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1. Introduction 

Biodiversity can be defined as the totality of living forms present on earth, with the wealth 

of genetic information that they have (Grassi et al., 2006). It can be viewed at various levels, 

from ecosystems, down to species, populations, genomes and genes. Populations are 

representative of the species and may contain a large part of their genetic biodiversity. They 

are the basis of allopatric and sympatric speciation phenomena, due to a reduction of gene 

flow, caused by the presence of new geographical barriers, the former, and to auto- or allo-

polyploidy events, the latter.  

During the last two decades many molecular tools based on PCR (Polymerase Chain 

Reaction) have been developed and used to calculate and evaluate, through bioinformatics, 

genetic biodiversity of all living organisms and of plants in particular (Lowe et al., 2004). 

These molecular tools comprise DNA sequencing of single genes, or of entire genomes (e.g. 

rice, poplar, wheat, grape, etc.), locus specific (SSRs and SNPs) and random genome analysis 

(AFLPs, RAPDs, etc.).  

Poplar, after man and rice, was one of the first organisms with a fully sequenced plant 

genome (Tuskan et al., 2006). Moreover it has also been a subject study of many plant 

biologists and physiologists due to its commercial and economic importance, and to its 

relevance for riparian ecosystems. Many populations and germplasm collections of different 

poplar species have been investigated (Brundu et al., 2008; Castiglione et al., 1993; 

Castiglione et al., 2010; Fossati et al., 2003) using random and locus specific molecular 

analysis to evaluate their genetic biodiversity. Poplar is a perennial flowering plant, native 

to most of the northern hemisphere, known to play valuable ecological roles: in fact, it is 

considered a trustworthy health indicator of riparian ecosystems and a promising 

phytoremediation tree of polluted soils (Castiglione et al., 2009; Sebastiani et al., 2004; Yadav  
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et al., 2010). Poplars, aspens and cottonwoods are part of the genus Populus that, along with 
the two other related genera Salix and Chosenia, belongs to the Salicacae family. It is now 
generally accepted that the genus Populus comprises 29 species, identified on the basis of 
diagnostic morphological characters and assigned to six different sections, namely Abaso, 
Aigeros, Leucoides, Populus, Tacamahaca and Turanga (Dickmann, 2001). However, correct 
identification and classification of poplar species are made difficult by: (a) the very high 
variability of their morphological traits; (b) their strong tendency towards intra-section 
hybridization, especially in sympatric ranges, resulting in hybrids with mixed and broad-
spectrum parental features; (c) the unusual possibility to inter-section hybridization (e.g., 
between specimens belonging to the Aigeros and Tacamahaca sections - Dickmann, 2001). 
Moreover, it should be noticed that fertile F1 hybrids could backcross towards one/both 
parental species, or produce further generations, thus making species and hybrid 
identification even more problematic (Fossati et al., 2004; Lexer et al., 2005). Recently, 
several studies using molecular markers have been carried out in order to revise the 
assignment of poplar species to the above-listed sections and even to resolve their 
controversial taxonomy (Cervera et al., 2005; Hamzeh & Dayanandan, 2004). Indeed, due to 
discrepancies among phylogenetic trees reconstructed with nuclear ribosomal DNA (rDNA) 
or chloroplast genes, it was established that nuclear genome (nDNA) of P. nigra (Aigeros) is 
divergent from species belonging to Populus section, although its chloroplast DNA (cpDNA) 
is strongly associated to that of trembling poplars (Populus) (Hamzeh & Dayanandan, 2004). 
Thus, P. nigra should not be considered derived from the inter-section crossing between P. 
deltoides x P. alba (Smith, 1988), but might be classified in a brand-new and independent 
taxon (i.e., Nigrae). Further studies, using Amplified Fragment Length Polimorfisms (AFLP), 
revealed that P. mexicana, the single species present in the Abaso section, is so divergent 
from all the other poplar sections that might be considered part of the Salix genus (Cervera 
et al., 2005). Moreover, AFLP data also showed that species belonging to the Populus section 
are characterized by the greatest levels of interspecific genetic variability, whereas the 
opposite trend has been observed for the sections Aigeros and Tacamahaca. Given that 
ancestral species have greater variation with respect to the derived ones, Populus is believed 
to be the oldest section, whilst Aigeros and Tacamahaca the most recent ones (Cervera et al., 
2005; Eckenwalder, 1996). However, controversial conclusions have been drawn on the 
taxonomy of the Populus section using different molecular markers. On one hand, the 
analysis of rDNA sequences indicates that Populus section could be further sub-divided  
into two major clades: one comprising P. alba, P. tremula and P. davidiana (Korean aspen);  
the second one grouping together the American aspens P. tremuloides and P. grandidentata 
(Hamzeh & Dayanandan, 2004). On the other hand, AFLP data suggested that P. tremula  
and P. tremuloides are ecotypes still capable of hybridization and thus part of the same  
group, whilst P. alba represents a totally different taxon (Cervera et al., 2005). In  
addition, Tacamahaca section was surprisingly found to be a polyphyletic group, i.e., a  
kind of meta-cluster comprising many small sub-groups, each containing closely  
related species (Hamzeh et al., 2004). Finally, American cottonwoods P. trichocarpa and P. 
balsamifera, which have been ever considered subspecies of a single taxon, were 
discriminated as different species when assessed by AFLP analysis (Cervera et al., 2005). 
Such inconclusive and contrasting results indicate that both rDNA and AFLP markers are 
not suitable to correctly classify poplar species and fully resolve their phylogenetic 
relationships. Indeed, it should be stressed that AFLP analysis is intended to get insight into 
the overall structure of genomes, thus being more properly used to determine interspecific  
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genetic variability. Moreover, the rDNA gene family is known to be affected by concerted 
evolution and gene conversion events, which may alter the phylogenetic signals carried by 

the analyzed sequences. Despite these limitations, molecular evolution of plants is mainly 
inspected using rDNA and/or cpDNA alone, which possibly lead to evident mistakes in 

phylogeny reconstruction due to biases present at the molecular level (Alvarez & Wendel, 
2003; Doyle & Gaut, 2000; Small et al., 2004). Undoubtedly, the drawing of accurate and 

resolved phylogenetic trees may be supported using additional molecular markers, such as 
nuclear –and thus mendelian-inherited– single-copy genes and/or multigene families. In 

particular, multigene families are very attractive since they offer the possibility to sample 
independent loci (i.e., not associated in linkage units) that share a deeply related 

evolutionary framework. This is a crucial feature as far as hybridization and introgression 
events are concerned: thus, the use of such nuclear genes should be considered for 

reconstructing the phylogeny of poplar and also for assessing the genetic variability within 
the studied genus. Actually, several analyses of plant gene families, with particular 

emphasis on P. trichocarpa, the poplar model system, have been carried out in the recent past 
in order to understand their evolutionary history, the functional diversification of their 

members and their detailed expression in poplar (Lan et al., 2009; Petre et al., 2011). At 
present, however, little information is available about phylogenetic relationships among 

poplar species by means of nuclear genes analysis (Fladung & Buschbom, 2009). Hence, in 
order to shed light on the unresolved problematic issues, we have undertaken a deep 

investigation of the nuclear-encoded metallothionein (MT), a gene family involved in 
response to plant stress. In particular, MTs are known to have protective roles against plant 

wounds of pathogenic origins and senescence (Kohler et al., 2004), and to be involved in 
metal homeostasis (Cobbett & Goldsbrough, 2002), being upregulated in foliar tissue, 

together with polyamines, to enhance poplar tolerance towards heavy metal-contaminated 
soils (Castiglione et al., 2007; Cicatelli et al., 2010; 2011), or in water deficit (Berta et al., 2009). 

