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1 Introduction 

Machining is the process of removing the material in the form of chips by means of wedge 
shaped tool[1]. The need to manufacture high precision items and to machine difficult-to-cut 
materials led to the development of the newer machining processes. The dimensional 
tolerance achieved by precision machining technology is on the order of 0.01 μm and the 
surface roughness is on the order of 1 nm. The dimensions of the parts or elements of the 
parts produced may be as small as 1 μm, and the resolution and the repeatability of the 
machine used must be of the order of 0.01 μm (10 nm). The accuracy targets for ultra-
precision component cannot be achieved by a simple extension of conventional machining 
processes and techniques. They are called precision machining processes, notwithstanding 
that the definition of conventional and traditional changes with time. Unlike conventional 
machining processes, precision machining processes are not based on the removing the 
metal in the form of chips using a wedge shaped tool. There are a variety of ways by which 
the material may be removed in precision machining processes. Some of them are abrasion 
by abrasive particles, impact of water, thermal action, chemical action and so on. 

When metal is removed by machining there is substantial increase in the specific energy 
required with decrease in chip size. It is generally believed this is due to the fact that all metals 
contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the 
material removed decreases, the probability of encountering a stress-reducing defect 
decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous 
microcracks usually form on the metal-cutting shear plane. If the material being cut is very 
brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into 
gross cracks giving rise to discontinuous chip formation[2]. When discontinuous microcracks 
form on the shear plane they weld and reform as strain proceeds, thus joining the transport of 
dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, 
the rewelding of microcracks decreases, resulting in decrease in the cutting force required for 
chip formation. Owing to the complexity of elastic-plastic deformation at nanometer scale, the 
world wide convinced precision materials removal theory is not built up until now. 

There are two basic approaches to the analysis of metal cutting process, namely, the analytical 
and the numerical method. As the complexity associate with the precision machining process, 
which involve high strains, strain rates, size effects and temperature, various simplifications 
and idealizations are necessary and therefore important machining features such as the strain 
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hardening, strain rate sensitivity, temperature dependence, chip formation and the chip-tool 
interface behaviors are not fully accounted for by the analytical methods. Experimental studies 
on precision machining are expensive and time consuming. Moreover, their results are valid 
only for the experimental conditions used and depend greatly on the accuracy of calibration of 
the experimental equipment and apparatus used. Advanced numerical techniques such as 
Finite Element Method is a potential alternative for solving precision machining problems.  

Finite Element Method (FEM) which is originated from continuum mechanics, has already 
been justified as successful method in analyzing complicated engineering problem[3-8]. There 
are many advantages of using FEM to investigate machining: multi-physical machining 
variables output can be acquired (cutting force, chip geometry, stress and temperature 
distributions), improving precision and the efficiency comparing with Try-Out-Method and so 
on. In the last three decades, FEM has been progressively applied to metal cutting simulations. 
Starting with two-dimension simulations of the orthogonal cutting more than two decades 
ago, researches progressed to three-dimensional FEM models of the oblique cutting, which 
capable of simulating metal cutting processes such as turning and milling. Increased 
computation power and the development of robust calculation algorithms (thus widely 
availability of FEM programs) are two major contributors to this progress. Unfortunately, this 
progress was not accompanied by new developments in precision machining theory so the 
age-old problems such as the chip formation mechanism and tribology of the contact surfaces 
are not modeled properly. Further, even at a moderate cutting speed, the strain rates are quite 
high, almost of the order of 104 per second and the temperature rise is also quite large. As a 
result, the visco-plasticity and temperature-softening effects become more important 
compared to strain-hardening. Therefore, the material properties associated with these two 
effects should be known for a range of strain rates and temperatures occurring in typical 
machining processes. Additionally, to incorporate the temperature rise in the analysis, one 
needs to solve the heat transfer equation governing the temperature field in conjunction with 
the usual three equations governing the deformation field. For plastic deformation, these 
equations are coupled, and hence difficult to solve.  

