (2008) process the point cloud to conduct vertical canopy structure 
analysis and 3D single tree modeling. Vu et al. (2009) developed a multi-scale, mathematical 
morphology approach to extract building features. Methods to reduce the processing time of 
these data intense points cloud are also keen areas of research (Han et al., 2009). Whatever the 
processing method employed for a specific application of the point cloud, the techniques 
exploit the xyz attributes for each return after filtering out blunders and random errors, 
employ various mathematical models to correct for systematic errors, and then employ various 
interpolation algorithms to produce the 3D surface of elevation at the appropriate spatial 
resolution for the intensity. Depending on the purpose of the DEM, that is, a bare earth DEM 
which describes elevational relief with features such as trees and buildings filtered out, or a 
digital surface model (DSM) which includes objects that are non-ground, the choices involved 
require specification of which return to use, be it the first return, the last return, or all returns. 

For the agricultural DEMs used in this paper, two were processed by commercial vendors 
and made available thru either state or federal agencies (i.e., the background layers in 
Figures 4 and 7 (Mississippi) and Figures 5 and 16 (Nebraska). So, processing details for 
these 3D surfaces cannot be summarized. But, for the agricultural DEM in Figure 3 and the 
inset in Figure 4, as well as the DEM used for analyses in Figures 6 – 8 and 10 – 14, the point 
cloud processing can be summarized. First, the vendor removed systematic errors using 
proprietary procedures and orthorectified the point cloud returns to the vertical datum, 
NADV83 and the UTM Transverse Mercator grid for Zone 15 (North). Then a team of 
investigators (Willers, O’Hara and others ) utilized the LAS file provided by the laser 
scanning vendor to (1) employ Terrascan® software to remove extreme instances of blunders 
and other random errors and then export the information as a comma delimited test file to 
upload into ArcMap® software for conversion into a set of point vector shapefiles for each 
strip (or line), including a tie-line strip acquired by the vendor. Next, these shapefiles were 
corrected for steps errors using the following algorithm and procedures.  

The elevation data points in the overlap area of a tie-line strip were categorized into K 
groups indexed by k based on their coordinate and strip positions. Each group was 
characterized by SubXk, SupXk, SubYk and SupYk to define the set of points in group k as Sk so 

that Sk = {(i,j)| SubXk  xij< SupXk and SubYk  yij< SupYk}. The number of points in strip (or 
line) i in group k was denoted by nik, so the total number of points in group k was:  

 
1

L
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The steps errors among the lidar flightline involved biases initially estimated by eye (also 

using Terrascan® software) to be about 15-20 cm. Therefore, to remove these step errors by 

mathematical programming, the variances of the adjusted elevations of points were 

minimized by determining the best values for a set of decision variables ai. Let Mk be the 

mean elevation in group k before adjustment and Ak be the mean elevation in group k after 

adjustment (kK). Then, these mean values were found using:  
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And, then let Vk be the variance in group k  K after adjustment: 
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In order to minimize the error, the sum of the variances in each group was minimized by 

determining the values of decision variables ai, according to the following unconstrained 

optimization problem: 
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      (4) 

Since (4) has a convex cost function, existing optimization solvers worked well to obtain a 

unique optimal solution for each strip. Once a line is adjusted, the estimated decision 

variable (ai value) for flight line i was treated as a constant in subsequent iterations for the 

remaining strips. A custom C program supplemented the non-linear optimization routines 

found in Excel® to allow the estimation of the decision variables with respect to the tie-line. 

Once the step errors were adjusted among the point clouds of each strip, the non-linear 

surface tool of ERDAS® Imagine derived the 3D surface grid. See Willers et al. (2008a) for 

other details.  

2.1.4 Sources of error in agricultural laser scanning data 

A commercially prepared bare earth digital elevation model from 2009-2010 (feet Mean Sea 

Level (MSL)) provides the background layer in Figure 4, while a portion of a research 

derived, step error corrected digital elevation model (Willers et al., 2008a) from 2003 (m 

Height Above Ellipsoid (HAE)) is the smaller surface inserted near the top left of Figure 4. 

With some laser scanning data for at least one agricultural landscape now in hand, we 

further discuss sources of error for laser scanning data streams and data products. 

Sources of error in laser scanning data involving agricultural landscapes can be generally 

grouped into three categories: systematic errors, random errors, and blunders. Systematic 

errors in laser scanning data are largely caused by biases in the measurements of bore-

sighting parameters that relate to the system components and biases in the measurements 

made by the system that include Global Positioning System information, timing 

information, inertial measurements as well as potential biases in the scanner angles and 
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ranges. Random errors arise mostly from the accuracy of the systems measurements 

including the position and orientation measurements from the Global Positioning System 

/Internal Navigation System (GPS/INS) component, mirror angles, and ranges. Blunders 

refer to gross errors that may be caused by the sensor system detecting something in the air 

(a bird) or some other measurement criterion that causes a very large discrepancy between 

the real-world surface and the lidar data. Blunders are often detected by identifying points 

which are statistical outliers in which the offsets between the points in consideration exceed 

the magnitude of normal random or systematic bias.  