Nonetheless, no comprehensive study on MT gene family has been performed so far, even if 
it shows interesting and potentially attractive features. In fact MT multigene family is 

characterized by: (a) a quite high but manageable number of members (six), at least in P. 

trichocarpa (personal observation); (b) a peculiar organization of specific cysteine residues, 

whose function is cooperatively binding metal ions (Kille et al., 1991), thus allowing easy 
arrangement of orthologous MTs into three types, namely MT1, MT2 and MT3 (Cherian & 

Chan, 1993; Cobbett & Goldsbrough, 2002); (c) presence of a full-exon coding for a specific 
region, called “spacer”, which show remarkable levels of genetic variability (Buchanan-

Wollaston, 1994; Zhou & Goldsbrough, 1994). Indeed these spacers could be rich of single-

nucleotide polymorphism (SNP). SNP including single-base changes or indels (insertion or 
deletion), at specific nucleotide positions, has been shown to be the most abundant class of 

DNA polymorphism in many organisms (Brookes, 1999; Cho et al., 1999). SNP variation 
analysis and SNP marker development from candidate genes could provide valuable 

information regarding their evolution and effects on complex traits. Very recently, Fladung 
and Buschbom (2009) have used partial DNA sequence of six nuclear genes to draw 

phyologenetic relationships among a limited number of poplar species using SNPs. This 
study substantiate the importance of this class of molecular markers as a very promising 

molecular tool to study the evolution or measure the genetic variability of plants, in general, 
and within Populus, in particular. The present study is part of a wider and ample 

collaborative project between Italy and the People's Republic of China focused on poplar.  
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For this reason, particular interest was devoted to the analysis of Chinese poplar species 
belonging to the Populus section (Castiglione et al., 2010; Lexer et al., 2010). In the present 
study MT genes have been used to estimate phylogenetic relationships among 11 Populus 
ssp belonging to three poplar sections (Aigeros, Populus and Tacamahaca). Furthermore a 
natural population of 63 P. alba trees, collected along the banks of the river Sele (South Italy), 
was analysed by means of nuclear (10) and (3) chloroplast SSRs. The population genetic 
variability was evaluated using indices commonly employed to estimate genetic 
biodiversity (e.g. h, Na, Ne, Ho, He etc.) or genetic dissimilarity (Jaccard index, PCA). On the 
basis of the estimated genetic biodiversity, a subset of the population (5 specimens), 
characterized by very high genetic dissimilarity based on Jaccard index, underwent to DNA 
sequence analysis in order to identify new SNPs in MT genes and an exemplificative 
analysis is given for the isoforms of MT1a and MT3a. Based on our results, we can state that 
MTs are promising markers to shed light on both intra- and inter-section relationships 
among poplars, as well as to assess genetic variability within selected natural populations. 

2. Material and methods, results and discussion 

2.1 Material and methods 

Poplar samples. Eleven different species, representing three distinct sections (Tacamahaca, 
Aigeros and Populus) of the genus Populus, were selected (Tab. 1) for phylogenetic study. 
Nine species were sampled for DNA sequencing, among those three were Italian (P. nigra, P. 
alba and P. tremula) and six Chinese (P. pyramidalis, P. adenopoda, P. davidiana, P. serrata, P. 
bonatii and P. tomentosa). For each species, fresh young leaves of 2-3 individuals were 
sampled and dried in Silica Blue Gel (Sigma-Aldrich Italia – Milano, Italy) prior to DNA 
extraction. The sequences of the remaining 2 balsam poplars, i.e. P. trichocarpa and P. 
balsamifera, were retrieved from publicly available databases (GenEMBL). It should be 
stressed that the selected Chinese poplars have never been characterized from a molecular 
point of view, and that their classification within the Populus section is troublesome due to 
peculiar morphological features (see the description given in the Chinese Floras Atlas at: 
http://www.efloras.org/flora_page.aspx?flora_id=2 ). To study the genetic biodiversity of a 
P. alba natural population, 63 individuals were sampled along the banks of the river Sele 
(Salerno - South Italy) in the springs of 2008 and 2009. Young leaves were collected from 
single individuals and then stored in absolute ethanol until use. Genetic biodiversity of 
white poplar natural population of the Sele river was compared with eight reference 
samples: two clones collected in Sardinia (b33SS, b4SS); further two clones part of a 
collection of Northern Italy clones and analysed during a previous research project focused 
on phytoremediation [AL22, AL35 - (Castiglione et al., 2009)], and four hybrids (P. x 
canescens) collected along the banks of the Ticino river in Northern Italy (# 1, # 13 , # 15, # 2 - 
Castiglione et al., 2010). 

Abbreviations used for poplar species. P. nigra: Populus nigra L.; P. adenopoda: Populus 
adenopoda Maximowicz; P. alba: Populus alba L.; P. pyramidalis: Populus alba var. pyramidalis 
Bunge; P. davidiana: Populus davidiana Dode; P. serrata: Populus ningshanica C. Wang & S. L. 
Tung:; P. bonatii: Populus rotundifolia var. bonatii (H. Léveillé) C. Wang & SL Tung; P. 
tomentosa: Populus tomentosa Carr.; P. tremula: Populus tremula L.; P. balsamifera: Populus 
balsamifera L.; P. trichocarpa: Populus balsamifera L. ssp. trichocarpa (Torr. & Gray ex Hook.) 
Brayshaw. 
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DNA extractions. Total genomic DNA was extracted from dried poplar leaf (species reported 
in Tab. 1) using DNeasy Plant Mini kit (Qiagen; Milano, Italy), or “REDExtract-N-Amp Plant 
PCR Kit”, (Sigma-Aldrich Italia, Milano, Italy) following the supplier instructions. 

 

Species Section Source (geographic origin) 

P. nigra L. Aigeros This study (Italy) 

P. adenopoda Maximowicz Populus (T) This study (China) 

P. alba L. Populus (A) This study (Italy) 

P. alba var pyramidalis Bunge Populus (A) This study (China) 

P. davidiana Dode Populus (T) This study (China) 

Populus ningshanica C. Wang & S. L. 
Tung 

Populus This study (China) 

P. rotundifolia var. bonatii
(H. Léveillé) C. Wang & SL Tung 

Populus This study (China) 

P. tomentosa Carr. Populus (A) This study (China) 

P. tremula L. Populus (T) This study (Italy) 

P. balsamifera L. Tacamahaca 
Trace Archive 

(http://www.ncbi.nlm.nih.gov/Tr
aces/home/) 

P. balsamifera L. ssp. trichocarpa 
(Torr. & Gray ex Hook.) Brayshaw 

Tacamahaca 
Poplar Genome Browser 

(http://www.plantgdb.org/ 
PtGDB) 

Table 1. The 11 analyzed poplar species. (T) or (A) refers to the sub-sections Trepidae and 
Albidae, respectively. 

