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Prediction of Wave Height Based on the
Monitoring of Surface Wind

Tsukasa Hokimoto
Graduate School of Mathematical Sciences, The University of Tokyo

Japan

1. Introduction

The ocean wave is one of the physical factors which cause serious sea disasters, and its
prediction provides the information available for various human activity related to the sea.
More than a half-century has passed since original theories for wave hindcasting techniques
have been proposed in the pioneering papers such as Sverdrup and Munk (1947) and Pierson,
Neumann, and James (1960) and so on, the method and the technique for wave prediction
problem have progressed a great deal, against the background of recent progresses in the
technologies of measurement and computation. However, even at the present, the prediction
of the wave phenomena is still a difficult problem, and the technology for wave prediction
is going on further development. There are several reasons why the prediction of the
phenomena related to the sea state is a difficult problem even now. One of the reasons is
the complexity of the physical mechanism on the wave development. When the sea is getting
rough by wind forcing, the sea surface movement is affected by the interactions among the
meteorological factors, such as wind motion and atmospheric pressure, and the topographical
influence which varies by region. It means that the theoretical description of the sea surface
movement, taking into account of the dynamic relationship among these factors, is very
complicated. And another reason is the difficulty of the field measurement at sea. It is often
the case that we can not carry out constant monitoring on the necessary meteorological factors,
due to the lack of measurement facilities, sudden malfunction of a measurement instrument,
and so on.
In the traditional research on the wave prediction problem, various statistical methods for
the prediction of the sea state data have been proposed until now. However, most of such
methods have been considered based on the measured data obtained by buoys or ships.
In Japan, the Japan Meteorological Agency has set up about 1300 regional stations for the
ground-based meteorological monitoring, which is called Automated Meteorological Data
Acquisition System (AMeDAS), throughout of this country, and over 80 sensors for ultrasonic
wave height meters in the coastal areas. They provide measured data on wave height and
various meteorological factors constantly, which are available via Internet. It is thought that
the physical factors which make influence on the sea condition, such as the wind speed and
wind direction, change with spatial and temporal correlations. So, as an approach to the above
wave prediction problem, we develop a statistical model for predicting the change of wave
height from the change of surface wind, obtained by constant ground-based observation.
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In this chapter, we provide two topics on the statistical modeling for the prediction of wave
height. The first topic is a modeling for predicting the change of wave height based on
ocean wind, by applying the method proposed in our previous paper (Hokimoto and Shimizu
(2008)). And the second topic is the development of a statistical model for predicting wave
height, based on the change of surface wind, obtained by ground-based observation. Also, the
effectiveness in prediction using the proposed models is examined by means of the numerical
experiment.
The sections below are organized as follows. In the next section, we outline traditional
researches on the statistical models for the sea state data. In section 3, we present a method for
the wave height prediction based on the measurement of ocean wind. In section 4, we develop
a model for predicting wave height based on the measurement of surface wind, obtained by
ground-based observation. And section 5 provides a summary of the result and discussion of
further research on this topic.

2. Time series models for the sea state analysis

It is well-known that the wave motion under low wind speed can be approximated
by Gaussian process. For the measured data in this aspect, the linear stationary time
series models proposed by Box and Jenkins (1976), such as autoregressive (AR) model
or autoregressive moving average (ARMA) model, have been widely used to construct a
predictor. In fact, various applications to wave height data (e.g., Cunha and Guedes (1999),
Yim et. al. (2002)) and the wind data (e.g., Brown et. al. (1984), Daniel and Chen (1991)) have
been reported by many authors.
However, as for the wave motion during the wave development process, the above stationary
models do not give reasonable predictions. There are also many models which are applicable
to the measured data in the transitional aspect. One is standard linear nonstationary time
series models. For example, autoregressive integrated moving average (ARIMA) model
(Box and Jenkins (1976)), the autoregressive model with time varying coefficients (Kitagawa
and Gersch (1985)), and generalized autoregressive conditional heteroskedasticity (GARCH)
model (Bollerslev (1986)) are used widely to the nonstationary time series data. Also, if
the speed in changing statistical structure can be regarded to be slow, we can apply a
stationary AR model to the time series data in the local time interval which can be regarded
to be stationary. For example, a model for predicting the change of nonstationary spectral
density function of the sea surface movement during the wave development process was
developed based on this concept (Hokimoto et. al. (2003)). There are also nonstationary
time series models based on the decomposition of the trend and the other components (e.g.,
Athanassoulis et. al. (1995), Stefanakos et. al. (2002), Walton and Borgman (1990)).
One of interests when we treat the measured data on the sea state is how we treat the
directional time series data on the wind direction. This problem is serious when we consider
a statistical model to the multivariate time series data including wave height, wind speed
and wind direction, because directional data have a unique property that they take the values
on the circle. In the framework of directional statistics, various methodologies for statistical
inferences on the directional data have been proposed (for example, Mardia and Jupp (2000)).
Among them, multivariate regression models, including circular and linear variables, have
been often proposed in environment studies. Johnson and Wehrly (1978) considered the
theoretical background of the linear parametric regression, which has the linear variable and
the angular variable. And the extension of their model has given in Fisher and Lee (1992),
SenGupta (2004), SenGupta and Ugwuowo (2006), and so forth. However, there have been
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Prediction of Wave Height Based on the Monitoring of Surface Wind 3

only limited attempts to model multivariate angular-linear data. In Hokimoto and Shimizu
(2008), we developed an angular-linear time series model to express the dynamic structure
among wave height, wind speed and wind direction, by extending the multiple regression
model by Johnson and Wehrly (1978), and showed the effectiveness on wave height prediction
between the change in ocean wind and the change in wave height. Our interest here is that
the model whose structure is similar to the above model may be effective for the description
of the dynamic relationship between wave height and surface wind.