 

Fig. 4. Geographical detail of the areas of interest (AOI) involving a field location in Bolivar 
County, Mississippi, USA.  

The reader should keep in mind that the literature on sources of error and standards is 

rapidly changing and quite detailed compared to this simple presentation on these topics 

(Baltsavias, 1999; Fritsch & Kilian, 1994; Huising & Pereira, 1998; Skaloud & Lichti, 2006; 

Vosselman, 2002). Nevertheless, our brief examination of sources of error in agricultural 

laser scanning missions provides a foundation upon which to build support for some ‘trains 

of work’ that comprise other goals of this chapter. A second commercially supplied DEM of 

another agricultural landscape (Figure 5), located hundreds of kilometers away, is also 

utilized in this effort.  
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Fig. 5. Illustration of some of the geo-spatial relationships for a site-specific nitrogen 
experiment in a Nebraska corn field. The background is a laser scanning surface of 
elevational relief (Feet Mean Sea Level). 

Section 2.2 is the first junction for the main journey path of this chapter; the previous 
discussion points were only collections of ‘works’ meant to prepare the reader for some 
travel across a ‘train’ of ideas. This journey covers several concepts involving laser scanning 
and agriculture and builds toward Section 2.5 as the final junction. 

2.2 The population ecology interpretation of pixel attributes 

Graphical techniques addressing the resolution of mixed populations of data distributions 
and other statistical properties of data distributions are discussed in D’Agostino and 
Stephens (1986) and King (1980). Many of these techniques are valuable in quality control 
methods and available in various software packages and have great value in image 
processing, including evaluations of laser scanning digital elevation models.  

2.2.1 Population ecology experiments utilizing the attributes of pixels as abstractions 
of agro-ecosystems 

High-resolution, laser scanning and multi-spectral imagery, when resolved with 
appropriate spectral and temporal resolutions, provide an opportunity to avoid errors in 
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estimation of population statistics (such as mean abundance and interspersion). These 
digital raster layers permit sample data of an ecological population of interest to be collected 
from distinct habitats of crop growth (Willers et al., 2005; Willers & Riggins, 2010). When 
appropriately processed, the raster information can be linked to the ground sample data, 
allowing for the creation of additional data products describing the population 
characteristics as a geo-referenced map. The value of being able to build descriptive maps of 
population characteristics was elegantly discussed by Fleischer et al. (1999). Unlike Fleischer 
et al. (1999) methods to build their maps, this work, in an elementary fashion, considers the 
attributes of the image pixels to be surrogates of several important characteristics of 
biological populations through classification of the imagery attribute values, typically 
expressed as digital numbers (DN) or brightness values for each pixel of each band in the 
raster product. These pixel attributes are discrete abstractions of (primarily) the variability 
in the landscape or plant community structure across the crop. In the case of a digital 
elevation model, these pixel attributes are a continuous abstraction of the elevation relief of 
the laser scanned landscape. Therefore, just as is true for traditional data sets of ecological 
populations obtained by extensive ground survey samples, the collection of raster layer 
pixels of the agro-ecosystem of interest can have multiple populations of data distributions. 

2.2.2 Applications of the probability plot with laser scanning elevation (surface) 
models 

Using laser scanning information for the agricultural landscape contained within the field 
boundary shown in Figure 4, some issues regarding the step error (Crombaghs et al., 2000; 
Luethy & Ingensand, 2001; Willers et al., 2008a) are examined by a technique known as 
probability plotting (D’Agostino & Stephens, 1986). 

Inclusion of several local heuristics (e.g., planting date, soil topography, and crop 
phenology) is useful to best interpret the information provided by the probability plot. For 
example, since there are up to seven years of time between the two laser scanning missions 
(Figure 4), a potential question of interest to the producer owning these fields is “What are 
the estimates of soil erosion rates at different geographical areas in these fields?” However, 
before answering this question, the prudent analyst should first ask and answer another 
question “How comparable are the two digital surface elevation models given that different 
vendors and laser scanning systems produced them?” The probability plot is a useful tool 
for examination of the second question which leads then to other kinds of decisions 
involving the first. 

It is a small exercise (in a spatial software package) to load, subtract, and then save a new 
raster layer of the elevational differences between the two laser scanning missions. The 
difference raster is then exported as a flat file for use in a statistical software package to 
build the probability plot. Presented in Figure 6 is a probability plot of the difference in laser 
scanned elevations between 2003 and 2009-2010. The occurrence of several bends and a 
sharp discontinuity of the attribute values of the output raster created by the subtraction of 
the two parent rasters clearly show that several unique populations of differences are 
present, even though the parent rasters of elevation share a common field boundary. Of 
interest is that the metadata provided by the vendors claims vertical accuracies on the order 
of 9 cm and 15 cm. The probability plot indicates differences in elevational relief which 
negatively and positively exceed the maximum tolerance of 15 cm. 
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Fig. 6. Probability plot of the elevation difference between a 2009-2019 digital elevation 
model and a step error corrected (Willers et al., 2008a), 2003 digital elevation model. 