Identification of MT genes in poplar. The first step for our analysis consisted in the 
identification of genomic position of the metallothionein (MT) genes of P. trichocarpa. This 
was done through BLAST searches against the P. trichocarpa genome v2.0 (available at 
http://www.plantgdb.org/PtGDB and http://plants.ensembl.org/Populus_trichocarpa) 
using as queries the mRNAs of P. x generosa (P. trichocarpa x P. deltoides) retrieved from 
GenEMBL (MT1a: AY594295, MT1b: AY594296, MT2a: AY594297, MT2b: AY594298, MT3a: 
AY594299, MT3b: AY594300). Based on the identified sequences, we designed specific 
primers (available on request) for MT genes PCR amplification in the remaining poplar 
species. For each MT-gene, two primer pairs were designed, so that partially overlapping 
amplicons, suitable for assembling and analysing DNA sequences, were obtained. As only 
exception, MT2a was sequenced using only one primer pair due to its unusual exon-intron 
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structure (see the Results section). The primer pairs, designed on the basis of P. trichocarpa 
genome, were successfully used even for the amplification and sequencing of MT1b, MT3a 
and MT3b genes from a specimen of Salix matsudana L. growing at the Orto Botanico 
Cascina Rosa (Milano-IT). The remaining MT genes of the same Salix species were retrieved 
from GenEMBL (MT1a: EF157299, MT2a: EF157297, MT2b: EF157298). 

PCR amplification and sequencing. MT genes were amplified in PCR reactions contained 

200 μM dNTP, 1.5 mM MgCl2, 2.5 M of each primer, 1.5 U of PolyTaq - Recombinant 5 U/μl 

(PolyMed, Sambuca Val di Pesa, Italy), and 5 l of Poly-Taq 10X Buffer in a total volume of 

50 L. The PCR thermal profile was as following : 94°C for 60 s, TA°C for 60 s TA= 
Annealing Temperature for each single primer pairs, available on request) , and 72°C for 90 
s for 35 cycles. After purification and estimation of DNA quantity by agarose-
electrophoresis, single-band amplified DNAs were sequenced using ABI Big Dye 
Terminator version 3.1 Cycle Sequencing Ready Reaction Kit (Applied Biosystem, Monza, 
Italy). PCR sequencing products were electrophoresed on an ABI 310 automated genetic 
analyzer (Applied Biosystem). Some of MT amplified products, showing double bands of 
different molecular weight, were cloned, according to the procedure provided by Clone JET 
PCR Cloning kit (Fermentas, Burlington, Ontario), and sequenced as above described. Each 
amplicon was sequenced at least two times, using the same PCR primers, and 
chromatograms were processed by careful visual inspection. In order to assemble MT-genes, 
the amplicons of each gene belonging to the same species were aligned using the ClustalW 
multiple sequence alignment software (Thompson et al., 1994). Aligned DNA sequences 
were verified by manual editing of the sequence alignments. 

Gene annotation and analysis of sequence variability. The exon-intron structure and the 
protein-coding sequence (CDS) of the amplified genes were identified using the 
GenomeScan tool (http://genes.mit.edu/genomescan.html), which also allowed us to verify 
the presence of the canonical splicing sites. The CDS of MT-genes were aligned using the 
RevTrans program (http://www.cbs.dtu.dk/services/RevTrans), which takes into account 
the codon structure of the analyzed sequences. The six resulting alignments, which support 
the exon-intron structure identified with GenomeScan, were manually curated in order to 
remove the primer sequences. Variability analyses were carried out on a final dataset 
including 12 taxa (i.e., 11 poplar species plus the outgroup S. matsudana) for each of the six 
MT-genes. Moreover, the amino acid sequences inferred from the translation of the MT-
genes were aligned using MUSCLE program (http://www.ebi.ac.uk/Tools/msa/ 
muscle/#). For each data set, the proper variability analysis was performed using the 
MEGA4 software (Tamura et al., 2007), i.e. we calculated the number of synonymous and 
non-synonymous substitutions for the nucleotide alignment, and number of amino acid 
invariant and variant sites for the protein alignment. 

Phylogenetic data analysis. Phylogenetic analyses were performed on each of the  
six nucleotide dataset and on the concatenation of all MT-genes in a so-called “supergene” 
(1,224 sites with no gapped position). Only the last dataset proved to be enough informative  
to resolve the relationships among poplar species. As for inferred translation of MT-genes,  
due to both the very low number of sites and variability levels detected among the  
different poplar species (see Results), we decided to exclude protein sequences from  
the phylogenetic analysis. With respect to the nucleotide “supergene” dataset, model  
selection was performed using the on-line version of Modeltest software, 
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(http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html), which showed 
that the most suitable model was GTR+G (Lanave et al., 1984; Saccone et al., 1990). The 
parameters of the model were: base frequencies: A 0.28, C 0.23, G 0.31, T 0.31; substitution rate 
matrix: (A–C) 1.672 (A–G) 0.312 (A-T) 0.275 (C–G) 0.710; (C–T) 1.251; (G–T) 1.0; gamma 
distribution parameter (alpha): 0.041. Phylogenetic analyses and bootstrapping were carried 
out using programs of the PHYLIP package (Felsenstein, 1993) and PHYML software 
(Guindon & Gascuel, 2003). In particular, phylogenetic analysis was performed using two 
different Maximum Likelihood (ML) procedures: a “Classical ML” and a “Hybrid ML” 
method. The Classical ML analysis was directly carried out by means of the PHYML software. 
On the other hand, the Hybrid ML method consisted of two steps: (a), calculation of ML 
distances by TreePuzzle software (Smith, 1988); (b) calculation of phylogenetic trees via the 
Neighbor Joining (NJ) method. NJ was performed using the NEIGHBOR software, one of the 
several phylogenetic tools belonging to the PHYLIP package. In the case of the Classical ML 
method, bootstrapping was implemented as follows: (a), generation of 1,000 replicates of the 
original data set, using SEQBOOT software; (b), bootstrap test by means of PHYML, activating 
“multiple data sets analysis” option. For the Hybrid ML method, bootstrapping was 
implemented as follows: (a) generation of 1,000 replicates of the original data set using 
SEQBOOT software (PHYLIP package); (b) bootstrap test, using the UNIX script “puzzleboot” 
(http://rogerlab.biochemistryandmolecularbiology.dal.ca/puzzleboot.php). Phylogenetic 
trees for each of the obtained distance matrix were calculated using NIGHBOR and 
CONSENSE software (PHYLIP package). Finally, the calculated phylogenetic trees using 
either the Classical or the Hybrid ML methods were visualized and manipulated using 
TreeView (Page, 1996) and TreeMe (http://en.bio-soft.net/tree/TreeMe.html). 