3. Wave height prediction based on the change of ocean wind

In this section, we present a statistical method for predicting the change of wave height from
the motion of ocean wind, based on Hokimoto and Shimizu (2008). The development of this
method was motivated by the measured data obtained from ocean surveys using a research
ship, in Hunka-bay, Hokkaido, Japan.

Fig. 1. A map around the measuring point

3.1 In-situ monitoring on wave height and ocean wind

Figure 1 shows a map around the measuring point (42◦17′N, 140◦40′E). We have measured the
changes of relative sea surface level, wind speed and wind direction in Hunka-bay. For the
relative sea surface movement, we measured relative displacement from the mean of the sea
surface movement over 10 minutes by using an ultrasonic wave height meter of the research
ship. Also, the changes in wind speed and wind direction at about 15 meters height from
the sea surface were measured by using an ultrasonic wind meter. After the measurement,
we obtained the time series data on 1/3 significant wave height, mean wind speed and mean
wind direction for every 1 minute, based on the measured records.
Figure 2 displays the time series data obtained in the above, which were measured on Dec.
2, 1999. From the top, the significant wave height (m), the wind speed (m/s), and the wind
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direction (rad.) are shown, where each sample size is 90. It is noted that the origin of the wind
direction data is defined to be north and the positive value means the clockwise direction.
According to the weather maps of the sampling day, as well as the days before and after, the
location of atmospheric pressure formed typical pattern of winter in Japan. In other words,
the high pressure area is extending over the west of Japan Islands and the low pressure area
is extending over the east. Under the background of this location, the above observation
showed the tendency that the wind direction changed slowly from north-west to north, and
the wind speed rapidly increased approximately from 6m/s to 13m/s in 40∼50 minutes, and
then changed slowly in the range approximately from 12m/s to 15m/s. On the other hand,
1/3 wave height gradually grew up to about 3.5 meters under the background that the wind
speed increased and the wind direction changed slowly. The above data can be regarded to
be the measurement of the wave development process, because wave height increases under
the situation that the wind speed becomes faster and the wind direction does not change so
much.
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Fig. 2. Measured data on wave and wind (from the top, 1/3 significant wave height (m),
wind speed (m/s), wind direction (rad.))

172 Oceanography

www.intechopen.com
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3.2 Some characteristics on the correlation structure

In the following, we make some preliminary analyses on the correlation structure of the
measured data, in order to investigate what class of model is suitable for expressing the
change of the measured data. In the following, let {WHt}, {WSt} and {WDt} (t = 1, . . . , N) be
sets of measurements of significant wave height, wind speed and wind direction, respectively,
where t is the time point and N is the sample size.

3.2.1 Circular autocorrelation of the wind direction data

First, we invstigate the correlation structure of the directional time series data of wind
direction. As a basic concept of exploratory circular data analysis, we refer to a book by Fisher
(1993, Chapter 2) and use the following two transformations of WDt

xt = cos(WDt), yt = sin(WDt) (1)

In order to explore the possibility of detecting changes of direction, we use two statistics; one
is the cumulative sum (CUSUM) plot displayed by the points

Ct =
t

∑
i=1

xi, St =
t

∑
i=1

yi (2)

and the other is the cumulative mean direction plot {Θc
t ; t = 1, . . .}, such that

cos(Θc
t ) = Ct/

√
C2

t + S2
t , sin(Θc

t ) = St/
√

C2
t + S2

t (3)

are satisfied simultaneously. CUSUM plot is displayed in the left of Figure 3, where the
horizontal axis denotes Ct and the vertical axis denotes St. Also, the cumulative mean
directional plot is displayed in the right of Figure 3, where the horizontal axis denotes the
time point t and the vertical axis denotes Θc

t . It is noted that the change in statistical structure
of the directional time series data is admitted, when the trend of CUSUM plot is clearly
different from the straight line whose slope is one, and when the value of the cumulative mean
directional plot is clearly different from the constant value. The cumulative mean directional
plot suggests the possibility that the directional time series data have a change point of
statistical structure at t = 40 roughly, and in this case the time series exhibits nonstationarity.
We also checked the statistical test of change in mean direction by using CircStats (Chapter 11
of Jammalamadaka and SenGupta (2001)). The result showed that there exists a change point
at the time point t = 42, which suggested that the data exhibit nonstationarity.
Now we are interested in whether there is clear difference in the correlation structures,
between the case when we regard the wind direction data to be circular time series data
and the case when we regard the data to be linear time series data. For the estimation of
correlation, it is necessary to subtract the trend of the data. Therefore, we estimate the trend
from the following two standpoints. One is the esimation by regarding the data to be circular
time series data. In this case, for estimating trend, we obtain the smoothed series of {xt} and
{yt} by using the locally weighted regression (LOWESS). And then, based on the smoothed
series, say {x∗t } and {y∗t }, we obtain the smoothed trend of wind direction T∗

t , such that

x∗t√
(x∗t )

2 + (y∗t )
2
= cos(T∗

t ),
y∗t√

(x∗t )
2 + (y∗t )