In Figure 7 are indications of various geometric patterns in a surface map of change between 
these two digital elevation models. The east-west linear bands of different widths and 
intensity are due to different tillage operations between the acquisitions. While each laser 
scanning data set may have met the standards for each separate mission, the effects of 
textural change due to tillage and remnant step errors within the 2009-2010 data product, 
combine to cause combinations of both random and systematic sources of error. The 
producer’s question of interest cannot be effectively answered until (at least) the step error 
effect in the most recent mission is corrected. The probability plot served a useful purpose in 
showing sources of different kinds of errors between the two elevation layers. 

Traditionally, the description of ecological populations by image analysis is accomplished 
by applications of one or more classification (Richards & Jia, 1999) procedures to the raster 
image acquired over the agricultural landscape of interest. However, we have found that it 
is best to first analyze the raster data content by conversion of the raster image product into 
a flat file format, which can be statistically processed into a probability plot. Since raster 
layers can have large numbers of individual pixels, a straightforward way to demonstrate 
the existence of multiple populations of data distributions is to examine the shape of the 
probability plot constructed from the flat file of the respective raster layer. If multiple data 
distributions are present, the plot will not be a straight line (D’Agostino & Stephens, 1986) 
under the assumption of a single distribution, which is typically the normal distribution 
(other distributions, such as the exponential, can also be specified). If more than one data 
distribution is indicated, the next task is to find the meaningful groupings of these 
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populations of data distributions in a manner which relates to the ecological structure of the 
crop. These meaningful groupings are established through concurrent geographic 
information system and statistical operations in both the data and geographical spaces of the 
respective agricultural landscape. 

 

Fig. 7. Potential step error revealed by differences of the 2009/2010 bare earth DEM and the 
step corrected 2003 DSM.  

2.3 Geographical space and data spaces and the Pearson correlation statistic 

Previous geographical analysts have elaborated on the concepts of the data space and the 

geographical space (Berry, 1998; Hargrove & Hoffman, 1999). These concepts merit a brief 

review at this time and both involve the Cartesian coordinate system (Pignani & Haggard, 

1970) as the basic tool for their construct. The elegance and utility (Hogben, 1968 ; Stewart, 

2008) of a Cartesian coordinate system can too frequently be undervalued by the agricultural 

analyst due to too much familiarity. However, with the data density and the spatial resolution 

obtained by laser scanning digital elevation models, the planar Cartesian coordinate systems 

referred to as the data space and the geographical space are exceptionally ‘illuminating’. 

In Section 2.1, it was discussed that laser scanners create an x, y, z point cloud which can be 
processed into a surface, or raster layer (de Smith et al., 2007; Lillesand et al., 2008), of 
elevational relief known as a digital elevation model. Using this surface as an illustration for 
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definitions, the digital elevation model is a map forming a continuous surface, where the 
system of pixels creates a regular grid of cells over an area (Berry, 1998). The x and y axis 
position of each pixel cell in the surface grid of elevation represents the information in the 
geographical space. The z axis of each pixel represents the continuous numeric value of 
elevation in the data space. If more than one layer of remote sensing information exists for a 
given area, the data space across the geographical space can be described in more than one 
dimension (or layer). In such cases, the scale of support (Gotway & Young, 2002) or the 
congruency of the ground spatial distances of the pixels among the different surfaces 
(elevation, crop vegetative index, yield, etc.) is an important consideration to guard against 
source of measurement errors in a geo-spatial analysis (Berry, 1998). 

Pearson Correlation Coefficients, N = 428,825 
Prob > |r| under H0: Rho=0 

 b1 ndvi_04 ndvi_11 
b1 

Corrected Elevation (meters HAE) 
1.00000 

 
0.30410 
<.0001 

0.47413 
<.0001 

ndvi_04 
ATAN NDVI (August 2004) 

0.30410 
<.0001 

1.00000 
 

0.47168 
<.0001 

ndvi_11 
ATAN NDVI (August 2011) 

0.47413 
<.0001 

0.47168 
<.0001 

1.00000 
 

Table 1. Tabular representation of the Pearson correlation coefficients describing 
relationships among three raster layers for the field T167-4B (Figure 4) using information 
only in the data space without concomitant application of information in the geographical 
space of these mapped features from the agricultural landscape. 

The Pearson correlation statistic is one metric many analysts seem most interested in using 
with geo-spatial analyses. For many investigators of agricultural systems, Pearson 
correlation values, such as those presented in Table 1, are typical. In such instances, low 
values of correlation, while significant, often do not generate an immense level of confidence 
in using either laser scanning elevation data or imaging data as resources to create a site-
specific prescription, or especially build confidence to also go through the expense of 
preparing one to upload to the controller of a variable-rate equipped farm implement. One 
reason for reluctance is the sample size (Table 1, top line) involved with raster layers. One 
traditional dogma is that whenever sample sizes are large enough, significance can be 
obtained almost anytime. When analyzing raster layers, this traditional view needs careful 
consideration. Further, such reluctance is particularly acute if the examination of the scatter 
plots between pixel pairings of two sensor layers is especially non-informative; that is, the 
scatter plot is without clear representation of either liner or quadratic trends (Figure 8). It is 
obvious from results found in Table 1 and Figure 8 that without concurrent application of 
information from the geographical space, the utility of discerning features for site-specific 
applications is quite limited if information from only the data space is examined. 