SSR genotyping of a P. alba natural population. Molecular analysis on the natural white 
poplar population growing on the banks of the Sele river was performed by means of 
Simple Sequence Repeats (SSR). SSR assays was performed as described by Yin et al. (2004) 
and Van der Schoot et al. (2000) using ten nuclear (ORPM_30a, ORPM_30b, ORPM_312a, 
ORPM312b, ORPM_60, PMGC_2852, WPMS5, WPMS14, WPMS18, WPMS20) and three 
chloroplast DNA primers [CCMP2, CCMP6, CCMP10 – (Weising & Gardner, 1999)] These 
were chosen among those characterized by high polymorphism, absence of multiple bands 
and high discrimination power. PCR reactions were performed using a traditional two-
primer approach, being one of the two primer fluorescent-labelled. Reactions were 
performed in 10 µl total volume containing: 2 µl of template DNA, 2 µl of reverse primer (1 
µM, unlabeled), 2 µl of forward (1 µM, a third of which was labelled), 4 µl of RedExtract–N–
Amp PCR Ready Mix (Sigma-Aldrich). For WPMS5 and WPMS14 primers, cycling 
conditions were as follows: initial denaturation at 94°C for 3 min; followed by 35 cycles of 1 
min and 15 s at 94°C, 1 min and 15 s at annealing T (annealing T was 50°C for WPMS5 and 
60°C for WPMS14), 1 min and 45 s at 72°C; and a final extension time of 10 min at 72°C. 
ORPM_30 region was amplified using the following thermal profile: 94°C for 3 min; 
followed by 30 cycles of 1 min at 94°C, 1 min at 55°C, 1 min at 72°C, and a final extension 
time of 10 min at 72°C. Remaining PCR amplifications were performed using: initial 
denaturation at 94°C for 3 min; followed by 15 cycles of 30 s at 94°C, 1 min at 62°C 
(annealing temperature was reduced by 0.5 degree per cycle); followed by 20 cycles (or 30 
cycles for ORPM_312) of 30 s at 94°C, 1 min at 52°C, 1 min and 30 s at 72°C; and a final 
extension time of 7 min at 72°C. The SSR genotypes were analyzed on ABI-PRISM 310 
Genetic Analyzer (Applied Biosystems, Monza, Italy), while fragment sizing was carried out 
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with Gene Mapper version 4.0 (Applied Biosystems) utilizing the internal 500 ROX Size 
Standard (Applied Biosystems). Population biodiversity was evaluated by number of alleles, 
frequency, observed and expected heterozygosity; within-population inbreeding coefficient 
FIS for microsatellite loci was also estimated using the available free software package 
GenAlex6 (Peakall & Smouse, 2006) freely available at the following web site: 
http://www.anu.edu.au/BoZo/GenAlEx/new_version.php. Furthermore, some of the 
nuclear SSR markers were used to determine the genetic relationship of the Sele population 
compared to some selected specimens belonging to already surveyed P. alba populations 
(Brundu et al., 2008; Castiglione et al., 2009; Castiglione et. al., 2010), as described above. The 
molecular similarity of the defined four groups of poplars was assessed performing a PCA 
(Principal Component Analysis) by means of the NTSYS-pc program version 2.1 (Rohlf & 
Marcus, 1993), using as distance the Jaccard dissimilarity index (Jaccard, 1908). Finally, in 
the light of previous analyses, in order to maximize the observed genetic variability we 
picked out five clones from the Sele population, and carried out a molecular analysis of the 
SNPs (Single Nucleotide Polymorphisms) present in their MT-genes, searching for point 
mutations and indels in both exons and introns. 

2.2 Results 

MT Multigene family within the genus Populus. MT genes, sequenced or available in 

public databases for the chosen poplar species (Tab. 1), were analyzed in order to evaluate 

their sequence variability and, thus, their resolving power as molecular markers for 

assessing the phylogenetic relationships among cryptic species of the genus Populus. The 

amplification of purified PCR products of the MT CDS, followed by RevTrans alignment of 

all nucleotide sequences and their arrangement as a supergene, resulted in a data matrix of 

1,224 characters (with no gapped positions) for all 11 poplar species plus the outgroup (S. 

matsudana). It should be noticed that the corresponding DNA sequence of two or more 

specimens of the same taxon were identical, e.g. P. alba (2). BLAST searches performed 

against the Poplar Genome Browser, using as queries mRNA sequence from P. x generosa, 

allowed the identification of the number and genomic position of all MT genes in the 

genome of model system P. trichocarpa. As expected, poplar MT genes are encoded by a 

multigene family encompassing six members, that is two genes for each MT type, as 

described by Koheler and co-workers (2004). It should be notice that the two members 

belonging to the same MT type, e.g. MT1a and MT1b, are neither found on the same 

chromosome, nor are organized as cluster like the well-known rDNA genes.  

Exon-intron structure of poplar MT genes and intron variability. Poplar MT genes proved to 
have a well-conserved exon-intron structure: in fact, the two isoforms of the same MT gene 
show a CDS of equal length as well as the same number of exons/introns. According to 
Cobbet & Goldsbrough (2002) and Koheler et al. (2004), MT genes are encoded by short genes, 
composed of small exons and introns. Our analyses confirmed data present in literature, 
having for MT1, MT2b and MT3 mean length of 585, 473 and 616 bp, respectively. The MT 
genes code for small polypeptides with mean lengths of 73, 78 and 66 amino acids for MT1, 
MT2b and MT3, respectively. The only important exception is the MT2a gene, which is 293 bp 
long and has 2 exons coding for a polypeptide of 79 aa. This exon-intron structure is peculiar 
to MT2a, and it is neither an annotation nor sequencing artifact. In fact, all the MT2a genes 
identified by means of BLAST searches, or by sequencing, have the same structure in all the 
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analyzed poplar species (i.e. two exons and one intron). The molecular analysis performed on 
MT2a showed that it has a different CDS length (240 bp) with respect to MT2b CDS (237 bp) 
due to the presence of a triplet “GCG” (coding for a valine residue) at positions 148-150 with 
respect to MT2b. The deletion is located in a very short but variable region of the MT2a spacer 
domain, which had 12 out of 20 different residues compared to the MT2b homologous region 
(data not shown). Generally speaking, we could consider the CDS of MT-genes as formed by 
three exons: (a) the first coding for almost the entire Cys-rich domain; (b) the second coding for 
the majority of the spacer region; (c) and the third coding for the terminal part of the spacer 
plus the whole C-terminal domain. A remarkable sequence variability was also detected 
within the introns of the considered MT gene family. In particular, we found an SSR within 
intron I of MT3b, which showed a different and peculiar number of tandem repeats in each of 
the analyzed species. Moreover, we detected several insertion/deletions (indels) specific to 
different taxonomical rank (e.g., sub-section), or related to the geographical origin of poplars 
exclusively in the introns of MT genes (data not shown).  

Sequence variability in MT-genes and their products. Our analyses, focused on the CDS of 
MT-genes, showed that poplar MT-genes have a high level of nucleotide sequence identity, 
i.e. 96% (1,170/1,224 sites), as well as a very high level of amino acidic sequence identity,  
i.e. 93% (380/410 sites), see Table 2.  