In material removal processes at the precision scale, the undeformed chip thickness can be 
on the order of a few microns or less, and can approach the nanoscale in some cases. At 
these length scales, the surface, subsurface, and edge condition of machined features and the 
fundamental mechanism for chip formation are much more intimately affected by the 
material properties and microstructure of the workpiece material, such as ductile/brittle 
behavior, crystallographic orientation of the material at the tool/chip interface, and micro-
topographical features such as voids, secondary phases, and interstitial particulates. 
Characterizing the surface, subsurface, and edge condition of machined features at the 
precision scale in the FEM analysis are of increasing importance for understanding, and 
controlling the manufacturing process. There are still many challenges in the investigation 
of precision machining by means of FEM. 

As mentioned above, this chapter will give some key factors on numerical modeling of 
precision machining and current advancements. 

2. The flow stress characteristics of the workpiece materials 

The flow stress characteristics are an important issue in the numerical analysis which is 
directly affects the loads and stresses in the precision machining. The flow stress is generally 
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considered as function of strain, strain rate and temperature. Many research works justify 
that the influence of strain rate on flow stress become more important when the temperature 
becomes higher. It is important to build the appropriate flow stress models fit for different 
working conditions. 

Accuracy and reliability of the predictions heavily depend on the materials flow stress at 
cutting areas such as high deformation rates and temperatures and variable friction 
characteristics at tool-chip interface which are not completely understood and need to be 
determined. Materials property at local shear band is very complex in the precision 
machining which makes it difficult to build up real robust flow stress model fitting for 
manufacturing process. Most of the energy consumption limited to local cutting area and 
transformed into heat which complicated the distribution of temperature at the local 
deformation area. The temperature plays an important role in the unstable chip flow. Larger 
plastic deformation rate and the intense friction at the tool-chip interface increase the heat 
generation rate and lead to the material softening thus decreasing the strain hardening 
ability and instability of materials flow. Therefore, the instability of shear behavior is 
directly induced by materials flow. Presently, researchers can’t build up reasonable 
materials consititutive relationship which can characterize strain rate and the temperature 
and reflect the variation of materials property in the precision machining process. 

Sound theoretical models based on atomic level material behavior are far from being 
accomplished. Semi-empirical constitutive models are widely utilized. Several material 
constitutive models are used in Finite Element (FE) simulation of metal cutting, including 
rigid-plastic, elasto-plastic, viscoplastic, elasto-viscoplastic and so on. These models take 
into account the high strains and temperatures reportedly found in metal cutting. Among 
others, the most widely used is the Johnson and Cook[7] (JC) model which is a thermo-elasto-
visco-plastic material constitutive model expressed as follows: 

   0

0 0

1 ln 1

m
n

m

T T
A B C

T T

 


                         


    (1) 

here A is the initial yield stress of the material at the room temperature, strain rate 1/s and 

  represents the equivalent plastic strain. The equivalent plastic strain rate   is 

normalized with a reference strain rate 0 . Temperature term in JC model reduces the flow 

stress to zero at the melting temperature of the work materials, Tm, leaving the constitutive 

model with no temperature effect. In general, the parameters A, B, C, n, and m of the model 

are fitted to the data obtained by several material test conducted at low strains and strain 

rates and at room temperature as well as Split Hopkinson Pressure Bar (SHPB) test at strain 

rates up to 1000/s and at temperatures up to 600 °C. JC model provides good fit for strain-

hardening behavior of metals and it is numerically robust and can easily be used in FE 

simulation models. 

Besides, there are two major problems with the use of the discussed model and its method 
of the determination of its constants. First, only few laboratories and specialist in the world 
can conduct SHPB testing properly, assuring the condition of dynamic equilibrium. None of 
the known tests in metal cutting was carried out in these laboratories. Second, the high 
strain rate in metal cutting is rather a myth than reality. Third, the temperature in the so-
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called primarily deformation zone where the complete plastic deformation of the work 
materials takes place can hardly exceed 250 oC. It is understood that the mechanical 
properties of the work material obtained at room temperature are not affected by this 
temperature so metal cutting is a cold working process, although the chip appearance can be 
cherry-red. Fourth, it is completely unclear how to correlate the properties of the work 
materials obtained in SHPB uniaxial impact testing with those in metal cutting with a strong 
degree of stress triaxiality.  