Conceptual perceptions derived exclusively from the examination and interpretations of 
only the data space become other extensions of the modifiable areal unit problem (Gotway 
& Young, 2002). Therefore consequences of an overemphasis upon only the data space of 
proximal and remote sensor system data streams is unbalanced — it is best to strike a 
balance among the information content provided from both the geographical and data 
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spaces of these sensor layers (Berry, 1998; Hargrove & Hoffman, 1999). The demonstration 
of ways to strike such a balance between the data and geographical space domains are the 
topics of Sections 2.4 and 2.5. In fact, by clever processing in both the data and geographical 
spaces, the occurrences of experimental evidence of the kind presented in Table 1 or Figures 
6 - 8, are actually indicators of opportunities for discovery and progress, particularly if good 
quality laser scanning DEMS are available. 

 

Fig. 8. Scatter plot of the three raster layers for the field T167-4B depicting a graphical 
representation of the data space of these three raster layers. 

2.4 Building crop management zones with laser scanning and remote (or proximal) 
sensing data streams – development of a categorical, pseudo-likelihood classifier 

The task here is to shed ‘light’ on how laser scanning digital elevation models contribute 
an important role in agricultural data analyses of numerous kinds of geo-referenced data 
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streams. Specifically, it is desired to convey an important advance in understanding how 
to complete statistical analyses of the kind introduced in Section 1.2; especially, whenever 
both the data attribute and geographical spaces of geo-referenced data streams are 
concurrently put to work, despite smudged scatter plots or small Pearson correlations. 
These efforts begin with a terse examination of a technique known as ‘maximum 
likelihood classification’ (Strahler, 1980). Additional details and refinements are presented 
in Willers et al. (2012). 

 

Fig. 9. NDVI ranges as a point vector layer for 2004 subset of two cotton fields. 

Figure 9 shows the normalized difference vegetation index (Rouse et al., 1974) 

representation of the crop conditions for the sub-region previously delineated (Figure 4) 

during late June of the 2004 production season. In addition to the cotton portion, tall trees 

are the lightest gray tones beneath the north arrow at the lower left. 
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Figure 10 presents the laser scanning elevations for the equivalent landscape sub-region 

shown in Figure 9 (and Figure 4). It was derived from a much larger digital elevation model 

(Willers et al., 2008a) used to extract this subset for exploratory analyses with the Strahler 

(1980) algorithm. (Note the trees in the lower left corner, which were excluded in the bare-

earth digital elevation model (2009-2010 acquisition) which is the background layer in 

Figure 4.) 

 

Fig. 10. Step error corrected (Willers et al., 2008a) laser scanning elevations from 2003 for the 
same region of the two cotton fields. 

By making several modifications to the maximum likelihood classification function of 

Strahler (1980), it is possible to create a new raster layer where the attributes of each pixel 

are predicted improper probability values, as shown by (5): 
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x μ Σ Σ  (5) 

where
1

̂ = the estimated mean normalized difference vegetation index value of that input 

raster (Figure 9), 
2

̂ = the estimated mean elevation of the laser scanning input raster (Figure 

10), and ∑-hat provides the estimated covariance parameters between x1 and x2 for each pair of 

input pixels. From an inspection of expression (1), it is obvious that the means or the 

covariances for normalized difference vegetation index and elevation can be influenced by 

values from pixels that involve non-crop features. Consequently, it is an important point to 

remember while processing of the pixels in each input raster layer by (5), that one important 

geographic information system pre-processing step is to exclude pixels for non-crop features 

(i.e., trees and field road) that may occur within the field boundary polygon. 

 

Fig. 11. Joint improper probability map for Quadrant 1. 
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While working with values from laser scanning elevation and other proximal and remote 

sensing data streams with equation (5), it was learned that the attributes for the two raster 

input layers are not required to be of the same units (for example normalized difference 

vegetation index is unit-less, elevation is in meters (HAE or MSL), and ECa data is in 

mS/m). An interesting fact found while using (5) was that many improper probabilities 

predicted on the left-hand side were of similar magnitudes, whose frequency histogram was 

concave in shape, often symmetrical, and exhibited higher frequencies to the left and right of 

a central minimum frequency. Since (5) is the Mahalanobis distance (McLachlan, 1999), and 

by its form, involves the squaring of positive and negative distances from the centroid, the 

distance differences of the predicted value of any point pair does not indicate direction with 

respect to the centroid mean. 

 

Fig. 12. Joint improper probability map for Quadrant 2. 
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Fig. 13. Joint improper probability map for Quadrant 3. 