 

Gene Nucleotide alignment Amino acid alignment 

 No. 
sites 

No. invariable 
sites 

Invariable 
sites (%) 

No. 
sites 

No. invariable 
sites 

Invariable 
sites (%) 

MT1a 198 194 98 66 64 97 

MT1b 210 203 97 70 68 97 

MT2a 225 203 90 75 63 84 

MT2b 219 212 97 75 74 99 

MT3a 189 183 97 61 56 92 

MT3b 183 175 96 63 55 87 

Total 1224 1170 96 410 380 93 

Table 2. Number (No.) of total and of invariable sites detected in the coding sequences of the 
MT-genes, based on a dataset of the 11 poplar species listed in Table 1. Statistics referring to 
nucleotide sequences are on the left half of the table, whilst those referring to translated sequences are 
on the right half. 

A detailed variability analysis of metallothionein CDS showed that 29/54 (54%) of the 
variable sites are non-synonymous (Tab. 3).  

Thus, based on the number of non-synonymous (N) and synonymous substitutions (S), we 

calculate the N/S ratio with respect to the different MT types. Interestingly, most of  

MT-genes are subject to positive evolutionary pressures, being N/S>1 for all genes with the 
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exception of MT1a (N/S=1, neutral selection) and MT1b (N/S<1, purifying selection). The 

N/S ratio, calculated separately for each nucleotide sequences coding for a given MT 

domain, showed that 33/54 (61%) variable sites are present in the spacer domain, thus 

indicating that this domain is the most variable region of MT-genes. This observation is also 

supported by the fact that the spacer domain contains 20/29 (69%) non-synonymous 

substitutions globally found in all MT-genes. Finally, the N/S ratio showed that the spacer 

region is subject to positive selection (N/S=1.54), whilst both N- and C-domains are, as 

expected, under slight purifying pressures (N/S=0.75). 

 

Gene 
N° 

variable 
sites 

Codon position Substitution type dN/dS 

  I II III N° syn N° non-syn  

MT1a 4 2  2 2 2 1 

MT1b 7 2 1 4 4 3 0.75 

MT2a 22 6 7 9 9 13 1.44 

MT2b 7  1 6 6 1 2.33 

MT3a 6 2 2 2 2 4 2 

MT3b 8 3 2 3 2 6 3 

Total 54 15 13 26 25 29 1.16 

Table 3. Substitution types found in the coding sequences of the MT genes belonging to the 
11 poplar species listed in Table 1. Syn: synonymous substitution; non-syn: non-synonymous 
substitution. 

Phylogenetic analysis of the MT-supergene. As described in Materials and Methods, we 

carried out the phylogenetic analysis following two different procedures: a Classical and a 

Hybrid ML methods. We used these methods to calculate phylogenetic trees for each MT 

gene under study, testing the statistical reliability of the obtained trees by means of non-

parametric bootstrapping (1,000 repetitions). The phylogenetic trees separately calculated 

for each of the MT genes were almost completely unresolved (data not shown). Therefore, 

we decide to concatenate the CDS of all six MT-genes in order to shape a so-called 

“supergene” encompassing a total of 1,224 characters. Both the Classical and the Hybrid ML 

methods resulted in comparable phylogenetic trees with respect to either topology and 

bootstrapping value of their internal nodes. Therefore, we just show the consensus 

phylogenetic tree obtained through the Classic ML method (Fig.1).  

In general, the calculated phylogenetic tree is well-resolved since 4/9 (44%) internal nodes are 
supported by bootstrapping values higher than 75, and 7/9 (78%) are associated to 
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bootstrapping value higher than 50. In particular, it can be noticed that the six MT-genes 
arranged as supergene are able to group together the two balsam poplars P. trichocarpa and P. 
balsamifera with a good supporting value (65), and correctly distinguish section Tacamahaca 
from P. nigra (Aigeros) with a very high supporting value (92). As for the Populus section, it is 
reliably identified with a bootstrap value equal to 88. Moreover, poplars belonging to this 
section are further clustered into two distinct groups: (a) the first one, comprising the only 
Italian P. alba with the full bootstrapping value (100); (b) the second one, encompassing all the 
remaining poplar species. Cluster (b) is further sub-divided into two smaller and 
morphologically-coherent groups: (b.1) a sub-group that contains the Chinese white poplars, 
namely P. alba var. pyramidalis and P. tomentosa; and (b.2), another cluster that corresponds to 
all trembling under study (P. tremula, P. adenopoda and P. davidina), plus the two Chinese 
species whose classification was uncertain (P. serrata and P. bonatii).  

 

Fig. 1. Maximum likelihood reconstruction based on the “Classical ML method” of the 
nucleotide supergene encompassing the CDS of all six members of MT multigene family. 
Bootstraping values are showed above each node, when greater than 50; unresolved nodes are 
represented as collapsed. (T): Tacamahaca section; (A) Aigeros section; IW: Italian white poplar; CW: 
Chinese white poplar; TP: trembling poplars. Nodes corresponding to the Populus section and to 
Trepidae sub-section are indicated with a red and blue circle, respectively. Chinese species are starred. 
The cluster names (a, b, b.1 and b.2) are those explained in the text. Sequences belonging to S. 
mastudana were used as outgroup. 

SSR analysis of the P. alba natural population. The number of alleles per chloroplast (Cp) 
SSR locus varied from three to five, with an average of four (Tab.4). Combining the data of 
the three Cp-SSR loci, eight different chloroplast haplotypes were detected in the P. alba 
population of the Sele river. Nei’s (1973) gene diversity index per locus (h) varied from 0.447 
to 0.566 (average of 0.512), which indicate moderately high level of variability (Tab. 4).  

Genetic diversity within the Sele population was  also estimated using 10 nuclear SSRs 
(nSSR see Tab. 5). The total data set included 84 alleles, whilst the number of alleles per 
locus ranged from 2 up to 17. 
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The total data set included 84 alleles, whilst the number of alleles per locus ranged from 2 up 
to 17. The most informative markers were ORPM312a, ORPM312b, ORPM30b and WPMS14 
with more than 10 alleles for each single locus. Multilocus analysis of nSSR revealed a high 
level of gene diversity He = 0.58. The highest level of He was estimated for ORPM312b (0.852) 
locus, whilst the lowest  for the locus ORPM30a (0.058). The mean observed heterozygosity 
(Ho) was 0.46. Since Ho was smaller than He for 7/10 analysed loci, an excess of homozygosity 
was observed. Finally, the inbreeding coefficient (Fis) for all loci was 0.18 (ranging from 0.040 
to 0.752). Based on SSR markers, we also determined the genetic structure of the Sele 
population (63 individuals) using, as reference samples, eight white poplars representing a 
wide biodiversity molecular range for the Italian P. alba, as already stated in Material and 
Methods section. A PCA was carried out on the combined dataset comprising 71 samples (Fig 
2), using the Jaccard dissimilarity index as genetic distance.  

 

Allele\Locus CCMP2 CCMP6 CCMP10

a 0.02 0.015 0.46
b 0.60 0.42 0.46
c 0.31 0.55 0.043
d 0.015 0.014
e 0.014

No. Alleles 3 4 5
h 0.447 0.522 0.566

Table 4. Genetic biodiversity, at the chloroplast level, of the P. alba natural population (63 
individuals) of the Sele river. Allelic frequency, number of alleles per locus, gene diversity index 
per locus (h) are reported. 