3. The chip separation criterion on different materials used in the FEM  

Presently, two FE methods exist for analyzing the precision machining process. In the first 
method, it is assumed that the chip formation is continuous and the shape of the chip is 
known in advance. Thus, the process is analyzed as a steady-state process. This method is 
called Eulerian method. In this method, a chip separation criterion is not required. In the 
second method, the process is analyzed from the beginning to the steady state chip 
formation. This is called Updated Lagrangian Formulation. In this method, a chip separation 
criterion is required to predict the chip geometry. Early applications of finite element 
method to the machining process were mainly Eulerian method. The main objective of many 
of these studies was to predict the temperature distribution and therefore, the determination 
of deformation and stress fields was only an intermediate step. These studies considered the 
machined material as rigid-plastic. But, later applications of Eulerian formulation to 
machining process also included viscoplastic effects. All of these applications have 
considered only orthogonal machining. The first finite element study of the machining 
process using an modified Lagrangian Formulation was made by Strenkowski and Carrol[8]. 
A critical value of the equivalent plastic strain was used to model the separation of a chip. 
Later on, several researchers used the Updated Lagrangian Formulation for analyzing two- 
and three-dimensional machining processes. The criterion used for chip separation has been 
based on controlled crack propagation or some geometrical considerations. Remeshing 
technique has been used to simulate the chip formation. 

As the size of the material removed decreases in the precision machining, the probability 
of encountering a stress-reducing defect decreases. There are some new disciplines 
dominate the chip separation process. The metal cutting process is different from general 
metal forming process as there are always accompanied with chip separation or materials 
removal phenomenon. The separation of chip is of utmost important about numerical 
simulation of precision machining. The simulation results can only be meaningful only if 
the reasonable chip separation criteria which can reflect materials mechanical and 
physical property (such as morphology of chip, force, temperature and the residual stress 
etc.) were applied in the simulation model. Besides, the criterion for chip separation 
should be invariant for definite materials but not change with the different working 
conditions. In the metal cutting process, some kinds of materials may generate continuous 
chip while others may generate saw-like chip thus different materials fracture criteria 
should be included in the finite element model.  

Presently, there are two kinds of chip separation criteria, namely, the geometric criterion 
and the physical criterion. Materials removal (chip separation) using geometric criterion is 
realized through the variation of size of deformable body. On the other hand, the physical 
criterion is based on if some key physical parameters approached the critical value, these 
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physical criterion includes effective plastic strain criterion, strain energy density criterion 
and the fracture stress criterion and so on. 

3.1 Fracture mechanics criterion
 

3.1.1 Stress intensity factor 

In reality, chip separation process can be assumed as the formation and development of 
crack. Under what conditions and what manners can the materials be cut off is closely 
related with the fracture criterion[2]. Consider plane crack extending through the thickness 
of flat plane. There are three independent kinematic movements of the upper and lower 
crack surfaces with respect to each other. These three basic modes of deformation are 
illustrated in figure 1, which presents the displacements of the crack surface of a local 
element containing the crack front. Any deformation of the crack surface can be viewed as a 
superposition of these basic deformation modes, which are defined as follows: 

1. Opening mode, the crack surfaces separate symmetrically with respect to the planes xy 
and xz 

2. Sliding mode, the crack surfaces slide relative to each other symmetrically with respect 
to the planes xy and skew-symmetrically with respect to plane xz 

3. Tearing mode, the crack surfaces slide relative to each other skew-symmetrically with 
respect to both planes xy and xz. 

 
                (i)                                               (ii)                                            (iii) 

Fig. 1. Three basic modes of crack extension (i) Opening mode; (ii) Sliding mode; (iii) 
Tearing mode 

The stress and deformation fields associated with each of these three deformation modes 

will be determined in the sequel for the case of plane strain and generalized plane stress. 