The second step required was to then determine the Cartesian quadrant for each output 
pixel with respect to the centroid origin of the data space comprised of the normalized 
difference vegetation index and elevation. This Cartesian quadrant attribute referenced each 
output pixel using the traditional labeling (I, II, III, and IV) of a Cartesian coordinate system 
(Pignani & Haggard, 1970) and defined a new attribute named QUADRANT for the left-
hand side predictions (these labels refer to the nominal partitioning of the input raster’s data 
space).  

Using these codes the predicted values on the left-hand side of (5) could be displayed in the 
geographical data space (the UTM coordinate grid), as shown in Figures 11-14. It was 
remarkably insightful to see that these predicted values, when geographically sorted by 
their nominal quadrant labels, depicted an irregular but spatially distinctive pattern of 
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dispersion. Such results indicate the advantage gained by the researcher who employs a 
laser scanning DEM and works concurrently in both the data and geographical spaces. 
Therefore, it does pay to examine the older literature to learn useful concepts which can 
refine applications of a newer technology such as laser scanning. After all, often ideas are 
explored in theory long before technology can produce the methodologies to verify, use, or 
disprove the ideas.  

 

Fig. 14. Joint improper probability map for Quadrant 4. 

2.5 Application - nitrogen and corn yields in a Nebraska field 

Another area of possible use for laser scanning is for nitrogen (N) management in corn 
production. Nitrogen management to optimize crop production is a complex process 
involving such factors as applied N, soil nitrogen supply, crop nitrogen demand, and the 
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economics of profit maximization, all of which can vary spatially and temporally. Because of 
the complexity of addressing these challenges, current nitrogen management practices 
generally result in low nitrogen use efficiency (NUE), estimated to be as low as 30-40% for 
cereal crops, such as corn (Cassman et al., 2002; Raun & Johnson, 1999). Unused nitrogen 
can eventually contaminate surface and groundwater, creating environmental and health 
concerns in addition to economic losses for agricultural producers. Low nitrogen use 
efficiency can be attributed to such things as poor synchronization between soil nitrogen 
supply and crop demand, uniform application rates of nitrogen fertilizer to spatially 
variable landscapes, and failure to account for temporally variable influences on crop 
nitrogen need (Shanahan et al., 2008). 

To address the issues of low nitrogen use efficiency, research projects are evaluating the use 
of active crop canopy sensors to assess in-season plant nitrogen status and apply in real-time 
spatially-variable nitrogen applications; thereby increasing nitrogen use efficiency (Raun et 
al., 2002; Solari et al., 2010). Active canopy sensors generate their own source of modulated 
light and measure canopy reflectance in the visible (400-700 nm) and near-infrared (NIR) 
(700-1000 nm) parts of the electromagnetic spectrum. Solari et al. (2010) developed an 
algorithm on small plots in central Nebraska to direct in-season nitrogen applications in 
corn. Using a sufficiency index (SI), site-specific nitrogen was applied according to the 
equation: 

317 0.97app sensorN SI    

where SIsensor was the ratio of reflectance measurements from N-stressed to N-sufficient 
areas. However, they indicated the need to evaluate this algorithm across a broader range of 
soil and climatic conditions.  

Research to address low nitrogen use efficiency has also involved the development of 
management zones, defined as dividing a field into sub-regions with homogeneous yield-
limiting factors or regions of similar production potential (Doerge, 1999). A variety of crop or 
soil data layers have been used to develop management zones within fields; however, these 
efforts have produced mixed results, characterizing homogeneous production areas well in 
some years, but not in others. Schepers et al. (2004), as well as Shanahan et al. (2008), suggested 
a responsive in-season nitrogen application approach combining management zones and crop-
based remote sensing as a possible strategy to increase nitrogen use efficiency.  

In 2008, a study was conducted on an irrigated cornfield in central Nebraska to evaluate the 
algorithm proposed by Solari et al. (2010) against a conventional uniform nitrogen 
management approach, and, also, to explore the usefulness of an integrated management 
zone and active sensor approach for improved nitrogen management. The study location 
consisted of Hastings silt loam and Hastings silty clay loam soils ranging from 0 to 11% 
slope. The field had substantial change in elevation (~8-10 m), resulting in multiple 
landscape classifications within the study. Multiple spatial data layers were collected prior 
to planting to characterize spatial patterns of soil properties within the field. These layers 
included soil optical reflectance, apparent soil electrical conductivity (ECa), laser scanning 
elevation, and slope. The laser scanning for this study was mapped during leaf-off 
conditions, at a 2-m spatial resolution. The field was also grid soil sampled (Oliver, 2010) to 
characterize field variation in soil chemical properties. 
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Hybrid selection, planting date, seeding rate, and field operations were at the producer's 
discretion. The sensor algorithm proposed by Solari et al. (2010) was evaluated using five 
different nitrogen application treatments as follows: 

1. 45 kg N ha-1 at planting (45 At Planting) 
2. University of Nebraska-Lincoln soil-based algorithm at planting + split application (per 

