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Apartado Aéreo, Pereira  

Colombia 

1. Introduction 

Rubus L. (Rosaceae) is grown extensively worldwide, in altitudes ranging from 0 to 4500 m 
above sea level. Found in six continents, this genus is reported to contain approximately 800 
species due to biological processes such as hybridization, apomixis, and polyploidy that 
weaken species boundaries (Thompson, 1995). Rubus has been divided into 12 subgenera of 
which only a few species have been domesticated (Table 1).  

 

Subgenus Number of species 

Anoplobatus (Focke) Focke 6 

Chamaebatus (Focke) Focke 5 

Chamaemoras (Hill) Focke 1 

Comaropsis (Rich.) Focke 2 

Cylactis (Raf.)Focke 14 (4 series) 

Dalibarda (L.) Focke 5 

Dalibardastrum Focke 4 

Idaeobatus ( Focke ) Focke 117 (9  sections) 

Lampobatus Focke 10 

Malachobatus (Focke) Focke 115 ( 7 sections) 

Orobatus (Focke) 19 

Rubus L. (= Eubatus Focke) 132 ( 6 sections) 

Table 1. Subgenera and number of species of Rubus (Focke, 1910, 1911, 1914). 

The subgenus Idaeobatus contains the “raspberries” that are distributed in the Northern 
Hemisphere, mainly Asia, Africa, Europe, and North America. The subgenus Rubus includes 
species found in Europe, Asia, and North America, whereas the subgenus Orobatus is 
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exclusive to South America. Species representative of the subgenera Rubus, Orobatus, and 
Idaeobatus are found in the Colombian and Ecuadorian Andes (Ballington et al., 1993). 
Vargas (2002) reported six species in Colombia’s central Andes: R. bogotensis, R. glaucus, R. 
macrocarpus, R. nubigenus, R. porphyromallus, and and R. urticifolius. Romoleroux (1992) also 
reported the existence of nine edible species in Colombia of a total of 44 species reported, 
and that due to natural crossing, up to 500 varieties can be identified. Besides its ecological 
relevance, for example as an invasive weed, this genus is an economically important fruit 
crop for small farmers in the northern Andes, mainly because of the production of Rubus 
glaucus L., commonly known as the Andean blackberry (Fig. 1).  

      

Fig. 1. Plants of Rubus glaucus L. growing on the Andes. 

Of flowering plant species, the genus Rubus is one of the most complexes because of its 

hybridization, polyploidy, agamospermy, and loss of the concept of species (Alice & 

Campbell, 1999). Polyploidy and hybridization prevails in the subgenus Rubus. Only 

subgenera Idaeobatus, Dalibarda, and Anoplobatus are predominantly diploid, whereas 

Dalibardastrum, Malachobatus, and Orobatus are exclusively polyploid (Thompson, 1995, 

1997). Hybridization occurs in Rubus between closely related species (Kraft et al., 1996; 

Naruhashi, 1979, 1990; Steele & Hodgdon, 1963, 1970) and, in some cases, between 

subgenera (Alice et al., 1997; Gustafsson, 1942; Jennings, 1978; Weber, 2003).  

This species presents traits of two subgenera—Idaeobatus and Rubus—possibly being a fertile 

amphidiploid or allotetraploid (n=7, 4x=28) (Delgado et al., 2010; Thompson, 1997). 

Sympatrically with R. glaucus, some other wild Rubus species are found in the Andean 

cordillera along with the introduced and cultivated Eurasian R. idaeus L.  Because 

hybridization is a common process that affects species of any genus (Randell et al., 2004), it 

is reasonable to believe that gene flow is currently taking place between species of this 

genus. 

Studies on the genetic diversity of Rubus have been carried out in temperate species, such as 

Rubus idaeus (Graham & Mcnicol, 1995; Graham et al., 1997; Parent & Fortin, 1993) and 

Rubus occidentalis (Parent & Page, 1998), and Asian species (Amsellem et al., 2000). These 
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works used RAPD, RFLP, and SCAR markers as well as SSR (Antonius-Klemola, 1999). ITS  

are also been used to study hybrids of R. idaeus and R. caesius  (Alice et al., 1997) .These 

markers made it possible to confirm the genetic origin of the hybrids and further 

phylogenetic and evolutionary studies in Rubus (Alice, 2002). Recently, major advances have 

been achieved worldwide in the use of molecular markers in temperate species of Rubus, 

such as DNA fingerprinting to study and characterize genotypes, development of linkage 

maps, marker-assisted selection, and mapping of QTLs (Antonius-Klemola, 1999; Graham et 

al., 2002). 