2
= sin(T∗

t ) (4)
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Fig. 3. Cumulative sum plot (left) and Cumulative mean directional plot (right)
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Fig. 4. Trend estimation on wind direction based on {T∗
t } (dotted curve) and {T∗∗

t } (solid
curve)

are satisfied simultaneously. Another is the trend estimation based on linear time series data,
which is given in Kitagawa and Gersch (1985). The trend of {WDt} can be obtained by
applying the trend model,

WDt = T∗∗
t + ζt, ζt ∼ N(0, σ2

ζ ) (5)

and

T∗∗
t − T∗∗

t−1 = vt, vt ∼ N(0, σ2
v ) (6)

where T∗∗
t is the random variable to express the trend, σ2

ζ and σ2
v are unknown variances of

ζt and vt, respectively. Figure 4 shows the trend estimation based on T∗
t and T∗∗

t , where the
dotted curve means {T∗

t } and the sold curve means {T∗∗
t }. It looks that there is no clear

difference between {T∗
t } and {T∗∗

t }. So we estimate circular autocorrelation coefficient based
on the subtracted series, WD∗

t ≡ WDt − T∗
t . Based on circular-circular association (Fisher

174 Oceanography

www.intechopen.com



Prediction of Wave Height Based on the Monitoring of Surface Wind 7

(1993, Chapter 6)), the sample circular autocorrelation coefficient is given by

ρ̂∗(τ) =
4(Aτ Bτ − Cτ Dτ)[

(N2 − E2
τ − F2

τ )(N2 − G2
τ − H2

τ)
]1/2

, τ = 0, 1, . . . (7)

where τ is the time lag, and

Aτ =
N−τ

∑
t=1

cos WD∗
t cos WD∗

t+τ , Bτ =
N−τ

∑
t=1

sin WD∗
t sin WD∗

t+τ , Cτ =
N−τ

∑
t=1

cos WD∗
t sin WD∗

t+τ ,

Dτ =
N−τ

∑
t=1

sin WD∗
t cos WD∗

t+τ , Eτ =
N−τ

∑
t=1

cos(2WD∗
t ), Fτ =

N−τ

∑
t=1

sin(2WD∗
t ), Gτ =

N−τ

∑
t=1

cos(2WD∗
t+τ),

Hτ =
N−τ

∑
t=1

sin(2WD∗
t+τ) (8)

On the other hand, the sample autocorrelation function of the time series data WD∗
t is given

by

ρ̂∗∗(τ) =
∑

N−τ
t=1 (WD∗

t+τ − WD∗)(WD∗
t − WD∗)

∑
N
t=1(WD∗

t − WD∗)2
,

WD∗ =
1

N

N

∑
t=1

WD∗
t

(9)
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Fig. 5. Comparion between {ρ̂∗(τ)} (bold line) and {ρ̂∗∗(τ)} (dotted line)

Figure 5 displays the estimates of ρ̂∗(τ) and ρ̂∗∗(τ) (0 ≤ τ ≤ 30), where the vertical axis
denotes the correlation, the horizontal axis denotes τ in minutes, and the bold and dotted
lines correspond to ρ̂∗(τ) and ρ̂∗∗(τ), respectively. We observe that they change similarly
with the same tendency, although |ρ̂∗(τ)| takes slightly larger values than |ρ̂∗∗(τ)| when τ is
small. It is evaluated from this result that the sample circular autocorrelation coefficient can
be approximated by the linear correlation to some extent. Also, it suggests the possibility that
it is sufficient to express the dynamic structure of the measured data by using the linear time
series model.
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Lag (i) (ii) Lag (i) (ii)
0 0.038 0.084 11 0.174 0.173
1 -0.096 -0.085 12 0.156 0.184
2 0.102 0.093 13 0.183 0.228
3 0.006 -0.014 14 0.176 0.188
4 -0.227 -0.214 15 0.155 0.171
5 -0.139 -0.133 16 0.025 0.032
6 0.067 0.087 17 0.300 0.335
7 0.076 0.119 18 0.046 0.016
8 0.040 0.050 19 -0.080 -0.058
9 -0.139 -0.147 20 -0.070 -0.042

10 -0.039 -0.050

Table 1. Cross correlation functions ( (i) {WDt} and {WHt}, (ii) {sin(WDt)} and {WHt} )

3.2.2 Cross correlation among wind speed, wind direction and wave height

Next, we focus on the cross correlations among {WSt}, {WDt} and {WHt}. We estimated the
cross correlation function between {WHt} and the variables {WSt}, {WDt} and {sin(WDt)},
by using the time series data after subtraction of their trends estimated by LOWESS method.
Figure 6 shows an estimated result of the cross correlation function between {WSt} and
{WHt} by using the sample cross correlation function γ(τ) (τ = 0,±1, . . .),

γ(τ) =
∑

N−τ
t=1 (WHt − WH)(WSt+τ − WS)√

∑
N
t=1(WHt − WH)2

√
∑

N
t=1(WSt − WS)2

, WH =
1

N

N

∑
t=1

WHt, WS =
1

N

N

∑
t=1

WSt (10)

where the horizontal means the time lag in minutes and two parallel lines denote Bartlett’s
bounds (i.e., ±1.96N−1/2). It suggests the possibility that the change in wind speed affects the
one of wave height after 10∼20 minutes.
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Fig. 6. Cross correlation function between {WSt} and {WHt} with Bartlett’s bounds