Solid materials is defined to be in a state of plane strain parallel to the plane xy if  

 u=u(x,y), v=v(x,y), w=0  (2) 

where u, v, w denote the displacement components along  the axes x, y and z. Chip separation 

originated from crack while the static, stable or extension of the crack are all closely related 

with the distribution of stress field around the crack. The study of stress field near the crack tip 

is of great important as this field govern the fracture process that takes place at the crack tip.  

a. Opening mode 

Infinite plate with a crack of length 2a subjected to equal stresses   at infinity is give by  

X 

Z

Y 
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( )I
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Z z
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


 (3) 

If we place the origin of the coordinate system at the crack tip z=a through the transformation  

 z a    (4) 

Then the equation (3) takes the form 

 
( )

( 2 )
I

a
Z

a

 
 





 (5) 

using polar coordinates, r and   we have 

 ire    (6) 

the stress near the crack tip can be derived as follows: 
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 0w   (12) 

here x , y  and xy  are the stress component, u, v and w are the displacement component, 

G is the shear modulus,   is the poisson ratio, 3 4   . The KI is the stress intensity 

factor and expresses the strength of the singular elastic stress field. As put forward by 

Irwin[9], equation (7) ~ (9) applies to all crack tip stress fields independently of crack/body 

geometry and the loading conditions. The stress intensity factor depends linearly on the 

applied load and is a function of crack length and the geometrical configuration of the 

cracked body.  

 
| | 0
lim 2I IK Z





   (13) 

Equation (13) can be used to determine the KI stress intensity factor when the ZI is known. 
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b. Sliding mode 

Following the same procedure in the previous case, and recognizing the general 
applicability of the singular solution for all sliding mode crack problems, the following 
equations for stresses and displacements are obtained: 
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  (16) 

The KII is the sliding mode stress intensity and can be obtained as following 

 
| | 0
lim 2II IIK i Z





   (17) 

c. Tearing mode 

 
| | 0
lim 2III IIIK Z





   (18) 

The stress intensity factor is a fundamental quantity that governs the stress field near the 

crack tip. Several methods have been used for the determination of stress intensity factors as 

listed following: 

a. Theoretical method (Westergaard semi-inverse method and method of complex 

potentials) 

b. Numerical method (Green’s function, weight functions, boundary collocation, 

alternating method, integral transforms, continuous dislocations and finite element 

method) 

c. Experimental method (photoelasticity, holography, caustics) 

Theoretical method is generally restricted to plates of infinite extent with simple geometrical 
configurations of cracks and boundary conditions. For more complicated situations one 
must result to numerical or experimental methods. 

The stress intensity factor is one of the key parameters for characterizing stress field around 
crack, which can be used as the criterion for crack extension. 

1. Single mode criterion 

The single mode criterion can be expressed as follows: 

 I ICK K , II IICK K , III IIICK K   (19) 

here ICK , IICK , IIICK  are the fracture toughness of I, II and III modes separately, which is 

also the inherent property of materials. 
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2. Mixed mode criterion 

The mixed mode criterion can be acquired using Ellipsoid Criterion: 

 

2 2 2

1I II III

IC IIC IIIC

K K K

K K K

     
       

     
  (20) 

3.1.2 J-integral theory 

The stress intensity factor can only be applied to small yield around crack tip, other 

appropriate parameters should be developed to evaluated the large fracture strength. Rice[10] 

introduced path independent line integral as the elastic-plastic parameter for characterizing 

the status of crack which also named as J-integral. Hutchinson[11] and Rice and Rosengren[12] 

showed that J uniquely characterizes crack tip stress and strains in nonlinear materials. Thus 

the J integral can be viewed as both an energy parameter and a stress intensity parameter. 

After that, many researchers investigate the J-integral which establish the theoretical 

foundation of the path independent J-integral and its use as a fracture criterion. Presently, 

the main efforts in the study of elastic-plastic fracture mechanics is building up the 

evaluating method on fracture strength using J-integral while the yield materials around 

crack tip can be considered as non-linear elastic materials. 

As for crack in the nonlinear elastic continuum medium, Rice[10] found that the integral 

around crack tip is path independent and is given by: 

 i
i

u
J wdy T ds

x

       (21) 

here w is the strain energy density, Ti is the component of the traction vector, ui is the 

displacement vector component and ds is a length increment along the contour  . The stress 

energy density is defined as: 

 
0

ij

ij ijw d



    (22) 

 

Fig. 2. Arbitrary contour around the tip of a crack 

here ij  and ij  are the stress and strain tensors separately. The traction is a stress vector 

normal to the contour. That is, if we were to construct a free body diagram on the material 


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inside of the contour, Ti would define the normal stress acting at the boundaries. The 

components of the traction vector are given by: 

 i ij jT n  (23) 

here nj is the component of the unit vector normal to  . 