 

Allele\ 
Locus 

ORPM 
30a 

ORPM 
30b 

ORPM 
312a 

ORPM 
312b 

ORPM60
PGMC 

2852 
WPMS05 WPMS14 WPMS18 WPMS20 

a 0.03 0.137 0.01 0.021 0.007 0.202 0.018 0.023 0.014 0.079 
b 0.97 0.363 0.01 0.063 0.022 0.079 0.061 0.03 0.007 0.886 
c  0.016 0.01 0.083 0.283 0.044 0.368 0.008 0.336 0.007 
d  0.056 0.125 0.021 0.203 0.018 0.465 0.008 0.05 0.029 
e  0.194 0.021 0.125 0.457 0.579 0.088 0.008 0.571  
f  0.129 0.073 0.042 0.029 0.026 0.068 0.021  
g  0.008 0.01 0.021  0.044  0.015   
h  0.016 0.01 0.021 0.009 0.591  
i  0.016 0.354 0.104    0.205   
l  0.04 0.042 0.208 0.015  
m  0.016 0.177 0.25    0.023   
n  0.008 0.094 0.042 0.008  
o   0.01        
p   0.021        
q  0.01  
r   0.01        
s   0.01   

No 
alleles 

2 12 17 12 6 8 5 12 6 4 

Ho 0.06 0.758 0.646 0.708 0.739 0.228 0.158 0.576 0.586 0.186 
He 0.058 0.789 0.81 0.852 0.669 0.613 0.636 0.602 0.558 0.208 
FIS 0.031 0.04 0.203 0.168 0.105 0.628 0.752 0.043 0.051 0.109 

Table 5. Genetic diversity, at the nuclear level, of the P. alba natural population (63 
individuals) of the Sele river. Allelic frequency, number of alleles per locus, expected (He) 
and observed (Ho) heterozigosity, FIS values are reported. 
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Fig. 2. Two-dimensional plot of the PCA performed on a combined data set comprising 71 
poplar samples, i.e. 63 individuals from the Sele population (Southern Italy) plus eight 
reference poplars. The poplars from river Sele are indicated with a number, whilst the reference 
sample were from: Sardinia (b33SS and b4SS) or Ticino (Ticino-#1, etc) natural populations, as well 
as from a collection of Northern Italy white poplar clones selected for pronounced  heavy metal 
tolerance (AL22, AL35). 

As a result, we could assess the tendency of the Ticino samples to form an independent 
group, well-separated from all the remaining poplars. On the contrary, the Sele river 
population was more scattered and overlapping with the selected poplars sampled from 
Sardinia and Northern Italy.  

Sequence analysis of MT-genes from the Sele population. Based on the previous SSR 
analyses, five genetically distinct poplar clones of the Sele river population were chosen for 
investigating the levels of SNP in all MT-genes. It should be stressed that the selected clones 
represented the most divergent samples of the data set, thus we expected to maximize the 
number of SNP found. Successful and reliable PCR amplifications were obtained for all 5 
selected clones as single DNA bands with the notable exception of MT1b, which was not 
reproducibly amplified in all 5 clones (and for this reason not considered in the analysis) 
and of MT1a, which resulted in a double DNA bands for four out the five selected clones. 
Therefore, the double PCR product was cloned in E. coli, and several E. coli colonies were 
randomly chosen and sequenced to identify single base mutations. Overall, 104 SNPs, i.e. 56 
point mutations and 48 indels, were identified on 1,456 sites and 18 different alleles, thus 
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being 7.1 SNPs found every 100 bp. To better illustrate what we found, we may describe the 
cases of the MT1a and MT3a genes. As for MT1a, the two fragments amplified via PCR were 
singularly cloned on the basis of their diverse molecular weight, and then sequenced to 
identify SNPs. In the first MT1a fragment, made up of 332 intronic and 166 exonic bp, a total 
of 30 SNPs (i.e., 24 indels and 6 single-base changes) were identified; whilst in the second 
fragment, 27 SNPs (i.e., 4 indels and 23 single-base changes) were found in 409 non-coding 
plus 79 coding bp. As previously stated above, the number of SNPs was higher in non-
coding with respect to the coding region. In fact, 55/57 variable sites were located in the 
introns of the MT1a gene (9.5 SNPs per 100 bp), whilst only two SNPs were present in its 
exons (0.49 SNPs per 100 bp). Furthermore, two haplotypes (conventionally named B and C, 
data not shown) of the Sele population, related to MT1a gene, were characterized by a 
greater number of SNPs, mostly (>80%) consisting in insertion/deletion events. As for the 
MT3a gene of Sele poplar population, a single fragment of 476 bp, corresponding to 110 bp 
of coding and 366 bp of non-coding sequences, was cloned and sequenced: only 1 SNP  was 
detected in its three exons (0.91 SNPs per 100 bp), and 2 were found in the non-coding 
regions (0.55 SNPs per 100 bp). As a conclusive remark, it should be mentioned that many 
different and short indels were observed comparing the five Sele clones to the P. alba 
specimens employed for phylogenetic analysis. 

2.3 Discussion 

Poplar phylogeny. This pilot study provides, for the first time, an extensive genetic survey 

of the metallothionein multigene family in different poplar species and in a natural 

population of P. alba, a member of the Populus section. The position along the Populus 

genome of the six genes of the MT family may support the indications provided by Brunner 

and co-worker (2000) regarding the genome duplication event occurred in Populus during 

the last 60 millions years. Here, it should be noticed that, in contrast to Arabidopsis, the 

genome of Populus has not been truncated (Kelleher et al., 2007; Tuskan et al., 2006), which 

means that for most of the genes still two copies are present in poplar genome. Coherently, 

we confirm that two isoforms (commonly indicated as “a” and “b”) are present in the P. 

trichocarpa genome for each of the three MT types.This observation is very interesting but 

contributes in complicating the possible evolutionary pattern of this multigene family. In 

fact, the analysis of 89 MT genes retrieved from public data bases and belonging to 19 

different plant species, ranging from basal bryophytes to higher dicotyledons [data not 

shown - (Lupi, 2007)] revealed that at least two different duplications are necessary to 

originate the full MT family. In particular, the more ancient event duplicated the ancestor 

gene into the MT3 and MT2 types, whilst a more recent duplication of MT2 likely gave rise 

to MT1 genes. However, some of the analyzed monocotyledon and dicotyledon species 

showed a different number of MT genes, suggesting that MT family underwent gain/loss of 

members via independent events in the diverse lineages, or even to degeneration of its 

various members [as occurred in A. thaliana; (Zhou & Goldsbrough, 1994)]. In the light of the 

above outlined evolutionary framework, it is not surprising that the evolution process is still 

acting on some of the poplar MT genes. In fact, as shown via the N/S ratio (Tab 3.), i.e. the 

ratio between non-synonymous and synonymous substitutions, MT1a and MT1b are under 

neutral and purifying selection, respectively, whilst the remaining four genes are subject to  