For estimation of the correlation between {WDt} and {WHt}, it is of interest how we treat
the directional variable WDt. Table 1 gives estimated values of the cross correlation functions
in the two cases, (i) {WDt} and {WHt} and (ii) {sin(WDt)} and {WHt}. It is observed that
the absolute value of (ii) tends to take larger values than the one of (i). This result suggests
the possibility that it is expected to improve the prediction accuracy by adopting the variables
sin(WDt) (and cos(WDt)) as the explanatory variables, instead of using WDt.
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Prediction of Wave Height Based on the Monitoring of Surface Wind 9

3.3 A statistical modeling on the change of wave height by wind forcing

Suppose that we predict the future values of wave height {WHN+l ; l = 1, . . . , L}, based
on the historical data {WHt, WSt, WDt} (t = 1, . . . , N). We start our consideration by
assuming that the time series {WHt}, {WSt} and {WDt} are stationary, after applying a
proper transformation (the detail is described later in this section). We write the change of
{WHt} as

WHt=mL +
p

∑
i=1

β
(1)
i WHt−i +

p

∑
i=1

K

∑
k=1

β
(3)
i,k cos(k · WDt−i) +

p

∑
i=1

K

∑
k=1

β
(4)
i,k sin(k · WDt−i)

+
p

∑
i=1

β
(2)
i WSt−i + ε

(1)
t , ε

(1)
t ∼ WN(0, σ2

WH) (11)

where p and K are orders, mL is the unknown mean, β’s are unknown weights, and ε
(1)
t is

the random variable which follows a white noise process with E(ε
(1)
t )=0 and V(ε

(1)
t ) = σ2

WH .
Similarly, we write

WSt=mS +
p

∑
i=1

γ
(1)
i WHt−i +

p

∑
i=1

K

∑
k=1

γ
(3)
i,k cos(k · WDt−i) +

p

∑
i=1

K

∑
k=1

γ
(4)
i,k sin(k · WDt−i)

+
p

∑
i=1

γ
(2)
i WSt−i + ε

(2)
t , ε

(2)
t ∼ WN(0, σ2

WN) (12)

and sin(h · WDt) and cos(h · WDt) (h = 1, . . . , K) as

sin(h · WDt)=mh +
p

∑
i=1

δ
(1)
i WHt−i +

p

∑
i=1

K

∑
k=1

δ
(3)
i,k cos(k · WDt−i) +

p

∑
i=1

K

∑
k=1

δ
(4)
i,k sin(k · WDt−i)

+
p

∑
i=1

δ
(2)
i WSt−i + δ

(h)
t , δ

(h)
t ∼ WN(0, σ2

h ) (13)

and so forth, where ms, mh, γ’s and δ’s are unknown weights. Put the state vector at time t by

y
(K)
t ≡ (WHt, WSt, cos (WDt), sin (WDt), . . . , cos (K · WDt), sin (K · WDt))

′
(14)

Then we can write

y
(K)
t =m

(K) + A
(K)
1 y

(K)
t−1 + · · ·+ A

(K)
p y

(K)
t−p + δ

(K)
t, δ

(K)
t ∼ WN(0, Σ(K)) (15)

where m(K) is the unknown mean vector, A
(K)
i (i = 1, . . . , p) is the unknown coefficient matrix,

and δ
(K)
t follows the multivariate white noise process with mean 0 and the dispersion matrix

Σ(K). This is a multivariate vector autoregressive model of the pth order, and therefore, the

estimates for elements of unknown matrices A
(K)
i can be obtained by using the least squares

method (e.g., Brockwell and Davis (1996)). Thus, we can construct an l-step (l = 1, . . . , L)
ahead predictor based on (15) by

ŷ
(K)
N+l = m̂

(K) + Â
(K)
1 z

(K)
N+l−1 + Â

(K)
2 z

(K)
N+l−2 + · · ·+ Â

(K)
p z

(K)
N+l−p (16)
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and z
(K)
N+l−m = y

(K)
N+l−p (l ≤ p), z

(K)
N+l−m = ŷ

(K)
N+l−p (l > p), where Âi is the least squares

estimator of Ai, The predicted values of WHN+l (l = 1, . . . , L) can be obtained from the

prediction of ŷ
(K)
N+l .

However, the model (15) with the state vector (14) has a drawback in computational aspect.
It is probable that the accuracy of the estimates of parameter becomes worse when both
K and p become large, because (15) has (2 + 2K) + p(2 + 2K)2 unknown parameters to be

estimated. For improving the prediction accuracies, the dimension of the state vector ŷ
(K)
t

should be small. In order to taking account of the multiple directional information with the
small numbers of variables, we focus on the following linear sum

W̃D
(K)
t ≡ ω1 cos(WDt) + ω2 sin(WDt) + · · ·+ ω2K−1 cos(K · WDt) + ω2K sin(K · WDt) (17)

where ωi (i = 1, . . . , 2K) are unknown weights. And we propose to use the model (15) with
the state vector

ỹ
(K)
t ≡ (WHt, WSt, W̃D

(K)
t )

′
(18)

Here, it is necessary to determine the optimum order K and the value of ωi. For determining

ωi, we introduce the concept of principal component analysis. W̃D
(K)
t can be written as

W̃D
(K)
t = Ω

′

KD
(K)
t (19)

where ΩK = (ω1, . . . , ω2K)
′

and D
(K)
t = (cos(WDt), sin(WDt), . . . , cos(K · WDt), sin(K ·

WDt))
′
.