University of Nebraska-Lincoln recommendations) 
3. 45 kg N ha-1 at planting + sensor algorithm delivered N (45 At Planting + variable-rate) 
4. 90 kg N ha-1 at planting + sensor algorithm delivered N (90 At Planting + variable-rate) 
5. High N (280 kg N ha-1) reference at planting (N-Reference) 

Treatments 1 and 5 were included to provide limiting and non-limiting nitrogen conditions 
to evaluate nitrogen response across the landscape as well as to provide the nitrogen 
reference (N-Ref) for calibration of the sensor algorithm. Treatment 2 served as a 
comparison to sensor algorithm treatments 3 and 4, with the nitrogen application rate 
determined via the University of Nebraska soil-based nitrogen recommendation algorithm. 
The sensor algorithm treatments 3 and 4 consisted of a combination of at-planting nitrogen 
(either 45 or 90 kg ha-1) and in-season (~V13-V14 growth stage) nitrogen, with in-season 
nitrogen rates determined by the sensor algorithm (Solari et al., 2010). A uniform base 
amount of nitrogen was applied at-planting because previous work (Varvel et al., 1997) has 
shown that, in high yielding conditions, nitrogen stress prior to the V8 growth stage causes 
yield losses that cannot be corrected with additional in-season nitrogen application. The 
purpose of including the two at-planting nitrogen rates (45 and 90 kg nitrogen ha-1) was to 
determine the appropriate amount of at-planting nitrogen required to avoid an early season 
nitrogen stress before delivery of in-season nitrogen using the sensor algorithm. Treatment 5 
(N-Reference) received 280 kg ha-1 at-planting to provide an adequate reference for in-
season nitrogen application. 

The experimental design consisted of field-length strips (12 cornrows per strip) of each 
treatment replicated 3 times across the variable landscape. For treatments 1, 2 and 5, 
nitrogen was applied around planting time at spatially uniform rates. All treatments were 
applied at the appropriate times and rates using a high-clearance applicator, with the sensor 
algorithm treatments (3 and 4) being applied at approximately the V13/V14 growth stage at 
all fields. To determine the in-season nitrogen application rates for the two sensor algorithm 
treatments, active canopy reflectance sensor readings were first mapped for the N-Ref strips 
in each replication. Sensor reflectance in visible (VIS590) and near infrared (NIR880) was used 
to calculate chlorophyll index (CI590) values according to Gitelson et al. (2003, 2005) using 
the equation: 

880
590

590

NIR
CI

VIS
  

To acquire sensor readings, four sensors were mounted on the front of a high-clearance vehicle 
approximately 0.8 to 1.5 m above the crop canopy. The output from each sensor included 
pseudo-reflectance values for the two parts of the spectrum needed for CI590 calculation. 

In-season variable nitrogen rates for 45AP + variable-rate and 90AP + variable-rate 
treatments were determined based on the algorithm described by Solari et al. (2010). This 
was done by calculating average CI590 for each N-Ref treatment. Next, 45AP + variable-rate 
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and 90AP + variable-rate treatments were mapped and additional nitrogen need was 
determined on-the-go using a sufficiency index (SI) calculated by: 

590
 

target

N Ref

CI
SI

CI
  

where CItarget is the CI590 value of a nitrogen target area and CIN Ref is the CI590 value of a non-
nitrogen limiting area. At physiological maturity, the field was harvested by the producer 
using a commercial combine equipped with a yield monitor and differential global 
positioning system.  

2.5.1 Ordinal categorical partitioning of the data space 

In Section 2.3, a brief elaboration of the concepts of the geographical space and the data 
space was presented. At this time, an additional partitioning of the data space will be 
introduced — the ordinal categorical partition, which is only made possible through a high 
resolution, laser scanning digital elevation model. 

To establish an ordinal categorical partition for the Cartesian coordinate data space of interest, 
the origin of reference is that formed by the centroid of the attribute means of any two 
topographical characteristics. The attribute values of one are plotted on the abscissa while the 
attribute values of the other (where both are co-located in the geographical space) are plotted 
on the ordinate axis. In the present case (Figure 15), the mean (x, y) pair, (4.22, 4.76) defines the 
centroid origin, where x is the natural logarithm of the range transformed (Lillesand et al., 
2008, p. 504) apparent soil electrical conductivity (ECa) readings and y is the natural logarithm 
of the range transformed laser scanning elevation values (feet mean sea level). 

Once plotted for ecological investigations, it is useful to recode the elevation and apparent 
soil electrical conductivity (ECa) data space into an ordinal, categorical data partition (Figure 
15) as opposed to the nominal categorical partition discussed in Section 2.4. To establish this 
ordinal partition, one examines the sign pairs of the Cartesian coordinate systems data space 
with respect to the centroid mean. For agriculture, it is reasonable to ordinally recode (as 
described in Willers et al. 2012) these quadrants in the following order: (a) associate the sign 
pair (+,+) to topography quadrant Q-IV, (b) the sign pair (+,-) to topography quadrant Q-III, 
(c) the sign pair (-,+) to topography quadrant Q-II, and (d) the last sign pair (-,-) with 
topography quadrant Q-I. Consequently, with respect to the statistical analysis domain, 
these ordinal topography quadrants represent ‘topography blocks’ within the design 
structure of the site-specific experiment (Mead, 1988; Milliken and Johnson, 2009). 