As for linear elastic materials, there some relationship as follows: 

  2 2 21 1

8 2
I II IIIJ K K K G


 


      (24) 

As for nonlinear elastic materials, the system potential enclosed by curve   can be 
computed as follows: 

 ( ) j jW dA p u d 
 

       (25) 

Therefore 

 J
a


 


 (26) 

here a is the crack length. The J integral is essentially variation rate of system potential energy 

which is mainly transform into irreversible plastic work. If the work needed to extend crack a 

unit length is a constant, then the J integral based elastic-plastic fracture criterion can be 

deduced. It is because the J integral can be used to characterize the elastic plastic stress field 

solved by deformation theory that the J integral is selected as elastic plastic fracture criterion. 

In 1968, Hutchinson[11], Rice and Rosengren[12] investigated the elastic plastic stress field 

around crack using deformation theory and acquired singular solution as follows: 
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here I is definite integral of  , iu  is a function of  . In reality, it is difficult to solve the J 
integral using equation (27) ~ (29) because of the complex regular expression of ij , ij  and 

i
u . The numerical method and the energy method are the two practical solutions. The 

numerical method mainly makes use of elastic-plastic finite element method and integrates 

along several paths around crack tip and acquires the J integral. The final J integral can be 

computed as follows: 
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 iJ
J

n
  (30) 

here Ji is the J integral corresponding to path i , n is the number of integrate path. The 

integrate path is generally continuous smooth curve which can reduce the error resulted by 

the discontinuous surface force. 

3.2 Geometrical criterion 

The geometrical criterion mainly takes effect through judging if the geometrical size of 

materials exceeding the criterion. Figure 3 shows the geometrical model in which a 

separation line is defined. The nodes at the chip side and the nodes at workpiece side are 

overlapped at the beginning. But the separation of two nodes occurs when the distance D 

between the tool cutting edge (point d, in Figure 3) and the node immediately ahead (node 

a) becomes less than a predefined critical value thus the machined surface and the chip 

bottom are generated. 

 

Fig. 3. Geometrical criterion model 

Usui and Shirakashi[13] first put forward the geometrical criterion and found it is a stable 

criterion. Komvopoulos and Erpenbeck[14] pointed that there should be enough distance 

between tool tip and the overlap point to prevent the convergence problem resulted by the 

excessive distortion of finite element mesh. Zhang and Bagchi[15] brought forward that the 

geometrical distance should be less than 30 percent to 50 percent of element length. 

Furthermore, they also put up a new geometrical separation criterion which is based upon 

the ratio of geometrical distance to depth of cut which is equivalent to the microscopic 

fracture mechanics criterion. 

The geometrical criterion is simple to be used in the FE computation. However, the distance 

(D) between tool tip and the separation point is closed to zero which result in the difference 

between the set value of D with the reality. The selection value of D will have a great 

influence upon the convergence of FE simulation and only the experienced researcher can 

deduce appropriate valuable critical value. In addition, the separation line which 

separates the mesh of chip and that of the workpiece should be built up in advance. 

Figure 4 shows the FE simulation of precision machining process based on geometrical 

separation criterion.  

Separation line 
Workpiece

Chip
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4. Materials deformation behavior in the precision machining 

The depth of cut in the precision machining is very small, chips are formed at very narrow 

regions. The work material is subjected to extremely high plastic deformation and the strain 

rates can reach the values of about 105 s-1. The large strain and high strain rate plastic 

deformation evolves out of hydrostatic pressure that travels ahead the tool as it pass over. The 

zone has, like all plastic deformations an elastic compression region that becomes the plastic 

compression region as the field boundary is crossed. The plastic compression generates dense 

dislocation tangles and networks which lead to the materials shear after the materials 

experience fully work hardened. The theory of micro-plasticity, which mathematically 

describes the stress and strain at small scale, is adopted to calculate the distributions of stress 

and strain in the distorted bodies.  