We select the values of ΩK so that

V(W̃D
(K)
t ) = Ω

′

KΣ
(K)
t ΩK (20)

is maximized under the constraints Ω
′

KΩK = 1, where Σ
(K)
t is the dispersion matrix of D

(K)
t .

ΩK can be obtained as the eigenvector b(K) of the eigen equation,

Σ
(K)
t b(K) = λb(K) (21)

Let λ1 ≥ · · · ≥ λ2K be 2K eigenvalues of the eigen equation. We choose the eigenvector which

corresponds to λ1 with unit norm, say b̃
(K)
M , with K fixed. We estimate W̃D

(K)
t by

̂̃
WD

(K)

t = b̃
(K)
M D

(K)
t (22)

As for the selection of the order K, we choose the value of K such that the squared sum of the
prediction errors,

Sl(K) =
1

N − l − N∗ + 1

N−l

∑
t=N∗

(WHt+l − ŴH
(K)
t+l )

2 (23)

is minimized for every l, where ŴH
(K)
t+l is the predicted value by (16) and N∗ is a prefixed

value. For selection of p in (15), we use AIC (Akaike Information Criterion), under the value
of K is fixed.
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Prediction of Wave Height Based on the Monitoring of Surface Wind 11

As observed in Figure 2, the time series data of WHt, WSt and WDt during the wave
development process exhibit nonstationarity. We follow the method of ARIMA model by
Box and Jenkins (1976) and focus on the differenced time series. In other words, we regard the
differenced series to be stationary and then fit

x
(K)
t = B

(K)
1 x

(K)
t−1 + · · ·+ B

(K)
p x

(K)
t−p + ǫ

(K)
t , ǫ

(K)
t ∼ WN(0, Σǫ(K) ) (24)

and

x
(K)
t ≡ (∇WHt,∇WSt,∇

̂̃
WD

(K)

t )
′

(25)

where ∇ is the back-shift operator such that ∇WHt = WHt − WHt−1.

3.4 The effect of angular-linear structure on the prediction of wave height

In the following, we examine the availability of the proposed method through the evaluation
of the prediction accuracy on wave height. For this purpose, we carried out the numerical
experiments on prediction accuracy by using the measured data shown in Figure 2. The
procedure of the prediction experiment is as follows. First, we fit the model (24) to the
multivariate time series data {WHt, WSt, WDt; t = 1 . . . , 50} and then obtain the prediction
values of WHt up to 5 steps ahead (1 step corresponds to 1 minute). Next, we fit the model to
the time series data from t=2 to t=51 and obtain the predicted values in the same way. After
repeating this procedure, the prediction accuracy is evaluated based on the predicted values
and realizations. As criteria for evaluation, we define the mean absolute error (MAE) and the
correlation coefficient (COR) by

MAE(l) ≡
1

M

M

∑
i=1

|WH
(i)
N+l − ŴH

(i)
N+l | (26)

COR(l) ≡
∑

M
i=1(WH

(i)
N+l − WH

(i)
(l))(ŴH

(i)
N+l − ŴH

(i)
(l))

√
∑

M
i=1(WH

(i)
N+l − WH

(i)
(l))2

√
∑

M
i=1(ŴH

(i)
N+l − ŴH

(i)
(l))2

,

WH(l) =
1

M

M

∑
i=1

WH
(i)
N+l , ŴH(l) =

1

M

M

∑
i=1

ŴH
(i)
N+l (27)

where l is the prediction step (l = 1, . . . , 5), WH
(i)
t is the realization of WHt at the ith

experiment, ŴH
(i)
t is the predicted value of WHt at the ith experiment, and M is the number of

repetitions of the experiment. MAE gives better evaluation as the predicted value gets closer
to the observation. COR is defined as the sample correlation between the observations and
predicted values, in order to evaluate the degree of accordance to their trends.
We first investigate whether the angular-linear structure of the proposed model give the
positive effect on the prediction accuracy of wave height. For this purpose, we analyze
whether it is possible to improve the prediction accuracy by taking into account the variables
{sin(k · WDt), cos(k · WDt)} (k = 1, . . . , K), instead of using the variable WDt directly. In this
experiment, we compare the prediction accuracy by using the model (24), under assuming the
following three state vectors. The first is the vector consisted from the difference of WHt, WSt

and WDt,

xt ≡ (∇WHt,∇WSt,∇WDt)
′

(28)
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MAE COR

p L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.385 0.446 0.517 0.490 0.585 0.501 0.335 0.200 0.360 0.205

2 0.394 0.454 0.464 0.490 0.582 0.450 0.292 0.258 0.366 0.201

3 0.415 0.500 0.482 0.474 0.601 0.346 0.195 0.159 0.403 0.155

4 0.428 0.518 0.505 0.487 0.613 0.322 0.123 0.081 0.357 0.152

5 0.421 0.528 0.494 0.493 0.604 0.333 0.093 0.063 0.320 0.156

Table 2. Prediction accuracy by using the model (24) with the state vector (28) (M=35)

MAE COR

p L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.360 0.480 0.506 0.552 0.589 0.492 0.291 0.208 0.389 0.221

2 0.357 0.473 0.502 0.544 0.573 0.483 0.281 0.188 0.333 0.154

3 0.362 0.477 0.508 0.550 0.598 0.465 0.255 0.145 0.258 -0.078

4 0.356 0.474 0.502 0.540 0.586 0.479 0.260 0.146 0.312 -0.007

5 0.372 0.492 0.506 0.539 0.590 0.442 0.207 0.130 0.285 0.015

Table 3. Prediction accuracy by using the model (24) with the state vector (29) (M=35)