To date, molecular markers such as randomly amplified polymorphic DNA (RAPD), 

amplified fragment length polymorphisms (AFLP) (Marulanda et al., 2007), and 

microsatellites (simple sequence repeats, SSRs) (Marulanda et al., 2011) have been used to 

study the genetic diversity of the Andean blackberry. Previous work carried out by 

Marulanda et al. (2007) and Marulanda & López (2009) on the genetic diversity of 

Colombian blackberries identified high phenotypic and molecular plasticity in the R. glaucus 

species known as the “Castilla” blackberry in Colombia’s central Andean area. Other wild 

Rubus species present in the Andean region are found near farms where the “Castilla” 

blackberry is commercially grown. These plants were also submitted to morphological, 

agronomic, and molecular characterizations using AFLP and SSR molecular markers 

(Marulanda & López, 2009). A genomic library enriched for microsatellite sequences was 

recently developed for R. glaucus. 

This chapter presents the results of the molecular characterization of wild and cultivated 

Rubus species collected in the central Andes of Colombia using SSR markers from other 

Rubus species available in Genbank, together with 11 microsatellite markers isolated from R. 

glaucus and characterized in 39 samples of Rubus (Table 2). Intra- and inter-specific 

differences between R. glaucus and its wild relatives were established, generating not only 

information on the current status of populations, their uses, and distribution, but also 

information considered crucial to launch a breeding program for R. glaucus. 

2. Materials and methods 

2.1 Plant material and DNA extraction 

A total of 39 Rubus samples were collected at altitudes ranging from 1800 to 2455 m above 
sea level in the central Andes of Colombia (between 1° 42´10.7 ´´ and 6° 99¨44´´N and 72° 
92´80´´ and 76° 25´ 35.9´´ W), and placed on silica gel (1:10, plant tissue: silica gel) (Table 
2). DNA was isolated using the Plant DNAeasy Miniprep kit (QIAGEN®), following the 
manufacturer’s instructions. Several samples did not show any DNA after the isolation 
procedure so it was necessary to reprocess these samples following the Doyle & Doyle 
(1990) protocol. In all cases, samples were purified using the protocol described by 
Castillo (2006).   

2.2 Analysis with SSR markers 

A total of 36 microsatellite sequences from other Rubus species, R. idaeus (23 primer pairs) 
(Series RhM, RiM and Rubus) and R. occidentalis (2 primer pairs) (Series mRaCIRRI), and 11 
microsatellites from R. glaucus were used (Table 3). The microsatellite named as “Rg” was 

www.intechopen.com



 
The Molecular Basis of Plant Genetic Diversity 

 

154 

developed using a genomic library enriched for microsatellite sequences from a cultivated 
genotype of R. glaucus, following the protocol described by Billotte et al. (1999). 

 

Code 
Latitude 

(N) 
Longitude  

(W) 
Cultivated/Wild 

Altitude 
(m.a.s.l.) 