    

Fig. 4. FE simulation based on geometrical separation criterion 

4.1 Plastic deformation and chip formation in the precision machining titanium alloy 

The numerical analysis method applied to materials cutting process can be divided into two 

categories, namely, the elastic-plastic FEM and the rigid-plastic FEM. Furthermore, thermo-

elastic FEM and the thermo-rigid FEM are introduced if the temperature and the velocity are 

considered in the materials processing technology. The simulation results are almost same 

whether the problem analysed by either elastic-plastic FEM or rigid-plastic FEM if the size 

of the workpiece and the amount of discreted element are same for these two methods. The 

elastic-plastic FEM mainly applied to solve the residual stress and the elastic recovery while 

the rigid-plastic FEM cannot solve this type of problems as it ignored elastic deformation 

and thus it has higher solution efficiency. 

In this research work, the commercial finite element analysis package (Advantedge®) is 
utilized to gain good understanding of the materials deformation behavior underlying 
machining of titanium alloy. Among the different alloys of titanium, Ti-6Al-4V is by far the 
most popular with its widespread use in the chemical, surgical, ship building and aerospace 
industry. The primary reason for wide applications of this titanium alloy is due to its high 
strength-to-weight ratio that can be maintained at elevated temperatures and excellent 
corrosion and fracture resistance. On the other hand, Ti-6Al-4V is notorious for poor 
machinability due to its low thermal conductivity that causes high temperature on the tool 
face, strong chemical affinity with most tool materials, which leads to premature tool failure, 
and inhomogeneous deformation by catastrophic shear that makes the cutting force 

Separation line 
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fluctuate and causes tool wear, thereby aggravating tool-wear and chatter. This poor 
machinability has limited cutting speed to less than 60 m/min in industrial practice. 
Numerical analysis of Ti-6Al-4V machining process using finite element method is of great 
importance on understanding the physical essence and optimizing the machining technique 
parameters. 

4.2 Finite element formulation 

The FEM mesh is constituted by elements that cover exactly the whole of the region of the 

body under analysis[3]. These elements are attached to the body and thus they follow its 

deformation. Metal cutting process is a large deformation and finite strain related elastic-

plastic process. Therefore, both nonlinear material property and the nonlinear geometry 

property ought to be considered in the numerical analysis. Presently, typical finite element 

formulations used in metal cutting include Lagrangian or Eulerian method. Lagrangian 

formulation bases upon the original geometry which also termed as particle coordinates 

description, Eulerian formulation bases upon the deformed geometry which termed as 

floating coordinate description. These formulations are particularly convenient when 

unconstrained flow of material is involved, i.e., when its boundaries are in frequent 

mutation. In this case, the FE mesh covers the real contour of the body with sufficient 

accuracy. On the other hand, the Eulerian formulation is more suitable for fluid-flow 

problems involving a control volume. In this method, the mesh is constituted of elements 

that are fixed in the space and cover the control volume. The variables under analysis are 

calculated at fixed spatial location as the material flows through the mesh. This formulation 

is more suitable for applications where the boundaries of the region of the body under 

analysis are known a prior, such as in metal forming.  

Although both of these formulations have been used in modelling metal cutting processes, 
the Lagrangian formulation is more attractive due to the ever-mutating of the model used. 
The Eulerian formulation can only be used to simulate steady state cutting. As a result, 
when the Lagrangian formulation is used, the chip is formed with thickness and shape 
determined by the cutting conditions. However, when one uses the Eulerian formulation, an 
initial assumption about the shaped of the chip is needed. This initial chip shape is used for 
a matter of convenience, because it considerably facilitates the calculations in an incipient 
stage, where frequent problems of divergence of algorithm are found.  

The Lagrangian formulation, however, also has shortcomings. First, as metal cutting 
involves severe plastic deformation of the layer being removed, the elements are extremely 
distorted so the mesh regeneration is needed. Second, the node separation is not well 
defined, particularly when chamfered and/or negative rake or heavy-radiused cutting edge 
tools are involved in the simulation. Although the severity of these problems can be reduced 
to a certain extent by a denser mesh and by frequent re-meshing, frequent mesh 
regeneration causes other problems.  

These problems do not exist in the Eulerian formulation as the mesh is spatially fixed. This 
eliminates the problems associated to high distortion of the elements, and consequently no 
re-meshing is required. The mesh density is determined by the expected gradients of stress 
and strain. Therefore, the Eulerian formulation is more computationally efficient and 
suitable for modelling the zone around the tool cutting edge, particularly for ductile work 
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materials. The major drawback of this formulation, however, is that the chip thickness 
should be assumed and kept constant during the analysis, as well as the tool–chip contact 
length and contact conditions at the tool–chip and tool–workpiece interfaces. As the chip 
thickness is the major outcome of the cutting process that defines all other parameters of this 
process so it cannot be assumed physically. Consequently, the Eulerian formulation does 
not correspond to the real deformation process developed during a real metal cutting 
process.  