MAE COR

p L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.378 0.445 0.490 0.485 0.600 0.481 0.338 0.234 0.370 0.163

2 0.353 0.435 0.456 0.502 0.574 0.433 0.296 0.259 0.360 0.180

3 0.367 0.440 0.478 0.493 0.575 0.380 0.256 0.174 0.381 0.146

4 0.367 0.446 0.473 0.480 0.571 0.384 0.258 0.178 0.396 0.173

5 0.365 0.439 0.475 0.488 0.576 0.381 0.260 0.171 0.387 0.147

Table 4. Prediction accuracy by using the model (24) with the state vector (25) (M=35, K=25)

The second is

xt ≡ (∇WHt,∇WSt,∇ cos (WDt),∇ sin (WDt))
′

(29)

And the third is (25), the proposed method.
Tables 2, 3 and 4 show MAE’s and COR’s in the above three cases, respectively. It is noted that
each experiment was carried out under the condition that the order p was fixed in the range
from 1 to 5. Overall, the result by using (29) tends to give smaller MAE’s than the one by
using (28). It suggests the possibility that taking into account the angular-linear structure is
effective for improving the prediction accuracies by the predictor based on (28). The result of
COR also shows the similar tendency. It is noted that, as the order p and the prediction step L
are larger, the prediction accuracy based on (29) becomes worse to take negative correlations.
The prediction based on the model with the state vector (25) tends to give the best prediction
accuracy among the three models. This suggests that the principal component structure of
(25) worked effectively, which contributed to the improvement of the prediction accuracy.
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4. Predicting the change of wave height from surface wind

In the previous section, we developed a statistical model for explaining the dynamic
relationship between ocean wind and wave height. Now we consider the prediction problem
on wave height based on the motion of the surface wind, observed by ground-based
observation. For this purpose, we develop a new method by applying the model presented
in the previous section. Also, in order to evaluate the availability of the developed model, we
compare the prediction accuracies between the proposed model and traditional time series
models.

Hokkaido

Pacific ocean

●

Mori

● Hakodate

●

Okushiri

●Esashi

●
Ohma

● Matsumae

Wave recorder

Fig. 7. Locations of the sensor for ultrasonic wave height meter (inverted triangle) and major
AMeDAS stations around the sensor (black circles)

4.1 Ground-based observation on surface wind and measurement of wave height

In Japan, as described in Introduction, many stations of AMeDAS and the sensors for
ultrasonic wave height meters have been located in various regions and coastal areas of this
country by the Japan Meteorological Agency. In the following, we consider a case study on
prediction of the wave height in Matsumae-oki, the sea area in the southwest of Hokkaido.
Figure 7 shows a map of the locations of the sensor of a wave height meter in Matsumae-oki
(42◦24′38′′N, 140◦05′50′′E) and major AMeDAS stations located around the sensor. The
monitoring of the changes of wind speed and wind direction, and the measurement of wave
height are carrying out constantly, and the measured data are available via Internet. For
the following analysis, we obtained the dataset of wave height measured in Matsumae-oki
and the datasets of wind speed and wind direction monitored at the AMeDAS station in
Matsumae-cho, which is located roughly 5 km away from the measuring point of wave height.
Figure 8 displays the changes in the significant wave height (m) measured in Matsumae-oki,
and wind speed (m/s) and wind direction (rad.) monitored in Matsumae-cho, which were
measured every hour on the hour. They are the records for every four seasons in the period
from April 2010 to February 2011. As the datasets for four seasons, we obtained the measured
data in the period from Apr. 1 to May 31 for spring, Jul. 1 to Aug. 31 for summer, Oct. 1
to Nov. 31 for autumn and Jan. 1 to Feb. 28 of 2011 for winter. The measured data on wind
speed and wind direction are provided as the mean value over the past 10 minutes, and the
measured data on 1/3 significant wave height is calculated based the sea surface data over
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(b) Summer (Jul. 1- Aug. 31)
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(c) Autumn (Oct. 1- Nov. 31)
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(d) Winter (Jan. 1- Feb. 28)

Fig. 8. The changes of 1/3 significant wave height (m) (top), wind speed (m/s) (middle) and
wind direction (rad.) (bottom) for four seasons (Apr. 2010 - Feb. 2011)
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the past 25 minutes. It is noted that the origin of the wind direction data is defined to be north
and the positive value means the clockwise direction.
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Fig. 9. Time series plots of {∇WS∗t }, {∇ cos(WD∗
t)}, {∇(WS∗t cos(WD∗

t ))} (left column) and
the cross correlation functions in the cases (a)-(c) (right column)

4.2 Cross correlation among the measured data

First, we consider how we treat the measured data of the wind direction. In the following, let
{WS∗t } and {WD∗

t } be the measured time series data on wind speed and wind direction of the
surface wind.
Figure 9 shows the time series plots of {∇WS∗t }, {∇ cos(WD∗

t )} and {∇(WS∗t cos(WD∗
t ))},

and the cross correlation functions in the 3 cases, (a) {∇WS∗t } and {∇WHt}, (b)
{∇ cos(WD∗

t )} and {∇WHt}, and (c) {∇(WS∗t cos(WD∗
t ))} and {∇WHt}, which were

estimated by (10), where the dotted lines mean the Bartlett’s bounds. We observe that the
case (c) gives larger cross correlation than the cases of (a) and (b).