Characteristics 

CVM 1 4°48’06’’ 74°24’49’’ R. glaucus Cultivated 2455 Thorny 

CVM 2 4°47’37’’ 74°25’27’’ R. glaucus Cultivated 2337 Thorny 

CVM 3 4°79’33’’ 74°42’68’’ R. glaucus Cultivated 2288 Thorny 

CVM 4 4°09’09’’ 74°23’27’’ R. glaucus Cultivated 2007 Thorny 

CVM 6 6°99’44’’ 72°98’80’’ R. glaucus Cultivated 2157 Thorny 

CVM 7 6°99’44’’ 72°98’80’’ R. glaucus Cultivated 2157 Thornless 

CVM 8 6°59’39.1’’ 72°59’13’’ R. glaucus Cultivated 2176 Thorny 

CVM 9 7°00’38’’ 72°58’39’’ R. glaucus Cultivated 2357 Thorny 

CVM 10 4°40’00.8’’ 76°16’06.6’’ R. glaucus Cultivated 2049 Thorny 

CVM 11 4°13’23.8’’ 76°25’35.9’’ R. idaeus Raspberry 2100 Thornless 

CVM 12 4°13’23.8’’ 76°25’35.9’’ R. glaucus Cultivated 2380 Thorny 

CVM 13 4°13’23.8’’ 76°25’35.9’’ R. glaucus Cultivated 2380 Thorny 

CVM 15 6°14’52.3’’ 75°24’08.5’’ R. glaucus Cultivated 2150 Thorny 

CVM 18 6°09’15.4’’ 75°23’00.1’’ R. glaucus Cultivated 2000 Thornless 

CVM 19 6°09’15.4’’ 75°23’00.1’’ R. glaucus Cultivated 2000 Thorny 

CVM 20 6°09’15.4’’ 75°23’00.1’’ R. glaucus Cultivated 2000 Thorny 

CVM 22 1°57’45.2’’ 76°14’17.4’’ R. glaucus Cultivated 1840 Thorny 

CVM 25 1°51’41.8’’ 76°21’21.9’’ R. glaucus Cultivated 2140 Thorny 

CVM 26 1°53’42.8’’ 76°18’45.5’’ R. glaucus Cultivated 1850 Thorny 

CVM 27 1°42’10.7’’ 76°12’08.3’’ R. glaucus Cultivated 2000 Thorny 

CVM WILD _____ _____ R. glaucus Wild _____ Wild 

CVM A 4° 44´45.1´´ 75° 36´39.6´´ R. glaucus Cultivated 2000 Thornless 

CVM B 4° 39´7´´ 75° 35´26.3´´ R. glaucus Cultivated 2014 Thorny 

CVM C 4°38’36’’ 75°28’41,5’’ R. glaucus Cultivated 2300 Thornless 

CVM D 4°48´99.2´´ 75°41´86´´ R. glaucus Cultivated 1950 Thorny 

CVM E 5° 2´2.7´´ 75° 27´10.5´´ R. glaucus Cultivated 1800 Thorny 

95 4°21´22.5´´ 75°42´10.1´´  R. glaucus Wild 1805 Wild 

107 4° 33´51.9´´ 75° 39´14.7´´ R. urticifolius 1800 Wild 

106 4°39´7´´ 75° 35´26.3´´ R. urticifolius 1574 Wild 

97 4° 41´23.3´´ 75°37´33.8´´ R. glaucus Wild 1997 Wild 

86 4° 38´36´´ 75° 29´9.5´´ R. glaucus Wild 2430 Wild 

22 5° 4´ 35.8´´ 75° 32´ 31.1´´ R. glaucus Cultivated 1947 Thorny 

37 5° 0´50.3´´ 75° 32´11.7´´ R. urticifolius 1777 Wild 

44 4° 45´ 00.2´´ 75° 36´ 39´´ R. urticifolius 1879 Wild 

MSA 1 4°52’15.0’’ 75°37’32.4’’ R. glaucus Cultivated   Thornless 

MSA 2 4° 44´45.1´´ 75° 36´39.6´´ R. glaucus Cultivated 1850 Thornless 

MSA 3 4°38’36’’ 75°28’41.5’’ R. glaucus Cultivated   Thornless 

MSA 4 4°11’36.1’’ 75°48’14.6’’ R. glaucus Cultivated 2000 Thornless 

MSA 5 5°0’50.3’’ 75°32’11.7’’ R. glaucus Cultivated 1825 Thornless 

 

Table 2. Samples of Rubus species, accessions of R. glaucus, and collection sites. 

Amplification reactions were performed in a final volume of 12.5 µl, with 5 ng genomic 

DNA, 0.3 µM of each primer, 1X reaction buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl), 200 

µM of each dNTP, 2 mM MgCl2 and 1.0 unit of Taq DNA polymerase. The PCR was 

performed according to the following parameters: 94 °C for 4 min, 10 cycles of 94 °C for 30 

sec, 65 °C (−1 °C/cycle) for 30 sec and 72 °C for 1 min; 35 cycles of 94 °C for 15 sec, 

annealing temperature (°C) for 30 sec and 72 °C for 1 min; and 72 °C for 5 min. 
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2.3 Statistical analysis 

The allelic diversity of the SSR was evaluated by determining polymorphism information 

content (PIC) value, as described by Bonstein et al. (1980) and cited and modified by 

Anderson et al. (1993), as described in Equation 1:  

 2n i ij
j 1

PIC 1 / P


         (1) 

Where Pij is the frequency of the jth pattern, i is the sum, and n are the patterns. To measure 

the utility of the marker systems, average heterozygosity and expected and observed 

heterozygosity were calculated. The partitioning of genetic variation within and among the 

groups by the SSR marker system was achieved by analysis of molecular variance 

(AMOVA) using the same software. Analyses were performed in GenAlex (Peakall & 

Smouse, 2006) and Arlequin v.3.5 (Excoffier & Lischer, 2010). 