The Lagrangian formulation[16] under finite deformation is as follows: 

  
0 0

0

T T

t ij ij ij ijV V
p B S dV B S dV            (31) 

where  p  denotes the column vector of external force exerted at the discrete element 

nodes,  B  is the geometry matrix in the case of finite strain conditions and the  B  is the 

additional item induced by the geometric nonlinear conditions. 

4.3 Finite element model and simulation results 

The corresponding mesh is refined in some region as severe plastic deformation may be 
induced under material surface which is shown in figure 5. The most fundamental and 
crucial characteristic of metal cutting process lies in the formation of chip. In reality, the chip 
is not exactly “cut” but “sheared” away from the work material which forms a clear 
distinction between machining plastic metal and other materials. Figure 6 shows the chip 
formation process during precision machining of titanium alloy. Chip formed with the tool 
approaching the material from the right side and the chip flow in curved fashion. When the 
original chip thickness or feed rate or depth of cut is compared with the chip thickness after 
cutting, the deformation can be clearly observed. This deformation is fundamental for the  

 

Material Titanium 

Size (mm) 0.4 0.01 0.1   

Physical Property Elastic-Plastic Solid 

Depth of Cut(µm) 5 

Speed(mm/s) 200 

Temperature(℃) 20 

Table 1. FEM simulation parameters 

 

Fig. 5. FE simulation model 
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Fig. 6. FE simulation of precision machining of titanium alloy  

metal cutting process and involves large deformations of materials with very large strains 

and very high strain rates. The produced chip is in contact with the tool face in a highly 

pressurized zone causing sticking friction which transforms to sliding friction further up on 

the tool face. A large amount of heat is generated in the cutting zone as a result of plastic 

work and friction causing temperature rise in the tool and chip.  

There are three main plastic deformation areas in this precision machining process as shown 

in figure 6, namely, the first plastic deformation region, which dominates the kind and the 

morphology of the chip and generated large amount of heat, the degree of plastic 

deformation is closely related with materials stress-strain relationship; the second plastic 

deformation region where the intense tribology process is generated between bottom of chip 

(a) Timestep: 90                                                       (b) Timestep: 180 

(c) Timestep: 270                                                    (d) Timestep: 360 

(e) Timestep: 450                                                   (f) Timestep: 540 

www.intechopen.com



 
Analysis Precision Machining Process Using Finite Element Method 

 

119 

and rake face of cutting tool; the third plastic deformation region where the tribology 

behavior is generated between materials machined surface and the clear face of cutting tool. 

With the cutting in of tool, the elastic deformation is initially induced at the contact interface 

between cutting tool and materials. After that the titanium alloy becomes going into yield 

state with the further successively feeding of cutting tool and the plastic deformation region 

gradually comes into being ahead of cutting tool. The successive feeding of cutting tool 

results in the contraction of the elastic deformation and expansion of plastic deformation. 

The full contact between cutting tool and workpiece comes into being and the elastic-plastic 

deformation is generated. The simulation results show that fairly concentrated shear 

separates the nearly unstrained work materials from the fully strained chip. But no obvious 

region of secondary deformation is generated close to the rake face of tool. The contact 

length between rake face of cutting tool and the bottom is very small which also justifies 

most of the cutting process are accomplished by the local tool tip.  
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Fig. 7. Simulation results of cutting force 

 

Fig. 8. Deformation area in the metal cutting 

Metal cutting process at nanometer scale involves plastic deformation in small localized 

regions where opposing surface contact or in the interior of workpiece materials. As for chip 

formation, the single-shear plane model and practically all its “basic mechanics” have been 
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known since nineteenth century and referred as the Merchant (or Ernst-Merchant model) 

model[1]. This model has been the basis for most of the present metal cutting analysis. The 

first orthogonal model was brought forward in 1937 by Piispanen[1] and termed as card 

model. In this model, the material cut is assumed as a deck of cards inclined to the cutting 

direction which is shown in figure 9. Merchant assumed the chip to be formed over an 

infinite thin plane called shear plane. This shear plane starts from the cutting edge of the 

tool and crosses the chip on an angle with the cutting direction, which is termed as shear 

angle. When the chip passes the shear plane it is sheared away from the workpiece and 

increases in thickness. In this simulation, no single shear plane is observed in the whole 

precision machining process. On the other case, there some maximum stress band is 

continuously generated in front of cutting tool. This shear band possesses irregular 

geometry shape which extends from first deformation region to third deformation region. 