4.3 Modeling the change of wave height by taking into account the change of surface wind

We consider a statistical model to express the change in wave height based on the change in
surface wind, monitored at an AMeDAS station. Following the result in the previous section,
we build a nonstationary time series model focusing on the change of ∇(WS∗t cos(WD∗

t )). We
write ∇WHt as
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∇WHt =
p

∑
i=1

αi∇WHt−i +
p

∑
i=1

K

∑
k=1

βi,k∇(WS∗t−i cos(kWD∗
t−i))

+
p

∑
i=1

K

∑
k=1

γi,k∇(WS∗t−i sin(kWD∗
t−i)) + ε1,t, ε1,t ∼ WN(0, σ2

WH) (30)

where p and K are orders, (α, β, γ) are unknown coefficients and ε1,t is the random variable
which follows a white noise process with E(ε1,t)=0 and V(ε1,t) = σ2

WH . Similarly, we write

∇(WS∗t sin(hWD∗
t )) =

p

∑
i=1

α
(h)
i ∇WHt−i +

p

∑
i=1

K

∑
k=1

β
(h)
i,k ∇(WS∗t−i cos(kWD∗

t−i))

+
p

∑
i=1

K

∑
k=1

γ
(h)
i,k ∇(WS∗t−i sin(kWD∗

t−i)) + ε
(h)
2,t (31)

∇(WS∗t cos(hWD∗
t )) =

p

∑
i=1

α
(h)
i ∇WHt−i +

p

∑
i=1

K

∑
k=1

β
(h)
i,k ∇(WS∗t−i cos(kWD∗

t−i))

+
p

∑
i=1

K

∑
k=1

γ
(h)
i,k ∇(WS∗t−i sin(kWD∗

t−i)) + ε
(h)
3,t (32)

for h = 1, . . . , K, where ε
(h)
2,t ∼ WN(0, σ2

2,h) and ε
(h)
3,t ∼ WN(0, σ2

3,h).
Put the state vector at time point t by the (2K+1) dimensional vector

y
(K)
t ≡ (∇WHt, ∇WC1, ∇WS1, . . . ,∇WCK , ∇WSK)

′
(33)

where WCh = WS∗t cos (hWD∗
t ) and WSh = WS∗t sin (hWD∗

t ) (h = 1, . . . , K). Then the above
models can be rewritten by a multivariate AR model,

y
(K)
t = A

(K)
1 y

(K)
t−1 + · · ·+ A

(K)
p y

(K)
t−p + δ

(K)
t, δ

(K)
t ∼ WN(0, Σ(K)) (34)

where A
(K)
i (i = 1, . . . , p) are unknown coefficient matrices and δ

(K)
t follows the multivariate

white noise process with mean 0 and the dispersion matrix Σ(K). An l-step ahead predictor
can be constructed by

ŷ
(K)
N+l = Â

(K)
1 z

(K)
N+l−1 + Â

(K)
2 z

(K)
N+l−2 + · · ·+ Â

(K)
p z

(K)
N+l−p ,

z
(K)
N+l−m = y

(K)
N+l−p(l ≤ p), ŷ

(K)
N+l−p(l > p) (35)

where Â
(K)
i is the least squares estimator of A

(K)
i . Thus the l-step ahead predicted values,

WHN+l (l = 1, . . . , L), can be obtained by the predictor ŷ
(K)
N+l .
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MAE COR
Model L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

(i) 0.114 0.167 0.222 0.242 0.267 0.982 0.955 0.927 0.886 0.862
(ii) 0.096 0.142 0.176 0.219 0.246 0.985 0.962 0.946 0.914 0.903
(iii) 0.103 0.143 0.178 0.215 0.239 0.984 0.960 0.944 0.912 0.903
(iv) 0.097 0.143 0.178 0.217 0.241 0.985 0.961 0.945 0.913 0.902
(v) 0.098 0.138 0.176 0.213 0.235 0.986 0.965 0.949 0.919 0.907

Table 5. MAE’s and COR’s based on spring data

4.4 Evaluation of the prediction accuracy

In the following, we evaluate the effectiveness of the proposed method by means of the
prediction experiment which is similar to the one given in the subsection 3.4.
The procedure for the experiment is as follows. We select the time point to start prediction
randomly in the range of the dataset. And then fit the proposed model to the measured time
series data for 100 hours (i.e., sample size is 100), and obtain the predicted values up to 5
steps ahead (1 step corresponds to 1 hour). After repeating the procedures, we evaluate
the prediction accuracy by MAE and COR. For evaluation of the prediction accuracy, we
also obtain the predicted values when we used traditional time series models. The models
introduced for comparison are defined as follows;
(i) WHt = ∑

p
i=1 αiWHt−i + δ1,t, δ1,t ∼ WN(0, σ2

1 )

(ii) ∇WHt = ∑
p
i=1 βi∇WHt−i + δ2,t, δ2,t ∼ WN(0, σ2

2 )

(iii) yt = A1yt−1 + · · ·+ Apyt−p + δ3,t, δt ∼ WN(0, Σ3,t), yt = (∇WHt,∇WS∗t )
′

(iv) yt = B1yt−1 + · · · + Bpyt−p + δ4,t, δt ∼ WN(0, Σ4,t), yt = (∇WHt,∇WS∗t ·

∇ cos(WD∗
t ))