a mildly strong positive selection. This would suggest that MT1a and MT1b could have  
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already acquired a more specific and “frozen” role in the evolutionary process of the MT 
family with respect to the other four members. On the contrary, since evolution favors the 
occurrence of non-synonymous mutations along the MT polypeptide sequence, the other 
four genes might be still available to become more specialized into a somewhat different 
function always linked to metal homeostasis. Therefore, on the basis of our data, we could 
hypothesize that different paralogous genes belonging to the same multigene family may 
play for distinctive functions implied in plant metal metabolism and/or response to stress 
tolerance, as already documented by Kohler et al.(2004) and Castiglione et al. (2007, 2010 
and 2011). The sequence analysis of the MT genes shows that exon-intron structure is well 
conserved within the genome of all analysed Populus spp (three exons and two introns) with 
the only exception of the MT2a gene. In this case, the gene presents only two exons and one 
intron. On the light of the typical MT gene structure found in both Populus and Salix, the 
most parsimonious explanation might be that an intron has been lost during the evolution 
process. Another interesting feature of poplar MT genes in regard to the structure of their 
CDS. In fact, each of three exons constituting the CDS corresponds to a well-defined 
functional region of the polypeptide, that is the Cys-rich N-terminal domain, the central 
spacer and the Cys-rich C-terminal domain. In particular, the number and position of the 
Cys-residues inside the two terminal domains represent molecular signatures useful to 
univocally classify the MT genes into the three types (MT1, MT2 and MT3). The presence of 
well-conserved Cys-residues strongly suggests that terminal domains can coordinate 
positively charged ions aimed at metal homeostasis and heavy metal tolerance, as observed 
in the case of different poplar species and natural populations (Castiglione et al., 2010). On 
the contrary, the spacer region shows a less conserved amino acidic sequence, thus 
suggesting that the about 40 amino acids that constitute this region may have no other 
function but linking the two terminal Cys-rich domains. As for molecular variability, only 
low levels for both nucleotide (96%) and amino acidic (93%) MT sequences were detected 
within the Populus genus. However, these results are not surprising since genes pooled from 
11 closely related species were analyzed. As already stated, the spacer domain bears the vast 
majority (61%) of the variable sites, therefore it proved to be very useful to elucidate the 
evolutionary relationships among the analyzed poplar species. However, the regions 
showing the highest variability levels were, as expected, the introns (Lupi, 2007). For 
instance, the species-specific SSR identified within intron I of MT3b could have a practical 
application and therefore used to identify hybridization events either in cultivated hybrids 
of unknown origin, or to discriminate crosses among compatible poplar species in the early 
generations of natural populations. Interestingly, both section-specific and geographic-
specific point substitutions were observed within MT CDS for the different groups of 
aspens, Italian white poplar and Chinese poplars. These mutations have been fundamental 
to calculate the phylogenetic tree based on the MT supergene (1,224 sites) and to 
discriminate the poplar sections and species analyzed. The phylogenetic tree obtained 
through the Classical ML (Fig. 1) method shows a monophyletic origin of the genus Populus. 
Such results are in contrast to what obtained by Hamzeh and Dayanandan (2004) using both 
chloroplast and nuclear rDNA sequences, but they are in agreement to what found by 
Cervera and co-workers (2005) using a different molecular approach (AFLP) in order to 
estimate phylogenetic relationships among poplars. Our analyses also provide a clear 
separation between the Tacamahaca and Aigeros (92 bootstrap value), as well as the 
Populus section (88), thus confirming the results obtained by Fladung and Bushbom (2009) 
in their pilot study, where five different poplar species belonging to the same three sections  
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were analyzed on the basis of SNP mutations detected in six nuclear genes. Moreover, the P. 

trichocarpa and P. balsamifera species were clearly distinguished and coherently grouped 

together in a cluster corresponding to the Tacamahaca section with a support value higher 

than 50 (65), thus corroborating the findings by Cervera et al. (2005). This is a remarkable 

result since the relationships between P. trichocarpa and P. balsamifera were not resolved in 

the phylogenetic analysis conducted by Hamzeh and Dayanandan (2004) using the ITS and 

rDNA, i.e. the two commonly most exploited markers for phylogenetic studies concerning 

plant organisms. The obtained ML tree also shows that Populus section is basal with respect 

to the remaining younger sections, Aigeros and Tacamahaca. Once again, our results are in 

accordance with those reported by Cevera et al. (2005) and also in agreement with the 

evolutionary pattern proposed by Eckenwalder (1996) on the basis of completely different 

markers, i.e. morphological and phenetic characters. As shown in Figure 1, poplar species 

belonging to the Populus section are clearly separated from the representative species of the 

other sections  (red circle). Besides, the sub-clusters b1 and b2 are well separated from the 

Italian P. alba clones. It should also be mentioned that the Chinese white-poplar cluster of 

the Populus section is well-resolved (85 bootstrap value), so that P. tomentosa and P. 

pyramidalis actually appears as closely-related species that are likely paraphyletic with 

respect to the Italian P. alba. Albeit this result could depend, at least in part, on the 

geographical origins of the considered poplar species, a different and quite easy explanation 

for this paraphyletic relationships between the Italian P. alba and the Chinese white poplars 

could be assessed. In fact, although many Chinese taxonomists still consider P. tomentosa as 

a distinct species from P. alba (the so-called “Chinese P. alba”), Dickman (2001) stated that 

the correct  nomenclature for this species is P. x tomentosa Carr: in other words, P. tomentosa 

might be an hybrid derived from a natural cross between P. alba and P. adenopoda that, in 

some cases, could be a tri-hybrid due to further introgression toward the P. tremula genome.  

On the other hand, P. pyramidalis (the “Bolleana poplar”) may be a variety of P. alba 

(Dickmann, 2001), probably consisting in a single genetic unit with a columnar growth habit 

particularly appreciated for ornamental uses and line planting. Therefore, it is not unfeasible 

that P. pyramidalis could be a P. x tomentosa clone gathered, long time ago, from a Chinese 

natural population, and subsequently employed for wind breaking and landscape 

gardening. As for the four Chinese poplars of the Populus section P. davidiana, P. adenopoda, 

P. bonatti and P. serrata, usually considered trembling aspens, they are part of a poorly-

resolved group (cluster b.2 in Fig. 1) in our phylogenetic tree. The only exception is 

represented by P. davidiana and P. adenopoda that are clustered together with a low 

supporting bootstrap value (55). Therefore, all four trembling poplar species provided by 

the Chinese author counterpart of this article for phylogenetic purposes seem to be part of a 

single species with very limited variations at the genomic level as compared with the Italian 

P. tremula. Indeed, on the basis of the low dissimilarity of both morphological characters and 

phenetic traits, Eckenwalder (1996) already argued to merge these four Chinese species in a 

single taxon. Therefore, we could state that both our molecular data on MT genes and the 

AFLP study, conducted by Cervera and co-workers (2005), strongly confirm the section 

revision proposed by Eckenwalder (1996), so that, from a genetic point of view, the four 

Chinese aspens here assessed and P. tremula could be considered a unique species. 