The abscissa is defined by the natural log of range transformed attributes for the apparent 
soil electrical conductivity ECa readings and the ordinate axis is defined by the natural log of 
range transformed attributes for elevation (feet mean seal level); thus, the origin of this 
Cartesian system is the centroid means of these two attributes. Each individual point pair in 
the scatter plot shows the corn yield value according to 15, natural breaks, color ramped 
classes (see legend inset at left of figure). 

Data from Hunnicutt08 was analyzed previously (Roberts et al., 2012) using different 
classification techniques than those outlined in this chapter. In their work, Roberts et al. 
(2012) evaluated the relationship between crop response variables (CI590 and Yield) and 
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apparant soil electrical conductivity (ECa), soil optical reflectance, and landscape 
topography. In the Hunnicutt08, apparent soil electrical conductivity was significantly 
related to CI590 and yield, and was subsequently used to delineate management zones using 
the software Management Zone Analyst (University of Missouri, USDA-ARS, Columbia, 
MO). Management Zone Analyst delineated 2 zones within the field, with spatial patterns 
closely aligned with topography quadrants 1 & 3 and 2 & 4 of Figure 16. Higher positions in 
the landscape for this field (ZoneMZA 1 and topography quadrants 2 & 4) corresponded to 
higher organic matter and more productive soils, while lower areas in the landscape 
corresponded to eroded drainage ways (ZoneMZA 2 and topography quadrants 1 & 3). 

 

Fig. 15. The Hunnicutt 2008 nitrogen experiment structured in the data space according to 
(1) topography quadrants. 

Roberts et al. (2012) concluded that the sensor-based algorithm used in their study may need 
to be adjusted according to management zones to account for differences in crop nitrogen 
response. In addition to the proximal ground-based sensors used to delineate zones by 
Roberts et al. (2012), spatial patterns identified in Figure 16 suggest that laser scanning 
digital elevation models would also be useful to identify spatial patterns of soil variability 
and crop response to nitrogen. 
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The floating plots in Figure 16 would require a variable-rate ground sprayer that can 
apportion its application swath into polygons that are 9.2 m wide by 18 m long, to apply the 
alternate management practice in each specific topography zone (that is, the four zones 
indicated by the red, yellow, green and blue colors). 

 

Fig. 16. The strip-plot plan of the Hunnicutt 2008 corn nitrogen experiment showing the 
topography blocks (see text) and examples of imbedded floating plots within the harvest 
paths of the combine. 
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2.5.2 Value of topographical partitions for site-specific experimental designs 

The chief aim of a good experimental design is to (1) define the question to be tested, (2) 
define the experimental units and apportion these experimental units into homogenous 
populations, (3) define and describe the appropriate treatments or treatment combinations 
to obtain data to answer the question, and then (4) employ an appropriate randomization 
scheme to assign the treatments to the sensible structure of the experimental units (Mead, 
1988; Milliken & Johnson, 2009). In agricultural experiments, availability of a laser scanning 
digital elevation model leads to significant improvements in experimental design. Evidence 
of this capability is presented in this section. 

In Section 1.2, information addressing the issue of a system of floating plots was discussed 
(see also Milliken et al., 2010). The methodology involving an ordinal, categorical partition 
of two topographical attributes represents the first description of how to establish the 
geographical location of these floating plots in commercial fields. This method of choosing 
floating plot locations exploited the data and geographical spaces of information obtained 
by a laser scanning system and a second type of sensor system. More research is necessary 
to define the minimum size of these floating plots for optimal efficiency in a site-specific 
experimental design.  

This same procedure generates another process which establishes the geographical extent of 
an asymmetrical, irregularly shaped set of topography blocks as a statistical construct useful 
for inclusion within the design structure component (Milliken & Johnson, 2002, 2009) of a 
site-specific experimental design (Milliken et al., 2010; Oliver, 2010; Schabenberger & Pierce, 
2002; Willers et al., 2004, 2008b). The results presented in Table 2 provide evidence that the 
topography zones (as geographical ‘blocks’) successfully remove the influence of 
topography effects on the crop yield response variable as compared to where these 
topography layer attributes in the data space are only employed as covariates (compare sets 
of P-values at the far right column) and if the analysis is a traditional, randomized complete 
block experimental design.  