3. Results and discussion 

3.1 Genetic diversity and variability 

A total of 41 loci and 133 alleles were detected. The number of alleles observed for each 

locus ranged from 2 to 6, with an average of 4.6 alleles per locus. The PIC value varied 

between 0.07 and 0.61 (average 0.48), and the discriminating power (D) ranged from 0.05 to 

0.52 (average 0.27).  Observed heterozygosities (Ho) were 0.078–1.0 (average 0.84) and 

expected heterozygosities (He) were 0.07-0.582 (average 0.473).The highest PIC value (0.61) 

was found in the Rg-D7 locus, which presented a high number of alleles (5). To compare the 

efficiency of markers to identify varieties, the D value of each primer was estimated. The 

highest D value (0.52) was also found in the Rg-D7 locus (Table 3).  

Similar results were reported by Castillo (2006), who used 12 SSRs to analyze an extensive 

collection of North American Rubus (raspberry) germplasm. Results indicated from 3 to 16 

alleles per locus, with an average of eight alleles per locus and a total number of alleles of 

96. More recently, Flores et al. (2010) isolated 12 microsatellites from SSR-enriched genomic 

libraries of R. idaeus.  

Another measure of genetic variability is the presence of exclusive alleles per loci and 

genotype (Tables 4 and 5). The genotypes presenting the highest number of exclusive alleles 

are listed in Table 4, with R. idaeus genotype CVM11 ranking highest, which could be 

attributed to the fact that most of the SSRs used are derived from R. idaeus. Of the evaluated 

microsatellites, those of the series “Rubus” were one of the most polymorphic groups and 

detected the highest number of alleles in the study population. It should be mentioned that 

exclusive alleles also appear in wild genotypes and in genotypes 106 and 107, which belong 

to the species R. urticifolius. The loci in which the private alleles were detected are very 

important for genotype differentiation, particularly in the case of the thornless genotypes. 

Fig. 2 presents the results of the principal coordinates analysis. There is no clear 
differentiation of genotypes based on collection sites; however, the genotypes belonging to 
the species R. urticifolius (37, 44, 106, and 107) are separate from the species R. glaucus, both 
cultivated and wild. Likewise, the species R. idaeus is separate from the species R. urticifolius 
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(Marulanda et al., 2010 (data not published). 

* PIC = polymorphic information content; A = allele number; D = discrimination power; He = expected heterozyg
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and from cultivated and wild genotypes of R. glaucus. Genotype CVM Wild of the species R. 
glaucus is notably separate from the genotypes of the same species. 

 

Locus Private alleles Frequency 

RhM003 2 0.125 

RhM001 2 0.250 

Rubus 76b 1 0.125 

Rubus 98d 1 0.333 

Rubus 98d 1 0.333 

mRaCIRRI1G3 2 0.125 

mRaCIRRIV2A8 5 0.125 

Rubus 128a 3 0.125 

Rubus 262b 3 0.125 

Rubus 107a 5 0.250 

RgA12-1 4 0.125 

RgB7 2 0.125 

RgB7 1 0.125 

RgB7 2 0.125 

RgF3 1 0.250 

RgF7 1 0.250 

Rubus 116a 1 0.250 

Rubus 105b 2 0.100 

Rubus 105b 5 0.100 

Rubus 105b 4 0.200 

RgA12-1 2 0.100 

Rubus 98d 3 0.222 

Table 4. Summary of private alleles. 

 

Sample 
No. of loci 

with private 
alleles 

Loci with private alleles 

R. glaucus cultivated (CVM 10) 1 RgB7 

R. idaeus (CVM 11) 14 RhM003, RhM001, Rubus 76b, Rubus 98d, 
Rubus 98d, mRaCIRRI1G3, 
mRaCIRRIV2A8, Rubus 128a, Rubus 262b, 
Rubus 107a, RgA12-1, Rg B7, RgF3, RgF7 

R. glaucus cultivated (CVM 13) 1 RgB7 

R. glaucus wild (CVM WILD) 3 Rubus 116a, Rubus 105b, Rubus 105b 

R. glaucus cultivated (22) 1 RgA12-1 

R. urticifolius (107) 1 Rubus 98d 

R. urticifolius (106) 1 Rubus 98d 

Table 5. List of samples with one or more private alleles. 
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Fig. 2. Principal coordinates analysis  among Rubus genotypes based on genetic distance .  