Genetic biodiversity of a white poplar population along the river Sele. In this study, the 

genetic biodiversity present in a large natural population of P. alba along the Sele river was 
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estimated. Sele is a river located in south-western Italy originating from the Monti Picentini in 

Caposele. It flows through the region of Campania, in the provinces of Salerno and Avellino. 

Its delta is in the gulf of Salerno on Tyrrhenian sea. White poplar and black poplar are the 

dominant tree taxa along the banks in the area close to the outfall and the spring of the Sele, 

respectively. The natural and semi-natural banks of the river are surrounded by grazing lands 

for buffalo and fields of maize and vegetables, and are also the ideal sites for the spontaneous 

reproduction of white poplar natural populations. The Cp-SSR analysis performed on the 63 

individuals of the Sele river population highlighted a number of alleles (per single locus and in 

total) and haplotypes comparable with that observed for the white poplar population of the 

Ticino river previously investigated by this research group (8 Vs 9 haplotypes, Brundu et al., 

2008), and slightly higher than that of two populations of the Danube river (8 Vs 5, Lexer et al., 

2005), but a little lower than that calculated for a limited number of white poplar specimens 

collected in different regions of the Mediterranean basin (8 Vs 10, Brundu et al., 2008). 

However, the higher number of haplotypes observed in the population of the Ticino river 

could be ascribed to the presence of several hybrids (P. x canescens) derived from the natural 

cross between P. alba and P. tremula (Fossati et al., 2004; Castiglione et al., 2010), being the last 

observation further confirmed by Lexer and co-workers in the case of two populations of the 

Danube and of one of the Ticino (2005, 2010). However, this shouldn’t be the case of the Sele 

river population since PCA analysis clearly separates the white poplars of the Sele from the 

hybrids of the Ticino (see comments below). The mean h value of the Sele population was 

slightly higher in comparison with that calculated by Salvini et al. (2001) in the case of five 

populations of P. tremula distributed along the Italian peninsula (0.51 Vs 0.33). These 

moderately high level of both genetic variability and number of haplotypes with respect to the 

same P. tremula Italian populations [8 Vs 6 - (Salvini et al., 2001)] can possibly be attributed to 

the fact that the white poplar population here analysed is located in an area (the Cilento) 

considered as a glacial refugium and a hot spot of biodiversity for several angiosperm species 

(Cottrell et al., 2005; Fineschi & Vendramin, 2004; Grassi et al., 2009; Petit et al., 2002; Petit et 

al., 2003). The nSSR analysis carried out on the same population revealed that the expected 

heterozygosity was relatively high (He 0.460), but in accordance with those reported by 

Castiglione et al. (2010) in the case of three populations distributed along the banks of three 

rivers in northern and central Italy and with that calculated by Lexer et al. (2005) for two 

populations of P. alba (0.419 and 0.341), and two of P. tremula (0.466 and 0.483 - Lexer et al. 

2005). Moreover the produced data were also comparable also with those of four different P. 

tremuloides populations collected in North American [0.460, 0.310, 0.560 and 0.410 – (Cole, 

2005)]. The nSSRs were also employed to estimate the genetic diversity among the Sele 

population and the other 8 specimens, used as white poplar reference samples representative 

of an ample range of Italian P. alba biodiversity. In particular, the PCA plot (Fig. 2) clearly 

splits the Sele poplars from the Ticino hybrids, but not from the remaining reference samples 

(Sardinia and Northern Italian clones). Thus, this intermingled group does not reflect the 

geographic origins of the species growing in the Italian peninsula and in the Sardinia island, 

suggesting that the white poplar population of the Sele is highly variable and consistently 

different only with respect to the Ticino river representatives. Here, it should be mentioned 

that the Ticino white poplars are not genetically pure individuals, as in the case of other 

populations present in the European river basins (Lexer et al., 2005; van Loo et al., 2008), 

indeed they show different levels of introgression towards P. tremula as extensively 
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demonstrated by Fossati et al.(2004), Lexer et al. (2010) and Castiglione et al. (2010). Based on 

such considerations, the very high value of genetic diversity found for P. alba so far analyzed 

can be explained not only by the high degree of polymorphism typical of the surveyed SSR 

loci, but also by the reproductive features of poplar as dioecious species. In fact, poplar is 

strictly outcrossing and both pollen and seeds can be moved over large distance by wind, 

facilitating their dispersion even among geographically well separated populations 

(Castiglione et al., 2010).  

To estimate the numbers of SNPs within the MT gene family, we used an innovative approach 

that proved to be extremely rapid and also cost effective. In fact, we made use of  the already 

“in house” available information about the genetic biodiversity [previously estimated by 

means of nSSR (Innac, 2009)] on the river Sele white poplar population, so that the five most 

genetically divergent specimens were selected on the basis of the Jaccard dissimilarity index 

graphically plotted on a UPGMA dendrogram (data not shown). The purified DNA of the five 

chosen poplar genotypes were PCR amplified and sequenced to identify the SNPs present 

along the six MT genes. SNPs were detected in all MT gene sequences of the five chosen white 

poplar specimens. The only exception was MT2b, where no SNP was detected. This 

observation corroborated our phylogenetic sequence data, which revealed a very low number 

of variable sites in a MT2b multialignment comprising 11 different nucleotide sequences 

belonging to different poplar species. Interestingly, an uneven distribution of SNPs was 

observed among the diverse MT-gene isoforms, as in the specific case of MT1a and MT3a (see 

below), suggesting that the occurrence of SNPs varies among the different members of the MT 

multigene family. These observations suggest a different role of MT genes in metal 

homeostasis and in response to different stimuli and stresses (Berta et al., 2009; Castiglione et 

al., 2007; Cicatelli et al., 2010; 2011). The study on MT genes of P. alba Sele population showed 

an average of 7 SNPs and 0.9 SNPs per 100 bp in MT1a and MT3a genes, respectively. In 

comparison to other Populus spp., SNP frequencies were substantially greater than those 

observed in: P. tremula, [one SNP in every 60 bp and one of 208 bp - (Ingvarsson, 2005; 

Ingvarsson, 2008); P. nigra (one SNP in every 26 bp over the nine sequenced genes - (Chu et al., 

2009)]; P. balsamifera [one SNP in 520 bp - (Breen et al., 2009)]. Nevertheless, a quite similar 

nucleotide variability at the intraspecific level (7.0%) was observed by Fladung and Buschbom 

(2009), over 3,221 bp corresponding to the sequences of six genes which are very important for 

both plant growth and metabolism, and which in addition proved to be suitable molecular 

tools for estimating genetic and phylogenetic relationships among poplar species. 

3. Conclusions 

In the light of the data here presented and of the above considerations, we can state that the 

results of this study on the MT multigene family are sufficient to resolve phylogenetic 

relationships among poplar species belonging to different sections: in fact, phylogenetic 

trees based on the MT supergene can be considered more reliable than those obtained by 

other authors using several type of different molecular markers as in the case of rDNA, ITS 

and AFLPs. Moreover the SNPs identified in different specimens of the white poplar 

population of the Sele river suggest a further investigation in other poplar species and 

populations to validate our findings, aimed particularly at the possible use of poplar for 

heavy metals phytoremediation purposes. 
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5. Note 
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