Experimental 
Design Type 

Covariance Parameters Tests of Fixed Effects (Type 3) 

Traditional 
(Randomized 

Complete Block)

Cov Parm Subject Estimate Effect
Num 
DF

Den 
DF

F 
Value Pr > F 

Intercept BLOCK 1.8393
Residual 1094.19

 

  
LIDAR 1 5871 5.43 0.0198 
ECSH 1 5871 9.59 0.0020 

LIDAR*ECSH 1 5871 9.38 0.0022 

Site-Specific 
(Randomized 
Complete & 
Topography 

Blocks) 

Intercept T_BLOCK 2.8635
Intercept BLOCK* 

T_BLOCK
23.6590

Residual 1080.23

  
LIDAR 1 5862 0.28 0.5974 
ECSH 1 5862 2.15 0.1423 

LIDAR*ECSH 1 5862 2.08 0.1493 
 

Table 2. Summary statistics for two situations, where the topography covariates are 
employed for a traditional randomized complete block experimental design or are 
employed as covariates for a site-specific topography block experimental design. 
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3. Conclusion – agricultural laser scanning’s ‘trains and troops of works’ 

This chapter is the logical supplement of two previously published works (Willers et al., 
2009a; Willers & Riggins, 2010). A common theme of the collection is the illustration of how 
geo-spatial information of appropriate spatial, temporal and spectral resolution is a valuable 
resource for agro-ecological investigations. This work concludes with two major points. 

The first point is that without the development of a suite of adequate tools and procedures 
to manage the copious flows of information for the experimenter, consultant, farm 
technician, farm supplier, or producer, the fruit that laser scanning provides for insight into 
the structure and function of agro-ecological systems will never be harvested. At the present 
time, the application of laser scanning and other remote sensing tools resides in the domain 
of specialists and not in the domain of the agriculturalist. The answer(s) needed to achieve a 
shift in the domain of usage and audience is not an easily resolved problem. 
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Fig. 17. Illustration of the relationship between cumulative time and cumulative file size for 
a task combining laser scanning elevation model with a raster layer of arctan normalized 
difference vegetation index values for one field on a commercial farm. 

One simple example provides some indication of the kind of focus required among cross 
disciplinary skills and task(s) to make such a shift in usage. Employment of methods like 
those of Milliken et al. (2010) or Oliver (2010) indicates that usage of these mathematical 
approaches is limited because a comprehensive data processing and computing 
infrastructure for on-farm, in the field agricultural activities, does not exist (Schuster et al., 
2011). We provide on example of the problem. Figure 17 shows the cumulative time 
required for a specialist to complete a task involving the combining of a digital elevation 
model layer with a normalized difference vegetation index (NDVI) layer to produce an 
output layer similar to Figures 11-14. The figure shows that the total time required can 
approach 60 minutes, while the cumulative file sizes involved increase to just a few 

www.intechopen.com



 
Laser Scanner Technology 

 

252 

megabytes. In real-farm applications, gigabytes of data are collected. Interestingly, the step 
involving some automation (the sharp inflection point near 12 min) is a step completed 
rather promptly. 

Unless a formal infrastructure for precision agriculture is developed that significantly 
reduces processing time and establishes interoperability, all of the theories, ideas, 
techniques, data, and mathematical models developed through years of government and 
university research and industry investment will be underutilized or fall into disuse. 
Consequently, a “Henry Ford” type of construct is needed to reduce the time required to 
process and produce meaningful analyses for clients and reduce the amount of labor 
needed. For such a complex, multifaceted problem, it will take multiple consortiums of 
investigators to discover ways to make laser scanning information and other remote sensing 
data streams affordable and easily available to agricultural systems. Aside from establishing 
the capability of gathering data from using sensors in the field and on farm machinery, there 
is the overriding need to promptly use the huge amounts of data for rapid decision-making. 
At its core, the fundamental limitation on data-intensive agriculture is the lack of 
interoperability for data in different formats and the time constraints between data 
collection and results being available for the end user.  

The second concluding point is the opportunity and need for additional confirmatory 
experimentation, built on exploratory experimentation procedures introduced in Sections 
2.2 – 2.5. If a probability plot examination of the features of an agricultural landscape 
indicate the presence of more than one data distribution (D’Agostino & Stephens, 1986), 
then concurrent processing in the geographical space is required. Creation of a Cartesian 
coordinate system whose origin is a centroid formed by the arithmetic means of the data 
space obtained from two sensor systems, where at least one is elevation mapped by laser 
scanning, should reveal different autocorrelations among groups established by the 
categorical data partition of such a centroid. If differences in spatial autocorrelation among 
categorically derived groups are evident, then such evidence dictates that different 
management zones exist in the field and each requires different rules for their site-specific 
management. Without access to laser scanning information, investigators could model the 
spatial autocorrelation of their data attributes with an isotropic semivariogram and 
consequently not recognize the reality that more than one spatial random field (Oliver, 2010; 
Schabenberger & Pierce, 2002) determines the properties of the first (the mean) and second 
(the variance) moments of the data space comprised of the measured variables of interest. 
Thus, the modifiable areal unit problem, when examined in the ‘light’ provided by laser 
scanning digital elevation models, is actually an indication of opportunity (not problems) 
with respect to the goals and philosophy of precision agriculture (Barnes et al., 1996; Moran 
et al., 1997; Oliver, 2010; Plant et al., 2001; Willers & Riggins, 2010). 
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