In addition to the genetic diversity measurements already mentioned, the analysis of 

molecular variation (AMOVA) revealed 98%variability among all genotypes and 2% 

variation between populations (Michalakis & Excoffier, 1996) (Table 6). These data agree 

with those observed in the principal coordinates analysis, where variation is mostly 

attributed to individuals variation.  Kollmann et al. (2000) concluded that genetic variability 

in Rubus is determined by the plant propagation system and demonstrated that there is an 

effect of cross-pollination between polyploid Rubus species. This type of crossbreeding 

influences seed and fruit quality positively, while increasing ploidy levels and taxonomic 

proximity.  

 

Source of 
variation 

df* 
Sume of 
squeres 

Variance 
components 

Estandar  
Variation 

%  of 
variation 

Among 
populations 

7 18.067 2.581 0.054 2% 

Within 
populations 

31 72.005 2.323 2.323 98% 

Total 38 90.071  2.377 100% 

*df= degrees of freedom  

Table 6. Summary  of molecular variation (AMOVA) among Rubus genotypes.  
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3.2 Transferability of microsatellite sequences 

Microsatellites RhM and RiM developed from R. idaeus showed cross-species amplification 

in R. glaucus genotypes and in other two wild species of Rubus, with 2 and 3 alleles per 

locus. High D values were found for loci RhM018 (0.5094) and RiM015 (0.4451). The 

“Rubus” microsatellite markers, also from R. idaeus, were the most polymorphic and 

presented the highest number of alleles per locus: Rubus 105b with 6 alleles and Rubus 107a 

with 5. The microsatellite markers from R. alceifolius showed 3 alleles and D values ranging 

from 0.23 to 0.2566. The R. glaucus microsatellites (Rg series) amplified for other wild 

species, with the number of alleles ranging from 2 to 5 per locus.  

The cross-species amplification data suggested that microsatellites developed for R. idaeus, 

R. alceifolius, and R. glaucus can be potentially useful for genetic diversity studies of different 

Rubus species. In the case of conservation programs, they should prove useful for 

characterizing natural populations and germplasm collections, as well as for determining 

the degree of relatedness between individuals or groups of accessions. 

The microsatellites developed by Amsellem et al. (2001) to study R. alceifolius, subgenus 
Malachobatus, that grows in Southeast Asia were used for the characterization of Andean 
Rubus, the transferability and applicability of microsatellites of R. alceifolius to study and 
evaluate the diversity of Rubus species in the American Andes were demonstrated; results 
were similar to those obtained in Asian species.  

Amsellem et al. (2001) also observed amplification from 3 to 4 alleles per individual in the 

species R. alceifolius, confirming the suspicion that this is a tetraploid species. Based on the 

analysis carried out by Amsellem et al. (2001), the present study produced between 3 and 5 

alleles for R. glaucus and between 2 and 4 alleles for R. urticifolius., suggesting that both 

cultivated and wild materials of R. glaucus have ploidy levels greater than those of R. 

urticifolius. This polyploidy was also described by Hall (1990), who explained that Rubus 

species used in plant breeding programs have produced euploid and aneuploid hybrids and 

that diploid, triploid, tetraploid, hexaploid, septaploid, octaploid, and nonaploid cultivars 

have been selected, most of them tetraploids.  

4. Conclusion 
Wild forms are also usually found at sites where Rubus species are cultivated, particularly in 

forest clearings, along roadsides, and on hillsides. Both cultivated and wild forms have the 

potential for interacting in different ways with cultivated materials. Cultivars can influence 

the genetic diversity of natural populations through gene transfer by pollen and wild 

populations are a potential source of genetic material for improvement programs. 

This evaluation of the status of genetic resources of the species R. glaucus and related wild 

species serves to provide guidelines for conservation and breeding efforts aiming to 

promote the development of cultivated species important for the rural economies of South 

America’s Andean region. 

Using microsatellites from other Rubus species has proven to be a very useful strategy to 
differentiate between wild and cultivated R. glaucus genotypes, as well as between thorny 
and thornless cultivars.  
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The development of a genomic library enriched with microsatellites and the design of 
microsatellite sequences for the Andean specie Rubus glucus, is allowing a deeper 
comprehension of the genetic variability existing among cultivated and wild genotypes as 
well as the relationships between the cultivated specie and the wild relatives.   

The Analysis of molecular variation (AMOVA) showed a higher variability distributed 
between genotypes than between populations, which agrees with the results obtained in the 
principal coordinates analysis.   
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