′

(v) yt = C1yt−1 + · · ·+Cpyt−p + δ5,t, δt ∼ WN(0, Σ5,t), yt = (∇WHt,∇(WS∗t cos(WD∗
t )))

′

where {αi, βi, Ai, Bi, Ci} are unknown parameters. (i) and (ii) are univariate time series
models based on wave height. The former is a stationary AR(p) model and the latter is a
nonstationary ARIMA(p,1,0) model. (iii) is a multivariate AR model taking into account the
wind speed as a covariate, and (iv) and (v) are multivariate AR models taking into account
wind speed and wind direction as covariates. It is noted that if the changes of wind speed and
wind direction are dependent, the prediction accuracy of (v) becomes better than that of (iv).
Table 5 shows MAE’s and COR’s of the above five models, based on the measured data
in spring. The number of repetitions is 130. It is noted that we selected the order of the
model by Akaike Information Criterion (AIC). By the comparison between (i) and (ii), we
confirm that the nonstationary ARIMA model gives better prediction performance than the
stationary AR model. Also, the comparisons between (ii) and (iii), (ii) and (iv), and (ii) and
(v) show the tendency that the model taking into account the change of wind motion as
covariate improves the prediction accuracy when we used the univariate time series model
on wave height. Furthermore, the comparison between (iv) and (v) shows the tendency
that the prediction accuracy by using (v) becomes better, which suggests that there exists the
dependency between wind speed and wind direction.
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(A) Spring

MAE COR
Model L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

(i) 0.114 0.167 0.222 0.242 0.267 0.982 0.955 0.927 0.886 0.862
(ii) 0.096 0.142 0.176 0.219 0.246 0.985 0.962 0.946 0.914 0.903
(iii) 0.103 0.143 0.178 0.215 0.239 0.984 0.960 0.944 0.912 0.903
(iv) 0.097 0.143 0.178 0.217 0.241 0.985 0.961 0.945 0.913 0.902
(v) 0.098 0.138 0.176 0.213 0.235 0.986 0.965 0.949 0.919 0.907

(B) Summer
MAE COR

Model L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5
(i) 0.077 0.089 0.120 0.153 0.191 0.970 0.949 0.930 0.895 0.852
(ii) 0.074 0.085 0.106 0.136 0.155 0.980 0.974 0.959 0.929 0.896
(iii) 0.073 0.085 0.108 0.137 0.155 0.980 0.976 0.957 0.927 0.893
(iv) 0.072 0.081 0.107 0.136 0.156 0.981 0.977 0.958 0.927 0.892
(v) 0.072 0.083 0.105 0.132 0.149 0.981 0.975 0.959 0.930 0.897

(C) Autumn
MAE COR

Model L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5
(i) 0.094 0.169 0.235 0.293 0.327 0.984 0.937 0.903 0.837 0.789
(ii) 0.086 0.145 0.187 0.236 0.268 0.989 0.962 0.938 0.898 0.872
(iii) 0.083 0.144 0.188 0.231 0.259 0.990 0.964 0.940 0.901 0.875
(iv) 0.088 0.149 0.191 0.238 0.264 0.989 0.962 0.939 0.900 0.873
(v) 0.085 0.146 0.188 0.233 0.259 0.989 0.963 0.940 0.899 0.874

(D) Winter
MAE COR

Model L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5
(i) 0.107 0.168 0.234 0.266 0.301 0.979 0.948 0.905 0.873 0.828
(ii) 0.103 0.163 0.208 0.245 0.273 0.979 0.951 0.916 0.891 0.854
(iii) 0.103 0.156 0.202 0.243 0.271 0.979 0.952 0.916 0.890 0.852
(iv) 0.106 0.163 0.208 0.245 0.273 0.976 0.947 0.909 0.886 0.848
(v) 0.100 0.156 0.203 0.243 0.272 0.980 0.952 0.917 0.889 0.851

Table 6. Comparisons of MAE and COR for every season (Apr. 2010 - Feb. 2011)

4.5 Robustness on the predictability of wave height for every season

It is also of interest whether or not the effectiveness in prediction using the developed model is
robust throughout a year. In Japan, there exists unique characteristics on the pressure pattern
for every season. Therefore, it is necessary to investigate whether the model has the ability to
improve the prediction accuracies by traditional models, for all seasons of a year.
Table 6 shows MAE’s and COR’s obtained by using the measured time series data for four
seasons in the period from April 2010 to February 2011. Overall, the result has the tendency
that the proposed model (v) has the ability to give the best prediction accuracy among the five
models, although the degree on improvement of the accuracy are different for every season.

5. Conclusion

Our goal in this chapter is the development of a statistical approach for predicting the change
of wave height, based on the measured data of the surface wind obtained by ground-based
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observation. In section 3, we presented a method for predicting the change of wave height
based on ocean wind, which was proposed by Hokimoto and Shimizu (2008). And in section
4, we developed a model for predicting the wave height from the change of surface wind, by
applying the model given in the previous section. The evaluation on the prediction accuracy
suggested the possibility that the method proposed in section 4 improves the prediction
accuracies by using the predictors based on traditional time series models. As described at
the beginning, the physical factors which impacts on the change in the sea state will change
with correlations on space and time. At the present, the models presented in this chapter do
not have spatial structure. For example, the development of the model, taking into account
the directional change of the wind direction observed at multiple AMeDAS stations, will be
available for deeper understandings on the dynamic interaction between the motions of wind
and wave.
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will lead us to understand the better way to preserve our "Blue Planet": the Earth.
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