 

Fig. 9. Card of cutting process 

A zone of plastic deformation extends underneath the machined surface. This subsurface 
deformation will result in compressive stresses in the machined surface. Though the stress 
patterns are those with the load applied by the tool still present, elastic recovery caused by 
the unloading of the tool is not expected to significantly change the stress distribution close 
to the free surface. So the stress in the machined surface sufficiently far away from the tool 
can be taken to be the residual stress. The location of the nodes along the machined surface 
when compared with the location of tool cutting edge yields information about the elastic 
recovery of the machined surface after it passes under the tool. The elastic spring-back of the 
machined surface is found to be far less than the radius curvature of cutting edge which 
justify that most of the material in front of the rounded cutting edge is actually pushed 
ahead of the tool and not into the machined surface.  

The simulation results also shows that the continuous internal curling chip is generated 
under current working conditions. At the beginning, part of chip adjacent to the tool tip 
begins to curl and form helix circle with small radius. After that, the larger helix circle 
surround the previous small one is gradually formed with the feeding of the cutting tool. 

The deformation coefficients ( c

u

t

t
  ) is gradually increased in this process which result in 

the increasing of cutting force (figure 7). The stress along the free surface (back) of chip is 

Shear plane

tc

tu
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tensile. It is also tensile along the surface of chip which has moved out of the contact with 

the tool rake face (front) while the yy  in the middle of the chip is compressive. Such a 

distribution of stress is the critical factor to develop initial formation of chip.  

Presently, the hypotheses propounded by various researchers to explain the curvature of the 
chip include (i) The cutting moment causes the chip to bend; (ii) The ‘crushing’ of chip in the 
secondary shear zone and the resultant acceleration of the work material in moving through 
the secondary shear zone causes the chip to lengthen along this side (the front side). This 
can also results in a curvature of the chip which is similar to the curvature of a bimetallic 
strip; (iii) The shear plane is curved in such a way that the shear plane angle is smaller near 
the exit of shear plane. Thus the chip velocity on the back side is smaller than the average 
chip velocity which causes the chip to curl.  

The bending moment on the chip considered as a beam would result in compressive stress 

along the free surface (back) of the chip if hypothesis (i) was true. Crushing of the chip in the 

secondary shear zone will result in compressive yy  in the front (underside) of the chip. 

Only a curved shear plane would result in a stress distribution similar to that given by the 

finite element analysis, while simultaneously accounting for curl of the chip. It should be 

noted that though the chip does accelerate (due to secondary shear) as it flows along the 

rake face of tool, this is just an accessory to chip curl and not the cause of chip curl. The 

reason for the curvature of the shear plane can be found from a detailed analysis of the 

stress distribution in the zone of plastic deformation. Work in this direction is in progress. 

5. Conclusion 

With the increasing of high quality and accuracy of modern automated machining 
technology, numerical simulation of machining technology such as FEM is starting to 
emerge. The FEM based virtual machining simulation has the capability of calculating the 
results of process variables about the precision machining process used for optimization the 
cutting process thus providing many benefits to the metal cutting application. Presently, 
FEM is mainly of use to mechanical and materials engineering, as a tool to support process 
understanding, materials machinability development and tool design. The research efforts 
show that the model used in FEM of precision metal cutting process should be adequate to 
the process. But the concept of FE model should be broadened in order to embrace 
important facets physics including uncertainty, which has been axiomatized out of modern 
cutting research. Breakthrough in these directions will have considerable impact by making 
metal cutting simulation useful for practical optimization of various metalworking 
operations including the cutting and machine tools, the metal working fluids and fixtures 
and so on. 
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